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Abstract

The three-dimensional reconstruction of scenes from

multiple views has made impressive strides in recent years,

chiefly by methods correlating isolated feature points, inten-

sities, or curvilinear structure. In the general setting, i.e.,

without requiring controlled acquisition, limited number of

objects, abundant patterns on objects, or object curves to

follow particular models, the majority of these methods pro-

duce unorganized point clouds, meshes, or voxel represen-

tations of the reconstructed scene, with some exceptions

producing 3D drawings as networks of curves. Many ap-

plications, e.g., robotics, urban planning, industrial design,

and hard surface modeling, however, require structured rep-

resentations which make explicit 3D curves, surfaces, and

their spatial relationships. Reconstructing surface repre-

sentations can now be constrained by the 3D drawing act-

ing like a scaffold to hang on the computed representations,

leading to increased robustness and quality of reconstruc-

tion. This paper presents one way of completing such 3D

drawings with surface reconstructions, by exploring occlu-

sion reasoning through lofting algorithms.

1. Introduction

Dense 3D surface reconstruction is an important prob-

lem in computer vision which remains challenging in

general scenarios. Most existing multiview reconstruc-

tion methods suffer from some common problems such

Figure 1: The proposed approach transforms a 3D curve

drawing (top) obtained from a fully calibrated set of 27

views, into a collection of dense surface patches (bottom)

obtained via lofting and occlusion reasoning.

as: (i) Holes in the 3D model corresponding to ho-

mogeneous/reflective/transparent image regions, (ii) Over-

smoothing of semantically-important details such as ridges,

(iii) Lack of semantically meaningful surface features, or-

ganization and geometric detail.

In computer vision and graphics literature, there has been

scattered but persistent interest in using 3D curves to infer

aspects of an underlying shape [28, 56], shape-related fea-

tures linked to shading [6], or closed 3D curves [55]. For

example, the approach in Sadri and Singh [44] exploits the

flow complex, a structure that captures both the topology

and the geometry of a set of 3D curves, to construct an

intersection-free triangulated 3D shape. Similarly, the ap-

proach in Pan et al. [39] explores a similar concept with flow

lines, which are designed to encapsulate principal curvature

lines on a surface. As another example, the approach in Ab-

basinejad et al. [1] identifies potential surface patches de-
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lineated by a 3D curve network, breaking them into smaller,

planar patches to represent a complex surface. These meth-

ods are completely automated and yield impressive results

on a wide range of objects. However, they require a com-

plete and accurate input curve network, which is very diffi-

cult to obtain in a bottom-up fashion from image data: there

will always be holes, missed curves, incorrect groupings,

noise, outliers, and other real-world imperfections. Fur-

thermore, these methods are not general, but rather tailored

for scenes with objects of relatively clean geometry. Thus,

they are not suitable for more general, large-scale complex

scenes that the multiview stereo community tackles on a

regular basis.

We propose a novel and complementary dense 3D recon-

struction approach based on occlusion reasoning and a CAD

method called lofting, which is the process of obtaining 3D

surfaces through the interpolation of 3D structure curves.

Lofting has primarily been a drafting technique for gen-

erating streamlined objects from curved line drawings that

was initially used to design and build ships and aircrafts.

More recently, lofting has become a common technique in

computer graphics and computer-aided design (CAD) ap-

plications where a collection of surface curves are used to

define the surface through interpolation. Even though loft-

ing is a very powerful tool, it does not appear to be used

very much in the multiview geometry applications. Em-

ploying an existing curve-based reconstruction method, we

start with a calibrated image sequence to build a 3D drawing

of the scene in the form of a 3D graph, where graph links

contain curve geometries and graph nodes contain junctions

where curve endpoints meet. We propose to use the 3D

drawing of a scene as a scaffold on which dense surface

patches can be placed on, see Figure 1. Our approach re-

lies on the availability of a “3D drawing” of the surface, a

graph of 3D curve fragments reconstructed from calibrated

multiview observations of an object [51]. Observe that such

a 3D drawing acts as a scaffold for the surface of the object

in that the drawing breaks the object surfaces into 3D sur-

face patches, which are glued on and supported by the 3D

drawing scaffold. Our approach then is based on selecting

some 3D curve fragments from the 3D drawing, forming

surface hypotheses from these curve fragments, and using

occlusion reasoning to discard inconsistent hypotheses.

