
Deep Hashing Network for Unsupervised Domain Adaptation

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, Sethuraman Panchanathan

Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA

{hemanthv, jeusebio, shayok.chakraborty, panch}@asu.edu

Abstract

In recent years, deep neural networks have emerged as a

dominant machine learning tool for a wide variety of appli-

cation domains. However, training a deep neural network

requires a large amount of labeled data, which is an expen-

sive process in terms of time, labor and human expertise.

Domain adaptation or transfer learning algorithms address

this challenge by leveraging labeled data in a different, but

related source domain, to develop a model for the target

domain. Further, the explosive growth of digital data has

posed a fundamental challenge concerning its storage and

retrieval. Due to its storage and retrieval efficiency, recent

years have witnessed a wide application of hashing in a

variety of computer vision applications. In this paper, we

first introduce a new dataset, Office-Home, to evaluate do-

main adaptation algorithms. The dataset contains images

of a variety of everyday objects from multiple domains. We

then propose a novel deep learning framework that can ex-

ploit labeled source data and unlabeled target data to learn

informative hash codes, to accurately classify unseen tar-

get data. To the best of our knowledge, this is the first

research effort to exploit the feature learning capabilities

of deep neural networks to learn representative hash codes

to address the domain adaptation problem. Our extensive

empirical studies on multiple transfer tasks corroborate the

usefulness of the framework in learning efficient hash codes

which outperform existing competitive baselines for unsu-

pervised domain adaptation.

1. Introduction

Deep learning algorithms automatically learn a discrim-

inating set of features and have depicted commendable per-

formance in a variety of computer vision applications. Un-

fortunately, training a deep model necessitates a large vol-

ume of labeled data, which can be time consuming and ex-

pensive to acquire. However, labeled data from a differ-

ent, but related domain is often available, which has mo-

tivated the development of algorithms which can leverage

labeled data in a source domain to develop a machine learn-

ing model for the target domain. Learning a discrimina-

tive model in the presence of the shift between training and

test distributions is known as transfer learning or domain

adaptation [17]. Unsupervised domain adaptation is a chal-

lenging setting, where labeled data is available only in the

source domain; no labeled data is available in the target

domain. Conventional shallow transfer learning methods

develop their models in two stages, feature extraction fol-

lowed by domain adaptation. The features are fixed and

then a model is trained to align the source and target do-

mains [16, 20, 33, 38, 42, 43, 44]. On the other hand, deep

transfer learning procedures exploit the feature learning ca-

pabilities of deep networks to learn transferable feature rep-

resentations for domain adaptation and have demonstrated

impressive empirical performance [17, 18, 31, 34, 46].

The explosive growth of digital data in the modern era

has posed fundamental challenges regarding their storage,

retrieval and computational requirements. Against this

backdrop, hashing has emerged as one of the most popu-

lar and effective techniques due to its fast query speed and

low memory cost [48]. Hashing techniques transform high

dimensional data into compact binary codes and generate

similar binary codes for similar data items. Motivated by

this fact, we propose to train a deep neural network to out-

put binary hash codes (instead of probability values), which

can be used for classification. We see two advantages to es-

timating a hash value instead of a standard probability vec-

tor in the final layer of the network: (i) the hash values are

used to develop a unique loss function for target data in the

absence of labels and (ii) during prediction, the hash value

of a test sample can be compared against the hash values

of the training samples to arrive at a more robust category

prediction.

In this paper, we first introduce a new dataset, Office-

Home, which we use to evaluate our algorithm. The Office-

Home dataset is an object recognition dataset which con-

tains images from 4 domains. It has around 15, 500 images

organized into 65 categories. We further propose a novel

deep learning framework called Domain Adaptive Hash-

ing (DAH) to learn informative hash codes to address the

problem of unsupervised domain adaptation. We propose

15018

a unique loss function to train the deep network with the

following components: (i) supervised hash loss for labeled

source data, which ensures that source samples belonging

to the same class have similar hash codes; (ii) unsuper-

vised entropy loss for unlabeled target data, which imposes

each target sample to align closely with exactly one of the

source categories and be distinct from the other categories

and (iii) a loss based on multi-kernel Maximum Mean Dis-

crepancy (MK-MMD), which seeks to learn transferable

features within the layers of the network to minimize the

distribution difference between the source and target do-

mains. Figure 1 illustrates the different layers of the DAH

and the components of the loss function.

2. Related Work

There have been many approaches to address the prob-

lem of domain-shift in unsupervised domain adaptation.

One straightforward approach is, to modify a classifier

trained for the source data by adapting it to classify target

data [1, 4] or learn a transformation matrix to linearly trans-

form the source data, so that it is aligned with the target

[27, 42]. Some other procedures re-weight the data points

in the source domain, to select source data that is similar

to the target, when training a domain adaptive classifier,

[9, 10, 19]. A standard procedure to reduce domain discrep-

ancy is, to project the source and target data to a common

subspace, thereby aligning their principal axes [16, 44].

