
Improved Texture Networks: Maximizing Quality and Diversity in

Feed-forward Stylization and Texture Synthesis

Dmitry Ulyanov

Skolkovo Institute of Science and Technology & Yandex

dmitry.ulyanov@skoltech.ru

Andrea Vedaldi

University of Oxford

vedaldi@robots.ox.ac.uk

Victor Lempitsky

Skolkovo Institute of Science and Technology

lempitsky@skoltech.ru

Abstract

The recent work of Gatys et al., who characterized the

style of an image by the statistics of convolutional neural

network filters, ignited a renewed interest in the texture gen-

eration and image stylization problems. While their image

generation technique uses a slow optimization process, re-

cently several authors have proposed to learn generator

neural networks that can produce similar outputs in one

quick forward pass. While generator networks are promis-

ing, they are still inferior in visual quality and diversity

compared to generation-by-optimization. In this work, we

advance them in two significant ways. First, we introduce

an instance normalization module to replace batch normal-

ization with significant improvements to the quality of image

stylization. Second, we improve diversity by introducing

a new learning formulation that encourages generators to

sample unbiasedly from the Julesz texture ensemble, which

is the equivalence class of all images characterized by cer-

tain filter responses. Together, these two improvements take

feed forward texture synthesis and image stylization much

closer to the quality of generation-via-optimization, while

retaining the speed advantage.

1. Introduction

The recent work of Gatys et al. [4, 5], which used deep

neural networks for texture synthesis and image stylization

to a great effect, has created a surge of interest in this area.

Following an eariler work by Portilla and Simoncelli [15],

they generate an image by matching the second order mo-

ments of the response of certain filters applied to a reference

texture image. The innovation of Gatys et al. is to use non-

linear convolutional neural network filters for this purpose.

The source code is available at https://github.com/

DmitryUlyanov/texture_nets

(a) Panda. (b) (c)

(d) Style. (e) (f)

Figure 1: Which panda stylization seems the best to you?

Definitely not the variant (b), which has been produced

by a state-of-the-art algorithm among methods that take no

longer than a second. The (e) picture took several minutes

to generate using an optimization process, but the quality

is worth it, isn’t it? We would be particularly happy if you

chose one from the rightmost two examples, which are com-

puted with our new method that aspires to combine the qual-

ity of the optimization-based method and the speed of the

fast one. Moreover, our method is able to produce diverse

stylizations using a single network.

Despite the excellent results, however, the matching pro-

cess is based on local optimization, and generally requires

a considerable amount of time (tens of seconds to minutes)

in order to generate a single textures or stylized image.

In order to address this shortcoming, Ulyanov et al. [19]

and Johnson et al. [8] suggested to replace the optimiza-

tion process with feed-forward generative convolutional

networks. In particular, [19] introduced texture networks

to generate textures of a certain kind, as in [4], or to apply

16924

https://github.com/DmitryUlyanov/texture_nets
https://github.com/DmitryUlyanov/texture_nets

a certain texture style to an arbitrary image, as in [5]. Once

trained, such texture networks operate in a feed-forward

manner, three orders of magnitude faster than the optimiza-

tion methods of [4, 5].

The price to pay for such speed is a reduced perfor-

mance. For texture synthesis, the neural network of [19]

generates good-quality samples, but these are not as di-

verse as the ones obtained from the iterative optimization

method of [4]. For image stylization, the feed-forward re-

sults of [19, 8] are qualitatively and quantitatively worse

than iterative optimization. In this work, we address both

limitations by means of two contributions, both of which

extend beyond the applications considered in this paper.

Our first contribution (section 4) is an architectural

change that significantly improves the generator net-

works. The change is the introduction of an instance-

normalization layer which, particularly for the stylization

problem, greatly improves the performance of the deep net-

work generators. This advance significantly reduces the gap

in stylisation quality between the feed-forward models and

the original iterative optimization method of Gatys et al.,

both quantitatively and qualitatively.

Our second contribution (section 3) addresses the lim-

ited diversity of the samples generated by texture networks.