Aside from yielding a useful and semantically-

meaningful intermediate representation, reconstructing sur-

faces by going through curved structures closely replicates

the human act of drawing: As in a progressive drawing, the

basis is independent of illumination conditions and other

details. For instance, photometry/shading/reflectance can

be incorporated later on either as hatchings or progressively

refined as fine shading; multiple renderings can be per-

formed from the same basis. Even challenging materials

such as the ocean surface can be rendered on top of a curve

basis. This approach also has the advantage of scalability,

since it allows for a very large 3D scene to be selectively

and progressively reconstructed.

This paper is organized as follows: Section 2 reviews

the state-of-the-art in generating a 3D drawing of a scene

observed under calibrated views. Section 3 reviews loft-

ing and describes how a surface is generated from a few

curve fragments lying on the surface. Section 4 describes

how 3D surface patch hypotheses are generated from a 3D

drawing, and how occlusion consistency is used to take out

non-veridical hypotheses. Section 6 deals with several tech-

nical challenges, which require a regularization of the 3D

drawing so that surface patches can be robustly inferred.

Section 6 presents experimental results, a comparison with

PMVS [12, 13], and quantification of reconstruction accu-

racy.

2. From Image Curves to a 3D Curve Drawing

Our multiview stereo method is based on the idea of

using 3D curvilinear structures as boundary conditions to

hypothesize the simplest 3D surfaces that would be ex-

plained by these boundaries. The 3D curvilinear structure

that is needed is obtained by correlating image curves in

calibrated multiview imagery to reconstruct 3D curve frag-

ments, which are organized as a graph and referred to as

“3D Curve Drawing” [51]. Since this paper requires a 3D

curve drawing available, we summarize the work of [51] on

which we rely.

The 3D curve drawing is built on a series of steps. First,

the image is pre-processed to obtain edges using robust,

third-order operators which give highly-accurate edge in-

formation [49]. Second, a geometric linker groups edges

into curves [18] which claims to improve on grouping er-

rors and extent of outliers. This results in image curve

fragments γv
i , i = 1, . . . ,Mv for each view v = 1, . . . , N .

Third, pairs of curves (γv1
i1
,γv2

i2
) from two “hypothesis

views” v1 and v2, which have significant epipolar over-

lap, are used to generate putative candidate reconstructions

Γk, k = 1, . . . ,K. These candidate reconstructed curves

are gauged against image evidence on other projected views

called “confirmation views” and if there is sufficient sup-

port for a 3D curve candidate, it is confirmed and otherwise

rejected. This results in a set of unorganized 3D curve frag-

ments called the “3D Curve Sketch”.

This representation indeed resembles a sketch. 3D curve

fragments in this sketch are often redundant since they came

from multiple hypotheses, are often overfragmented due to

partial epipolar overlap, feature a nontrivial level of clutter,

and most importantly, are unorganized in that the topologi-

cal relationship of 3D curve fragments is not available. The

recent work of [51] deals with these issues, and constructs

a graph of 3D curve fragments referred to as a 3D drawing

of the scene.
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Our approach requires 3D curve fragments and their

topological relationships. To the best of our knowledge,

the approach in [51] is the state of the art in curve-based

multiview stereo. However, any other method that can give

3D curve fragments organized in a topological graph can be

used by our approach as well.

3. Bringing Lofting Into Multiview Stereo

Lofting is graphics technique for shape inference from

a set of 3D curves, a term with roots in shipbuilding to

describe the molding of a hull from curves [5]. Design-

ers often use such intermediate, curve-based representations

(sketches, graphs, drawings) to outline 3D shape, as they

compactly capture rich 3D information and are easy to cus-

tomize. Through lofting, these 3D curves are used to inter-

actively model smooth surfaces. Implementations of loft-

ing are commonplace in interactive CAD [3, 54, 38, 30,

17, 1, 9, 31], and applications [25, 2, 50]. Lofting has not

yet spread to 3D computer vision, where fully-automated

image-based modeling is the norm. This work leverages

lofting to build a fully-automated, dense multiview stereo

reconstruction pipeline.