In order to do so, we introduce a new formulation that

learns generators that uniformly sample the Julesz en-

semble [20]. The latter is the equivalence class of im-

ages that match certain filter statistics. Uniformly sampling

this set guarantees diverse results, but traditionally doing

so required slow Monte Carlo methods [20]; Portilla and

Simoncelli, and hence Gatys et al., cannot sample from

this set, but only find individual points in it, and possibly

just one point. Our formulation minimizes the Kullback-

Leibler divergence between the generated distribution and

a quasi-uniform distribution on the Julesz ensemble. The

learning objective decomposes into a loss term similar to

Gatys et al. minus the entropy of the generated texture sam-

ples, which we estimate in a differentiable manner using a

non-parametric estimator [12].

We validate our contributions by means of extensive

quantitative and qualitative experiments, including com-

paring the feed-forward results with the gold-standard

optimization-based ones (section 5). We show that, com-

bined, these ideas dramatically improve the quality of feed-

forward texture synthesis and image stylization, bringing

them to a level comparable to the optimization-based ap-

proaches.

2. Background and related work

Julesz ensemble. Informally, a texture is a family of vi-

sual patterns, such as checkerboards or slabs of concrete,

that share certain local statistical regularities. The concept

was first studied by Julesz [9], who suggested that the vi-

sual system discriminates between different textures based

on the average responses of certain image filters.

The work of [20] formalized Julesz’ ideas by introduc-

ing the concept of Julesz ensemble. There, an image is

a real function x : Ω → R
3 defined on a discrete lat-

tice Ω = {1, . . . , H} × {1, . . . ,W} and a texture is a

distribution p(x) over such images. The local statistics

of an image are captured by a bank of (non-linear) filters

Fl : X × Ω → R, l = 1, . . . , L, where Fl(x, u) denotes the

response of filter Fl at location u on image x. The image x
is characterized by the spatial average of the filter responses

µl(x) =
∑

u∈Ω Fl(x, u)/|Ω|. The image is perceived as a

particular texture if these responses match certain charac-

teristic values µ̄l. Formally, given the loss function,

L(x) =
L
∑

l=1

(µl(x)− µ̄l)
2 (1)

the Julesz ensemble is the set of all texture images

Tǫ = {x ∈ X : L(x) ≤ ǫ}

that approximately satisfy such constraints. Since all tex-

tures in the Julesz ensemble are perceptually equivalent, it is

natural to require the texture distribution p(x) to be uniform

over this set. In practice, it is more convenient to consider

the exponential distribution

p(x) =
e−L(x)/T

∫

e−L(y)/T dy
, (2)

where T > 0 is a temperature parameter. This choice is mo-

tivated as follows [20]: since statistics are computed from

spatial averages of filter responses, one can show that, in

the limit of infinitely large lattices, the distribution p(x) is

zero outside the Julesz ensemble and uniform inside. In

this manner, eq. (2) can be though as a uniform distribu-

tion over images that have a certain characteristic filter re-

sponses µ̄ = (µ̄1, . . . , µ̄L).
Note also that the texture is completely described by the

filter bank F = (F1, . . . , FL) and their characteristic re-

sponses µ̄. As discussed below, the filter bank is generally

fixed, so in this framework different textures are given by

different characteristics µ̄.

Generation-by-minimization. For any interesting choice

of the filter bank F , sampling from eq. (2) is rather challeng-

ing and classically addressed by Monte Carlo methods [20].

In order to make this framework more practical, Portilla

and Simoncelli [16] proposed instead to heuristically sam-

ple from the Julesz ensemble by the optimization process

x∗ = argmin
x∈X

L(x). (3)

6925

If this optimization problem can be solved, the minimizer

x∗ is by definition a texture image. However, there is no

reason why this process should generate fair samples from

the distribution p(x). In fact, the only reason why eq. (3)

may not simply return always the same image is that the op-

timization algorithm is randomly initialized, the loss func-

tion is highly non-convex, and search is local. Only because

of this eq. (3) may land on different samples x∗ on different

runs.

Deep filter banks. Constructing a Julesz ensemble re-

quires choosing a filter bank F . Originally, researchers con-

sidered the obvious candidates: Gaussian derivative filters,

Gabor filters, wavelets, histograms, and similar [20, 16, 21].