Given 3D curves Γ1,Γ2, . . .Γn forming the partial

boundary of a surface, lofting produces a smooth sur-

face passing through them which is sought to be ‘sim-

ple’: smooth, avoiding holes and degeneracies such as self-

intersections. Earlier approches formulated this as surface

deformation with parameters estimated to fit the prior into

a 3D curve outline [8, 21]. Approaches using functional

optimization [30, 38, 46, 52, 4, 29] employ generic objec-

tives, such as least squares and integral of squared principal

curvatures, and the result depends on this choice, leading to

overfitting or oversmoothing. These approaches cannot eas-

ily handle complex shapes with many self occlusions [25].

Other algotihms include those based on B-splines [53, 41].

We have chosen lofting based on subdivision surfaces,

a well-known graphics technique that divides the faces of

a coarse input mesh via a recursive sequence of trans-

forms or subdivision schemes, yielding smooth high-poly

meshes, Fig. 2. Subdivision is widely used in a num-

ber of graphics problems [42, 10], such as surface fit-

ting [47, 48, 27], reconstruction [19, 28, 56], and lofting

itself [32, 34, 35, 37, 36, 7]. Combined subdivision schemes

[24, 23] translate conditions on the limit surface to con-

ditions on the scheme itself, and allow subdivision to be

adjusted near the curve network and boundary conditions

beyond subdivision or spline curves. Subdivision surfaces

provide a simple standard framework, with more power-

ful schemes compared to other techniques; meshes with

complex constraints at corners can be handled with greater

ease [45]. We leverage [45], which takes open 3D polygonal

lines terminating in a set of corners – as in our 3D drawing,

but interactively generated. We have augmented it to auto-

Figure 2: Application of subdivision resulting in a high-

poly surface (manually marked hard edges in red) [22].

Figure 3: Quaqdrangulation in lofting; depending on the

configuration of special interior vertices on a chain, one of

these edits are applied to obtain a base mesh topology [45].

matically reorganize the curve network prior to lofting, and

with additional heuristics to avoid degeneracies. The result

is a lofting approach that can: i) take any number of bound-

ary curves partially or completely covering the boundary of

the desired surface, and ii) handles topological inconsisten-

cies, self-intersections, discontinuities and other geometric

artifacts. A brief description of our lofting stage follows.

Skinning: quadrangulates the input curves to construct

a quad topology base mesh without the final geome-

try [45, 43, 20, 33]. Skinning does not produce ac-

curate shape approximation, but mainly avoids vertices

lacking curvature continuity [26]. Given a closed 3D

curve Γ = (s1, . . . , sn), a chain is a subsequence

Γ
i+k
i = (si, . . . , si+k), i = 1, . . . , n + k. The topology

of the base mesh λ is constructed by a sequence of chain

advances on Γ: given Γ
i+k
i , this adds a layer of k quads

to λ bounded below by Γ
i+k
i and above by a new chain

Γ̄
j+k

j = (sj , . . . , sj+k) on the interior of the resulting patch

λ. Γ is replaced by Γ̃ = Γ
i−1

1 ∪Γ̄
k

j ∪Γ
n
i+k+1. Depending on

the configuration of special interior vertices, different types

of advances apply [45], Fig. 3.

Fairing computes the positions of the vertices in λ by

minimizing “fairness” energy, a thin-plate functional [45].

Subdivision is then applied with a modified version of

Catmull-Clark schemes [45], yielding a fine mesh, see Fig-

ure 2.

4. Automated Multiview Reconstruction Using

Lofting

In the previous two sections, we described: (i) The con-

cept of a 3D curve drawing, a graph of 3D contour frag-

ments and a method for deriving it from a set of calibrated

multiview imagery, and (ii) the concept of lofting which re-

constructs 3D surface meshes bounded by a set of given

contour fragments. We now describe how pairs of curve

fragments selected from the 3D curve drawing give rise to

3D surface hypotheses. These hypotheses are then ruled

out when they predict occlusions which are not consistent

with the input data. The remaining hypotheses yield a set of
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Figure 4: A schematic of a simple shapes where a surface

patch (green) is represented by a pair of curves (red); in the

case of closed curves, a pair is not necessary.

occlusion-consistent surface patches. In the following, we

first describe the process of hypothesis formation and then

testing of formed hypotheses for occlusion consistency.