More recently, the work of Gatys et al. [4, 5] demonstrated

that much superior filters are automatically learned by deep

convolutional neural networks (CNNs) even when trained

for apparently unrelated problems, such as image classifi-

cation. In this paper, in particular, we choose for L(x) the

style loss proposed by [4]. The latter is the distance between

the empirical correlation matrices of deep filter responses in

a CNN.1

Stylization. The texture generation method of Gatys et

al. [4] can be considered as a direct extension of the texture

generation-by-minimization technique (3) of Portilla and

Simoncelli [16]. Later, Gatys et al. [5] demonstrated that

the same technique can be used to generate an image that

mixes the statistics of two other images, one used as a tex-

ture template and one used as a content template. Content

is captured by introducing a second loss Lcont.(x, x0) that

compares the responses of deep CNN filters extracted from

the generated image x and a content image x0. Minimizing

the combined loss L(x) + αLcont.(x, x0) yields impressive

artistic images, where a texture µ̄, defining the artistic style,

is fused with the content image x0.

Feed-forward generator networks. For all its simplicity

and efficiency compared to Markov sampling techniques,

generation-by-optimization (3) is still relatively slow, and

certainly too slow for real-time applications. Therefore, in

the past few months several authors [8, 19] have proposed to

learn generator neural networks g(z) that can directly map

random noise samples z ∼ pz = N (0, I) to a local mini-

mizer of eq. (3). Learning the neural network g amounts to

minimizing the objective

g∗ = argmin
g

E
pz

L(g(z)). (4)

While this approach works well in practice, it shares the

same important limitation as the original work of Portilla

1Note that such matrices are obtained by averaging local non-linear

filters: these are the outer products of filters in a certain layer of the nerual

network. Hence, the style loss of Gatys et al. is in the same form as eq. (1).

and Simoncelli: there is no guarantee that samples gener-

ated by g∗ would be fair samples of the texture distribu-

tion (2). In practice, as we show in the paper, such samples

tend in fact to be not diverse enough.

Both [8, 19] have also shown that similar generator net-

works work also for stylization. In this case, the generator

g(x0, z) is a function of the content image x0 and of the

random noise z. The network g is learned to minimize the

sum of texture loss and the content loss:

g∗ = argmin
g

E
px0

,pz

[L(g(x0, z)) + αLcont.(g(x0, z), x0)].

(5)

Alternative neural generator methods. There are many

other techniques for image generation using deep neural

networks.

The Julesz distribution is closely related to the FRAME

maximum entropy model of [21], as well as to the concept

of Maximum Mean Discrepancy (MMD) introduced in [7].

Both FRAME and MMD make the observation that a prob-

ability distribution p(x) can be described by the expected

values µα = Ex∼p(x)[φα(x)] of a sufficiently rich set of

statistics φα(x). Building on these ideas, [14, 3] construct

generator neural networks g with the goal of minimizing the

discrepancy between the statistics averaged over a batch of

generated images
∑N

i=1 φα(g(zi))/N and the statistics av-

eraged over a traning set
∑M

i=1 φα(xi)/M . The resulting

networks g are called Moment Matching Networks (MMN).

An important alternative methodology is based on the

concept of Generative Adversarial Networks (GAN; [6]).

This approach trains, together with the generator network

g(z), a second adversarial network f(·) that attempts to dis-

tinguish between generated samples g(z), z ∼ N (0, I) and

real samples x ∼ pdata(x). The adversarial model f can be

used as a measure of quality of the generated samples and

used to learn a better generator g. GAN are powerful but no-

toriously difficult to train. A lot of research is has recently

focused on improving GAN or extending it. For instance,

LAPGAN [2] combines GAN with a Laplacian pyramid and

DCGAN [17] optimizes GAN for large datasets.

3. Julesz generator networks

This section describes our first contribution, namely a

method to learn networks that draw samples from the Julesz

ensemble modelling a texture (section 2), which is an in-

tractable problem usually addressed by slow Monte Carlo

methods [21, 20]. Generation-by-optimization, popularized

by Portilla and Simoncelli and Gatys et al., is faster, but

can only find one point in the ensemble, not sample from it,

with scarce sample diversity, particularly when used to train

feed-forward generator networks [8, 19].

Here, we propose a new formulation that allows to train

generator networks that sample the Julesz ensemble, gener-

6926

ating images with high visual fidelity as well as high diver-

sity.

A generator network [6] maps an i.i.d. noise vector

z ∼ N (0, I) to an image x = g(z) in such a way that

x is ideally a sample from the desired distribution p(x).
Such generators have been adopted for texture synthesis

in [19], but without guarantees that the learned generator

g(z) would indeed sample a particular distribution.

Here, we would like to sample from the Gibbs distri-

bution (2) defined over the Julesz ensemble. This distri-

bution can be written compactly as p(x) = Z−1e−L(x)/T ,

where Z =
∫

e−L(x)/T dx is an intractable normalization

constant.

Denote by q(x) the distribution induced by a generator

network g. The goal is to make the target distribution p and

the generator distribution q as close as possible by minimiz-

ing their Kullback-Leibler (KL) divergence:

KL(q||p) =

∫

q(x) ln
q(x)Z

p(x)
dx

=
1

T
E

x∼q(x)
L(x) + E

x∼q(x)
ln q(x) + ln(Z)

=
1

T
E

x∼q(x)
L(x)−H(q) + const.

(6)

Hence, the KL divergence is the sum of the expected value

of the style loss L and the negative entropy of the generated

distribution q.

The first term can be estimated by taking the expectation

over generated samples:

E
x∼q(x)

L(x) = E
z∼N (0,I)

L(g(z)). (7)

This is similar to the reparametrization trick of [11] and is

also used in [8, 19] to construct their learning objectives.

The second term, the negative entropy, is harder to es-

timate accurately, but simple estimators exist. One which

is particularly appealing in our scenario is the Kozachenko-

Leonenko estimator [12]. This estimator considers a batch

of N samples x1, . . . , xn ∼ q(x). Then, for each sample

xi, it computes the distance ρi to its nearest neighbour in

the batch:

ρi = min
j 6=i

‖xi − xj‖. (8)

The distances ρi can be used to approximate the entropy as

follows:

H(q) ≈
D

N

N
∑

i=1

ln ρi + const. (9)

where D = 3WH is the number of components of the im-

ages x ∈ R
3×W×H .

An energy term similar to (6) was recently proposed

in [10] for improving the diversity of a generator network

in a adversarial learning scheme. While the idea is superfi-

cially similar, the application (sampling the Julesz ensem-

ble) and instantiation (the way the entropy term is imple-

mented) are very different.

Learning objective. We are now ready to define an ob-

jective function E(g) to learn the generator network g. This

is given by substituting the expected loss (7) and the en-

tropy estimator (9), computed over a batch of N generated

images, in the KL divergence (6):

E(g) =
1

N

N
∑

i=1

[1

T
L(g(zi))

− λ lnmin
j 6=i

‖g(zi)− g(zj)‖
]

(10)

The batch itself is obtained by drawing N samples

z1, . . . , zn ∼ N (0, I) from the noise distribution of the

generator. The first term in eq. (10) measures how closely

the generated images g(zi) are to the Julesz ensemble. The

second term quantifies the lack of diversity in the batch by

mutually comparing the generated images.

Learning. The loss function (10) is in a form that al-

lows optimization by means of Stochastic Gradient Descent

(SGD). The algorithm samples a batch z1, . . . , zn at a time

and then descends the gradient:

1

N

N
∑

i=1

[dL

dx⊤

dg(zi)

dθ⊤

−
λ

ρi
(g(zi)− g(zj∗

i
))⊤

(

dg(zi)

dθ⊤
−

dg(zj∗
i
)

dθ⊤

)

]

(11)

where θ is the vector of parameters of the neural network g,

the tensor image x has been implicitly vectorized and j∗i is

the index of the nearest neighbour of image i in the batch.

4. Stylization with instance normalization

The work of [19] showed that it is possible to learn

high-quality texture networks g(z) that generate images in

a Julesz ensemble. They also showed that it is possible to

learn good quality stylization networks g(x0, z) that apply

the style of a fixed texture to an arbitrary content image x0.

Nevertheless, the stylization problem was found to be

harder than the texture generation one. For the stylization

task, they found that learning the model from too many ex-

ample content images x0, say more than 16, yielded poorer

qualitative results than using a smaller number of such ex-

amples. Some of the most significant errors appeared along

the border of the generated images, probably due to padding

and other boundary effects in the generator network. We

6927

conjectured that these are symptoms of a learning problem

too difficult for their choice of neural network architecture.

A simple observation that may make learning simpler is

that the result of stylization should not, in general, depend

on the contrast of the content image but rather should match

the contrast of the texture that is being applied to it. Thus,

the generator network should discard contrast information

in the content image x0. We argue that learning to discard

contrast information by using standard CNN building block

is unnecessarily difficult, and is best done by adding a suit-

able layer to the architecture.