Forming Surface Patch Hypotheses: Ideally, any subset

of curve fragments should be able to form surface hypothe-

ses, but this is clearly intractable; even if curve fragments

are long, noiseless and salient (a critical factor as we shall

see in Section 5), they number in the order of 100 curves or

so. Note that surface patches that arise from closed curves

are a special case and these be identified and processed a

priori. The remaining surface patches involve at least two

curve fragments but typically more, say around 3-5. Then,

pairs of curve fragments can be used as entry level hypothe-

ses, Figure 4.

The pool of curve fragments from which pairs are se-

lected is restricted to those with a minimal length constraint,

L > τlength. This threshold is learned from data and is typ-

ically around a few centimeters for our data. The distance

between two 3D curves is defined as the average point-to-

curve distance for all the samples on both curves. The typ-

ical 3D curve proximity threshold τα, which is also learned

from data, is around 15-20 cm.

Third, in addition to length and pair proximity, curvature

of the reconstructed surface is a cue to whether it is veridi-

cal. This is because object surfaces are typically not as con-

voluted as surfaces arising from unrelated cues. We use av-

erage Gaussian curvature, i.e. Gaussian curvature at every

point on the surface averaged over all surface points, and a

threshold τG which is also learned. It should be noted that

every curve pair generates two surface hypotheses: each

endpoint in a given curve can pair with two possible end-

points on the other curve in the pair. The surface hypothe-

ses with lower average Gaussian curvature is the one that

is selected, if it is above τG, Figure 5. See Figure 6 for a

collection of sample surface hypotheses obtained this way.

Note that an alternate method for forming pairs of 3D

curve fragments is to use the topology of 3D curve frag-

ments as projected onto 2D views. The topology of 2D

image curves is derived from the medial axis or Delaunay

Triangulation to determine the neighboring curve fragments

for any given curve. The topology of projected 3D curve

fragments then induces a neighborhood relationship among

3D curve fragments: two 3D curve fragments are neighbors

in 3D if their corresponding 2D image curves are neigh-

bors in at least one view. This improves the performance

in two ways: (i) veridical pairing which exceed the proxim-

Figure 5: There is an inherent ambiguity in reconstructing a

surface from two curve fragments arising from which end-

points are paired (top row vs. bottom row). When two curve

fragments do belong to a veridical surface, one of the two

reconstructions generally has much lower average Gaussian

curvature than the other and this is a cue as to which one is

veridical. When the pairing of curve fragments is incorrect

in that no surface exists between them, both reconstructs

have high average Gaussian curvature, a cue to remove out-

liers.

Figure 6: Some example loft surfaces of various geometries

that our reconstruction algorithm generates.

ity threshold are restored to the pool of candidate pairs; (ii)

non-veridical curve pairs which are not neighbors are cor-

rectly discarded. This is a significant factor in areas dense

in 3D curves compared to the proximity threshold, which

generates numerous non-veridical curve pairs.

Hypothesis Viability Using Occlusion Consistency: The

most important cue in probing the viability of a 3D surface

patch hypothesis is whether it is consistent with respect to

the occlusions it predicts (it is assumed that surfaces are

opaque). If an opaque 3D surface patch is veridical, then

all 3D curve structures that are occluded by it in a given

projected image must be invisible. For example, a surface

hypothesis may occlude a portion of a 3D curve. Image
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Figure 7: A 3D surface patch S occludes all 3D curve frag-

ments that lie behind it. Thus, the 3D curve fragments be-

tween Γ1 and Γ4 are partially obstructed so that only por-

tions between (Γ1,Γ2) and (Γ3,Γ4) are visible as (γ1,γ2)
and (γ3,γ4) in the image. The projections of (Γ2,Γ3)
should have no edge evidence in the image. On the other

hand, the 3D curve fragments (Γ5,Γ6) is fully unoccluded

and edge evidence for it is expected. The presence of edge

evidence in the portion (γ2,γ3) is grounds for invalidating

the 3D surface hypothesis S.

evidence supporting the occluded portion is grounds for in-

validating the surface hypothesis, Figure 7.