To see why, let x ∈ R
N×C×W×H be an input tensor

containing a batch of N images. Let xnijk denote its nijk-

th element, where k and j span spatial dimensions, i is the

feature channel (i.e. the color channel if the tensor is an

RGB image), and n is the index of the image in the batch.

Then, contrast normalization is given by:

ynijk =
xnijk − µni
√

σ2
ni + ǫ

,

µni =
1

HW

W
∑

l=1

H
∑

m=1

xnilm,

σ2
ni =

1

HW

W
∑

l=1

H
∑

m=1

(xnilm − µni)
2.

(12)

It is unclear how such as function could be implemented as

a sequence of standard operators such as ReLU and convo-

lution.

On the other hand, the generator network of [19] does

contain a normalization layers, and precisely batch normal-

ization (BN) ones. The key difference between eq. (12) and

batch normalization is that the latter applies the normaliza-

tion to a whole batch of images instead of single ones:

ynijk =
xnijk − µi
√

σ2
i + ǫ

,

µi =
1

HWN

N
∑

n=1

W
∑

l=1

H
∑

m=1

xnilm,

σ2
i =

1

HWN

N
∑

n=1

W
∑

l=1

H
∑

m=1

(xnilm − µi)
2.

(13)

We argue that, for the purpose of stylization, the normal-

ization operator of eq. (12) is preferable as it can normalize

each individual content image x0.

While some authors call layer eq. (12) contrast normal-

ization, here we refer to it as instance normalization (IN)

since we use it as a drop-in replacement for batch nor-

malization operating on individual instances instead of the

batch as a whole. Note in particular that this means that in-

stance normalization is applied throughout the architecture,

Figure 2: Comparison of normalization techniques in image

stylization. From left to right: BN, cross-channel LRN at

the first layer, IN at the first layer, IN throughout.

0 3000 6000 9000 12000
Iteration

13.0

13.5

14.0

14.5

15.0

15.5

16.0

ln
L
(x
)

Batch

Instance

(a) Feed-forward history.

0 50 100 150 200 250 300
Iteration

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

ln
L
(x
)

Batch

Instance

Random

(b) Finetuning history.

(c) Content. (d) StyleNet IN. (e) IN finetuned.

(f) Style. (g) StyleNet BN. (h) BN finetuned.

Figure 3: (a) learning objective as a function of SGD iter-

ations for StyleNet IN and BN. (b) Direct optimization of

the Gatys et al. for this example image starting from the re-

sult of StyleNet IN and BN. (d,g) Result of StyleNet with

instance (d) and batch normalization (g). (e,h) Result of

finetuning the Gatys et al. energy.

not just at the input image—fig. 2 shows the benefit of doing

so.

Another similarity with BN is that each IN layer is fol-

lowed by a scaling and bias operator s⊙x+b. A difference

is that the IN layer is applied at test time as well, unchanged,

whereas BN is usually switched to use accumulated mean

and variance instead of computing them over the batch.

IN appears to be similar to the layer normalization

method introduced in [1] for recurrent networks, although

it is not clear how they handle spatial data. Like theirs, IN

is a generic layer, so we tested it in classification problems

as well. In such cases, it still work surprisingly well, but not

as well as batch normalization (e.g. AlexNet [13] IN has 2-

3% worse top-1 accuracy on ILSVRC [18] than AlexNet

BN).

6928

Content StyleNet IN (ours) StyleNet BN Gatys et al. Style

Figure 4: Stylization results obtained by applying different textures (rightmost column) to different content images (leftmost

column). Three methods are compared: StyleNet IN, StyleNet BN, and iterative optimization. StyleNet BN is similar to

[19] and [8] but trained on larger images (512x compared to 256x in [19, 8]) for a fair comparison with StyleNet IN. We

compare to original [19, 8] in supmat.

5. Experiments

In this section, after discussing the technical details of

the method, we evaluate our new texture network architec-

tures using instance normalization, and then investigate the

ability of the new formulation to learn diverse generators.

5.1. Technical details

Network architecture. Among two generator network

architectures, proposed previously in [19, 8], we choose the

residual architecture from [8] for all our style transfer exper-

iments. We also experimented with architecture from [19]

and observed a similar improvement with our method, but

use the one from [8] for convenience. We call it StyleNet

with a postfix BN if it is equipped with batch normalization

or IN for instance normalization.

For texture synthesis we compare two architectures: the

multiscale fully-convolutional architecture from [19] (Tex-

tureNetV1) and the one we design to have a very large re-

ceptive field (TextureNetV2). TextureNetV2 takes a noise

vector of size 256 and first transforms it with two fully-

connected layers. The output is then reshaped to a 4 × 4

6929

Input TextureNetV2 λ = 0 TextureNetV2 λ > 0 (ours) TextureNetV1 λ = 0

Figure 5: The textures generated by the high capacity Texture Net V2 without diversity term (λ = 0 in eq. (10)) are nearly

identical. The low capacity TextureNet V1 of [19] achieves diversity, but has sometimes poor results. TextureNet V2 with

diversity is the best of both worlds.

image and repeatedly upsampled with fractionally-strided

convolutions similar to [17]. More details can be found in

the supplementary material.

Weight parameters. In practice, for the case of λ > 0,

entropy loss and texture loss in eq. (10) should be weighted

properly. As only the value of Tλ is important for opti-

mization we assume λ = 1 and choose T from the set of

three values (5, 10, 20) for texture synthesis (we pick the

higher value among those not leading to artifacts – see our

discussion below). We fix T = 10000 for style transfer ex-

periments. For texture synthesis, similarly to [19], we found

useful to normalize gradient of the texture loss as it passes

back through the VGG-19 network. This allows rapid con-

vergence for stochastic optimization but implicitly alters the

objective function and requires temperature to be adjusted.

We observe that for textures with flat lightning high entropy

weight results in brightness variations over the image fig. 7.

We hypothesize this issue can be solved if either more clever

distance for entropy estimation is used or an image prior in-

troduced.

5.2. Effect of instance normalization

In order to evaluate the impact of replacing batch nor-

malization with instance normalization, we consider first

the problem of stylization, where the goal is to learn a gen-

erator x = g(x0, z) that applies a certain texture style to

the content image x0 using noise z as “random seed”. We

set λ = 0 for which generator is most likely to discard the

noise.

The StyleNet IN and StyleNet BN are compared in fig. 3.

Panel fig. 3.a shows the training objective (5) of the net-

works as a function of the SGD training iteration. The

objective function is the same, but StyleNet IN converges

much faster, suggesting that it can solve the stylization

problem more easily. This is confirmed by the stark dif-

ference in the qualitative results in panels (d) end (g). Since

the StyleNets are trained to minimize in one shot the same

objective as the iterative optimization of Gatys et al., they

can be used to initialize the latter algorithm. Panel (b) shows

the result of applying the Gatys et al. optimization starting

from their random initialization and the output of the two

StyleNets. Clearly both networks start much closer to an

optimum than random noise, and IN closer than BN. The

difference is qualitatively large: panels (e) and (h) show the

change in the StyleNets output after finetuning by iterative

optimization of the loss, which has a small effect for the IN

variant, and a much larger one for the BN one.

Similar results apply in general. Other examples are

shown in fig. 4, where the IN variant is far superior to BN

and much closer to the results obtained by the much slower

6930

Content Style StyleNet λ > 0 StyleNet λ = 0

Figure 6: The StyleNetV2 g(x0, z), trained with diversity λ > 0, generates substantially different stylizations for different

values of the input noise z. With λ = 0 generator tends to ignore noise channels when trained for sufficiently long time thus

producing almost the same stylization for different noise z.

Figure 7: Negative examples. If the diversity term λ is too

high for the learned style, the generator tends to generate

artifacts in which brightness is changed locally (spotting)

instead of (or as well as) changing the structure.

iterative method of Gatys et al. StyleNets are trained on im-

ages of a fixed sized, but since they are convolutional, they

can be applied to arbitrary sizes. In the figure, the top tree

images are processed at 512 × 512 resolution and the bot-

tom two at 1024 × 1024. In general, we found that higher

resolution images yield visually better stylization results.

While instance normalization works much better than

batch normalization for stylization, for texture synthesis the

two normalization methods perform equally well. This is

consistent with our intuition that IN helps in normalizing

the information coming from content image x0, which is

highly variable, whereas it is not important to normalize the

texture information, as each model learns only one texture

style.

5.3. Effect of the diversity term

Having validated the IN-based architecture, we evaluate

now the effect of the entropy-based diversity term in the

objective function (10).