The technical approach to testing occlusion is based on

ray tracing [16]: A ray is connected from the camera center

to each point on a 3D curve fragment belonging to the 3D

curve drawing and the visibility of the point is tested against

each surface hypothesis. Specifically, let {Π1, . . . ,ΠN} de-

note the set of hypothesized surface patches. Let the 3D

curve drawing have curve fragments {Γ1, . . . ,ΓK}, each

having image curve projections onto view l, γl
k(s), where

s represents length parameter s ∈ [0, Ll
k], where Ll

k is the

total length of the projected curve. Let the portion of the 3D

curve that is occluded by the surface patch Πn be denoted

by the interval (alk,n, b
l
k,n). Then, the evidence against sur-

face hypothesis Πn provided by curve Γk from view l, El
k,n,

is the edge support for the invisible portion. This evidence

is the sum of total edge support at sample point s, φ(γl
k(s)),

which is simply the number of image edges that have match-

ing locations and orientations to the curve γ
l
k(s) at sample

point s:

El
n,k =

∫ blk,n

al
k,n

φ(γl
k(s))ds (1)

This evidence is then subjugated to a threshold of sig-

nificance τE ; if significant, the evidence invalidates the hy-

pothesis. On the other hand, if the evidence against the hy-

pothesis for all the curves that should be occluded is indeed

insignificant, i.e., El
n,k < τE , ∀k, the lack of evidence in

fact provides support for the surface hypothesis. This is to

be distinguished from surface hypotheses that are not oc-

cluding any curves. The situation where Πn occludes Γk

and image evidence shows occlusion lends more evidence

to Πn than the situation where Πn does not occlude any

curves.

We now assume that all surface patches occlude at least

Figure 8: A visual illustration of our dense surface recon-

struction pipeline.

one curve in at least one view; note that for polyhedral

shapes, frontal patches occlude the contours of patches

on the back, so this is not a stringent assumption. In

fact, probing this assumption on both Amsterdam House

Dataset and Barcelona Pavilion Dataset (which are de-

scribed in Section 6) shows that this is the case for more

than 90% of the surface hypotheses generated. This as-

sumption implies that each surface hypothesis needs to be

confirmed at least once against an occlusion hypothesis, i.e.,

∀n, ∃l, ∃k, such that El
k,n < τE .

The above process probes the implication of surface

patch in relation to the 3D curve drawing. When intro-

ducing a multitude of surface patches, however, the issue

of occlusion between two surface hypotheses arises. It is

possible that one surface hypothesis is fully occluded by all

other surfaces. Such a surface is then not visible in any view

and is discarded.

Redundant Hypotheses: Since surface hypotheses are

generated by pairs of 3D curve fragments, if a ground truth

surface consists of multiple curve fragments, say a rectan-

gular patch consisting of four curve fragments, then the

same surface will likely be represented by a number of

curve fragment pairs, six possible pairs in the case of a rect-

angular patch.

These redundant representations are detected in a post-

processing stage and consolidated. When a large portion of

a surface hypothesis (80% in our system) is subsumed by

another surface, i.e., 80% of the points on it are closer than

a proximity threshold to another surface, then this surface

is discarded as a redundant hypothesis. A more principled

approach is to merge two overlapping surfaces by forming

curve triplet hypotheses: When two curve pairs have a curve

fragment in common and their surface hypotheses overlap,

as described above, the lofting approach is applied to the

curve triplet and the resulting surface replaces the pair of

surface hypotheses. And, of course, a curve triplet and a

curve pair with a common curve fragment and overlapping

surfaces result in curve quadruplet hypotheses, and so on as

needed. This growth of surface hypotheses yields more ac-

curate and less redundant surface patches, but results from

this process are not ready for inclusion in this publication.

Figure 8 is a visual illustration of our entire surface re-

construction approach. Figure 9 demonstrates that our al-

gorithm is very good at correlating image edges with 3D

curve structures, accurately reasoning about occlusion and

confirming an overwhelming majority of correct surfaces,

as well rejecting almost all of the incorrect hypotheses, Fig-

ure 10. It should be noted that many surface hypotheses do
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Figure 9: Examples to surface hypotheses being confirmed

by the confirmation views shown in this here. Left column:

Projected surface hypothesis is shown in green, projected

curve drawing is shown in blue and occluded segments are

shown in purple. Right column: Same surface and occluded

segments are shown with image edges in blue. Notice the

lack of any edge presence whatsoever around most of the

purple segments, which is clear indication of occlusion con-

sistency between the images and the hypothesis surface.

not contain any portion of the curve drawing behind them

from any given view. These hypotheses cannot be con-

firmed or denied, and, depending on the robustness of the

hypothesis generation algorithm, they can be included in

or discarded from the output as needed. In addition, many

existing multiview stereo methods can be plugged into our

system at the level of curve pairing and used as alternative

ways to provide initial seeds for our surface hypotheses.

As mentioned earlier, our lofting algorithm scales well to

a large number of input 3D curves, which are provided ei-

ther simultaneously or sequentially.

5. Reorganization of Input Curve Graph Using

Differential Geometric Cues

Four important technical issues arise in the application

of lofting to reconstruct surface patches from 3D drawings.

Problem 1: Lofting sensitivity to overgrouping: First,

lofting is highly sensitive to overgrouping in grouping edges

into curves. If some parts of a curve belong to a veridi-

cal surface patch but another part does not, then the loft-

ing results experience significant and irreversible geometric

errors, e.g., as in Figure 11a where two curve fragments

C1 and C2 belong to a side of the house and correctly hy-

pothesize a surface patch through lofting. However, if C2 is

grouped with an adjacent curve fragment C3 belonging to an

adjacent face of the house that C2 belongs to (let C4 denote

C2 ∪ C3), then the lofting results based on (C1, C4) do not

produce a meaningful surface patch. The core of this prob-

lem is that the curve C2 is shared by two surface hypotheses,

Figure 10: An example outlier surface hypothesis ruled out

by detected edge structures. Left column: projected sur-

face hypothesis is shown in green, projected curve drawing

is shown in blue and occluded segments are shown in pur-

ple. Right column: Same surface and occluded segments

are shown with image edges in blue. Notice how most of

the purple segments are barely visible from all the edges

that match in both location and orientation.

but if grouped with C3, it can no longer represent the frontal

surface hypothesis created by C1 and C2. This transition

in the ability to represent multiple surface hypotheses hap-

pens at junctions. Thus, breaking all curves at corners, i.e.

high-curvature points, should remedy this problem. Unfor-

tunately, it is difficult to output curvature for noisy curves,

thus requiring a smoothing algorithm before the curve can

be broken at high-curvature points. This smoothing algo-

rithm is described below in the context of curve noise.

Problem 2: Lofting sensitivity to curve noise: Second,

curve fragments of the 3D drawing can have excessive

noise, depicting loop-like structures and local perturbations,

Figure 11b. These degeneracies in the local form of a curve

fragment often result in failures in the lofting algorithm to

produce a surface hypothesis, or result in surfaces featuring

geometric degeneracies. There are a number of smoothing

methods, and we use a relatively recent robust algorithm

that is based on B-spline models [14, 15], balancing data fi-

delity term with a smoothness term. The ratio of those two

terms determine the degree of smoothing. The advantage of

this method is that the polyline representation of the curve

can be maintained after smoothing.

Problem 3: Lofting sensitivity to overfragmentation and

gaps: Third, lack of edges or undergrouping in the edge

grouping stage can lead to gaps and overfragmentation. In

both cases, a long veridical curve is represented as mul-

tiple smaller curve fragments, Figure 11c. As a result,

what would have been a single surface patch now needs

to be covered by a suboptimal set of smaller, overlap-

ping surface hypotheses. In addition, the increased num-

ber of curve fragments increases the number of curve pairs
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Figure 11: (a) Overgrouping of two curve fragments C2
and C3 into C4 can lead to nonsensical lofting results in the

pair (C1, C4) in contrast to the close-to-veridical results of

lofting (C1, C2); (b) lofting is sensitive to loop-like noise

or excessive perturbations; (c) lofting with overfragmented

curves produces suboptimal lofting results as well as re-

dundant surface proposals, and leads to a combinatorial in-

crease in the number of lofting applications and postpro-

cessing.

to be considered, and lead to a combinatorial increase in

computational cost. Curve fragments that are coinciden-

tal at a point can be grouped if they show good conti-

nuity of tangents at endpoints. Similarly, gaps between

two curve fragments Γ1(s) and Γ2(s) can be bridged be-

tween endpoint Γ1(s1) and Γ2(s2) if: (i) These endpoints

are sufficiently close, i.e., |Γ1(s1) − Γ2(s2)| < τdist,

where τdist is a gap proximity threshold, and (ii)

CC((Γ1(s1), T1(s1)), (Γ2(s2), T2(s2))) < τcocirc where

CC is the co-circularity measure, characterizing good con-

tinuation from one point-tangent pair (P1, T1) to another

pair (P2, T2) [40].