The experiment in fig. 5 starts by considering the

problem of texture generation. We compare the new

high-capacity TextureNetV2 and the low-capacity Tex-

tureNetsV1 texture synthesis networks. The low-capacity

model is the same as [19]. This network was used there

in order to force the network to learn a non-trivial depen-

dency on the input noise, thus generating diverse outputs

even though the learning objective of [19], which is the

same as eq. (10) with diversity coefficient λ = 0, tends to

suppress diversity. The results in fig. 5 are indeed diverse,

but sometimes of low quality. This should be contrasted

with TextureNetV2, the high-capacity model: its visual fi-

delity is much higher, but, by using the same objective func-

tion [19], the network learns to generate a single image, as

expected. TextureNetV2 with the new diversity-inducing

objective (λ > 0) is the best of both worlds, being both

high-quality and diverse.

The experiment in fig. 6 assesses the effect of the diver-

sity term in the stylization problem. The results are similar

to the ones for texture synthesis and the diversity term effec-

tively encourages the network to learn to produce different

results based on the input noise.

One difficultly with texture and stylization networks is

that the entropy loss weight λ must be tuned for each

learned texture model. Choosing λ too small may fail to

learn a diverse generator, and setting it too high may create

artifacts, as shown in fig. 7.

6. Summary

This paper advances feed-forward texture synthesis and

stylization networks in two significant ways. It introduces

instance normalization, an architectural change that makes

training stylization networks easier and allows the training

process to achieve much lower loss levels. It also introduces

a new learning formulation for training generator networks

to sample uniformly from the Julesz ensemble, thus ex-

plicitly encouraging diversity in the generated outputs. We

show that both improvements lead to noticeable improve-

ments of the generated stylized images and textures, while

keeping the generation runtimes intact.

Acknowledgements. VL was supported by the Ministry

of Education and Science of the Russian Federation (grant

14.756.31.0001).

6931

References

[1] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.

CoRR, abs/1607.06450, 2016. 5

[2] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep

generative image models using a laplacian pyramid of adver-

sarial networks. In NIPS, pages 1486–1494, 2015. 3

[3] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training

generative neural networks via maximum mean discrepancy

optimization. In UAI, pages 258–267. AUAI Press, 2015. 3

[4] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In Advances in Neu-

ral Information Processing Systems, NIPS, pages 262–270,

2015. 1, 2, 3

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm

of artistic style. CoRR, abs/1508.06576, 2015. 1, 2, 3

[6] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.

Generative adversarial nets. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 2672–2680, 2014. 3,

4

[7] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and

A. J. Smola. A kernel method for the two-sample-problem.

In Advances in neural information processing systems,NIPS,

pages 513–520, 2006. 3

[8] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In Computer

Vision - ECCV 2016 - 14th European Conference, Amster-

dam, The Netherlands, October 11-14, 2016, Proceedings,

Part II, pages 694–711, 2016. 1, 2, 3, 4, 6

[9] B. Julesz. Textons, the elements of texture perception, and

their interactions. Nature, 290(5802):91–97, 1981. 2

[10] T. Kim and Y. Bengio. Deep directed generative models

with energy-based probability estimation. arXiv preprint

arXiv:1606.03439, 2016. 4

[11] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. CoRR, abs/1312.6114, 2013. 4

[12] L. F. Kozachenko and N. N. Leonenko. Sample estimate of

the entropy of a random vector. Probl. Inf. Transm., 23(1-

2):95–101, 1987. 2, 4

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012. 5

[14] Y. Li, K. Swersky, and R. S. Zemel. Generative moment

matching networks. In Proc. International Conference on

Machine Learning, ICML, pages 1718–1727, 2015. 3

[15] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients.

IJCV, 40(1):49–70, 2000. 1

[16] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients.

IJCV, 2000. 2, 3

[17] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. CoRR, abs/1511.06434, 2015. 3, 7

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015. 5

[19] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.

Texture networks: Feed-forward synthesis of textures and

stylized images. In Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York

City, NY, USA, June 19-24, 2016, pages 1349–1357, 2016.

1, 2, 3, 4, 5, 6, 7, 8

[20] S. C. Zhu, X. W. Liu, and Y. N. Wu. Exploring texture

ensembles by efficient markov chain monte carlotoward a

atrichromacyo theory of texture. PAMI, 2000. 2, 3

[21] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields

and maximum entropy (FRAME): Towards a unified theory

for texture modeling. IJCV, 27(2), 1998. 3

6932