Problem 4: Duplications due to curve fragment over-

laps: Fourth, there is some duplication in 3D curve frag-

ments in that two curves can overlap along portions, thus

creating duplicate surface representations. While this du-

plication may not be an issue for some applications, bet-

ter results can be obtained if the duplication is removed:

When two curves overlap, the longer curve is unaltered and

the overlapping segment is removed from the shorter curve.

The curves are also downsampled since the initial curve

drawing is dense in sample points.

The resolution of the above four problems significantly

improves the performance of our algorithm. Note that

these steps are applied in sequence: Pruning small curves,

smoothing curve fragments, gap filling and grouping over-

fragmented segments, eliminating duplications and down-

sampling. In addition, it is judicious to iteratively apply

these steps in sequence, starting with small parameters and

increasing the parameters in steps (typically 3-4). This is

crucial because all of these steps run the risk of distorting

the 3D data in significant ways if pursued too aggressively

in a single iteration, e.g., corners can be oversmoothed,

wrong gaps can be filled, meaningful but relatively short

curve fragments can get pruned without getting a chance to

be merged into a larger curve fragment etc.

It should be noted that aforementioned problems do

not arise in the plethora of interactive surface lofting ap-

proaches, as a human agent is available to break or group

3D structures to obtain geometrically accurate 3D surfaces,

[38]. Some of the lofting approaches try to get around

this problem by constraining the input curves to be closed

curves, [55, 45], but a fully automated, bottom-up lofting

system like ours has to be able to handle such grouping in-

consistencies algorithmically.

In summary, this regrouping algorithm exploits the un-

derlying organization, as well as the rich differential geo-

metric properties embedded in any sufficiently-smooth, 3D

curve representation, to adjust the granularity and connec-

tivity of any input curve graph or network to suit the needs

of a wide variety of applications. In the case of surface

lofting, the quality of the resulting reconstructions are sig-

nificantly improved if the input curves that have 3D sur-

faces between them have their samples more or less linearly

aligned with each other, resulting in a more robust quadran-

gulation step that kickstarts most lofting approaches. We

therefore use the 1st and 2nd order differential geometric

cues, namely tangents and curvatures, to full extent in or-

der to aggresively group smooth segments and break curves

at high-curvature points, maximizing the likelihood that the

lofting algorithm will receive a set of 3D curves best suited

for its capabilities.

6. Experiments and Results

Implementation: The 3D drawing is computed using code

made available by the authors of [51]. Smoothing code

was made available by [14]. The selection of lofting soft-

ware is among the most critical; we have selected one of

the most robust lofting implementations, BSurfaces, a part

of the Blender software [11], a well-known, professional-

grade CAD tool which is in widespread use. BSurfaces is

able to work on multiple curves with arbitrary topology and

configurations, either simultaneously or incrementally, and

produces simple and smooth surfaces that accurately inter-

polate input curves, even if they only partially cover the

boundary of the surface to be reconstructed. The use of

BSurfaces has been limited to interactive modeling, where

a human agent provides clean and well-connected curves to

the system. To the best of our knowledge, a fully-automated

3D modeling pipeline that first obtains a 3D curve network,

and then uses lofting to surface this network in a fully-

automated fashion using lofting, is novel.

Datasets: We use two datasets to quantify experimental re-

sults. First, the Amsterdam House Dataset consists of 50

fully calibrated multiview images and comprises a wide

variety of object properties, including but not limited to

smooth surfaces, shiny surfaces, specific close-curve ge-

ometries, text, texture, clutter and cast shadows. This

dataset is used to evaluate the occlusion and visibility rea-

soning part of our pipeline, described in Section 4. Sec-

ond, the Barcelona Pavilion Dataset is a realistic synthetic

dataset created for validating the present approach with
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Figure 12: Two views of the PMVS reconstruction results on the

Amsterdam House Dataset and Barcelona Pavilion Dataset (first

row). Observe the wide gaps on homogeneous surfaces. The sec-

ond row show the results of our algorithm from the same views,

obtained from a set of mere 27 curve fragments and without us-

ing appearance. Note that the PMVS gaps are filled in our results.

Our algorithm errs in reconstructing the back of the can as a flat

surface. This can easily be corrected via integration of appearance

cues in the reconstruction process.

complete control over illumination, 3D geometry and cam-

eras. This dataset was used together with its 3D mesh

ground truth to evaluate the geometric accuracy of the pull

pipeline.

Qualitative Evaluation: Figure 12 shows our algorithm’s

reconstruction and compares it to PMVS [12]. Observe

that the reconstructed surface patches are glued onto the 3D

drawing so that the topological relationship among surface

patches is explicitly captured and represented. A key point

to keep in mind is that the two approaches are not compared

to see which is better. Rather, the intent is to show the com-

plementary nature of the two appraches and the promise of

even greater performance when appearance, the backbone

of PMVS, is integrated into our approach.

Quantitative Evaluation: The algorithm is quantitatively

evaluated in two ways. First, we assume the input to the

algorithm, the 3D curve drawing, is correct and compare

ground truth to the algorithm’s results based on a common

3D drawing. Specifically, we manually construct a sur-

face model using the curve drawing in an interactive de-

sign and modeling context using Blender. The resulting

surface model then serves as ground truth (GT) since it is

the best possible expected outcome of our algorithm. Both

GT and algorithm surface models are sampled and a prox-

imity threshold is used to determine if a sample belongs to

the other and vice versa. Three stages of surface recon-

struction are then evaluated as a precision-recall curve, Fig-

ure 13a, namely: (i) All surface hypotheses satisfying for-

mation constraints; (ii) surface hypotheses that survive the

occlusion constraint; (iii) surface hypotheses that further

satisfy the visibility constraint with duplications removed.

The algorithm recovers 90% of the surfaces with nearly

100% precision. The missing surfaces are those that do not

occlude any structures, and therefore cannot be validated

with our approach. Clearly, the use of appearance would a

long way towards recovering these missing surfaces.

Second, we also quantitatively evaluate the algorithm

in an end-to-end fashion, including the 3D drawing stage.

Figure 13: (a) The precision-recall curves for Amsterdam

House Dataset, corresponding to post hypothesis-formation

surfaces (green), confirmed surface (blue), and confirmed

surfaces after occlusion-based cleanup (red). These results

provide quantitative proof for the necessity of all steps in

our reconstruction algorithm; (b) The precision-recall curve

for Barcelona Pavilion Dataset, evaluating the geometric ac-

curacy of the entire pipeline.

Since the ground truth surfaces are not available from Am-

sterdam House Dataset, we resort to using Barcelona Pavil-

ion Dataset, which has GT surfaces. Since this dataset is

large, we focus our evaluation on a specific area with two

chair objects. We use the same strategy to compare the fi-

nal outcome of our algorithm, Figure 13b. The results show

that despite a complete disregard for appearance, geometry

of the surfaces together with occlusion constraint is able to

recover a significant number of surface patches accurately.

The recall does not reach 100% because the ground truth

floor surfaces do not occlude any curves and therefore can-

not be recovered.

7. Conclusions

This paper presents a fully automated dense surface re-

construction approach using geometry of curvilinear struc-

ture evident in wide baseline calibrated views of a scene.

The algorithm relies on the 3D drawing, a graph-based rep-

resentation of reconstructed 3D curve fragments which an-

notate meaningful structure in the scene, and on lofting to

create surface patch hypotheses which are glued onto the

3D drawing, viewed as a scaffold of the scene. The al-

gorithm validates these hypotheses by reasoning about oc-

clusion among curves and surfaces. Thus it requires views

from a wide range of camera angles and performs best if

there are multiple objects to afford the opportunity for inter-

object and intra-object occlusion. Qualitative and quan-

titative evaluations shows that a significant portion of the

scene surface structure can be recovered and its topologi-

cal structure is made explicit, a clear advantage. This is

significant considering this is only the first step in our ap-

proach, namely, using geometry without using appearance

which is the core idea underlying successful dense recon-

struction systems like PMVS. Our goal is to integrate the

use of appearance in the process which promises to signifi-

cantly improve the reconstruction performance.
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