Reducing domain disparity through nonlinear alignment of

data has been possible with Maximum Mean Discrepancy

(MMD) - a measure that provides the distribution differ-

ence between two datasets in a reproducing-kernel Hilbert

space [13]. Kernel-PCA based methods apply the MMD to

achieve nonlinear alignment of domains [32, 33, 38]. Man-

ifold based approaches are also popular in domain adapta-

tion for computer vision, where the subspace of a domain is

treated as a point on the manifold and transformations are

learned to align two domains [20, 23]. A survey of popular

domain adaptation techniques for computer vision is pro-

vided in [41] and a more generic survey of transfer learning

approaches can be found in [39].

All of the above techniques can be termed as shallow

learning procedures, since the models are learned using pre-

determined features. In recent years deep learning has be-

come very successful at learning highly discriminative fea-

tures for computer vision applications [8]. Deep learning

systems like deep CNNs learn representations of data that

capture underlying factors of variation between different

tasks in a multi-task transfer learning setting [3]. These rep-

resentations also disentangle the factors of variation allow-

ing for the transfer of knowledge between tasks [12, 18, 37].

Yosinski et al. [49] demonstrated how the lower layers of a

network produce generic features and the upper layers out-

put task specific features. Based on this, deep learning pro-

cedures for domain adaptation train networks to learn trans-

ferable features in the fully connected final layers of a net-

work [31, 46]. In other approaches to deep domain adapta-

tion, Ganin et al. [17] trained domain adversarial networks

to learn features that make the source and target domain in-

distinguishable and Long et al. [34], trained a network to

do both feature adaptation and classifier adaptation using

residual transfer networks.

Unsupervised hashing techniques have been developed

to extract unique hash codes for efficient storage and re-

trieval of data [22, 25]. Neural network based hashing has

led the way in state-of-the-art unsupervised hashing tech-

niques [7, 11, 14]. The closest work incorporating hash-

ing and adaptation appears in cross-modal hashing, where

deep hashing techniques embed multi-modal data and learn

hash codes for two related domains, like text and images

[5, 6, 29]. However, these algorithms are not unsupervised

and they are mainly applied to extract common hash codes

for multi-modal data for retrieval purposes. To the best of

our knowledge, there has been no work in unsupervised

domain adaptation using deep hashing networks. We now

present the Domain Adaptive Hashing (DAH) network for

unsupervised domain adaptation through deep hashing.

3. Domain Adaptive Hashing Networks

In unsupervised domain adaptation, we consider data

from two domains; source and target. The source consists

of labeled data, Ds = {xs
i , y

s
i }

ns

i=1
and the target has only

unlabeled data Dt = {xt
i}

nt

i=1
. The data points x∗

i belong to

X , where X is some input space. The corresponding labels

are represented by y∗i ∈ Y := {1, . . . , C}. The paradigm of

domain adaptive learning attempts to address the problem of

domain-shift in the data, where the data distributions of the

source and target are different, i.e. Ps(X,Y) 6= Pt(X,Y).
The domain-shift notwithstanding, our goal is to train a

deep neural network classifier ψ(.), that can predict the la-

bels {ŷti}
nt

i=1
, for the target data.

We implement the neural network as a deep CNN which

consists of 5 convolution layers conv1 - conv5 and 3 fully

connected layers fc6 - fc8 followed by a loss layer. In our

model, we introduce a hashing layer hash-fc8 in place of

the standard fc8 layer to learn a binary code hi, for every

data point xi, where hi ∈ {−1,+1}d. The hash-fc8 layer

is driven by two loss functions, (i) supervised hash loss for

the source data, (ii) unsupervised entropy loss for the target

data. The supervised hash loss ensures hash values that are

distinct and discriminatory, i.e. if xi and xj belong to the

same category, their hash values hi and hj are similar and

different otherwise. The unsupervised entropy loss aligns

the target hash values with source hash values based on the

similarity of their feature representations. The output of the

network is represented as ψ(x), where ψ(x) ∈ R
d, which

we convert to a hash code h = sgn(ψ(x)), where sgn(.)

5019

Figure 1: The Domain Adaptive Hash (DAH) network that out-

puts hash codes for the source and the target. The network is

trained with a batch of source and target data. The convolution

layers conv1 - conv5 and the fully connected layers fc6 and fc7 are

fine tuned from the VGG-F network. The MK-MMD loss trains

the DAH to learn feature representations which align the source

and the target. The hash-fc8 layer is trained to output vectors of d

dimensions. The supervised hash loss drives the DAH to estimate

a unique hash value for each object category. The unsupervised

entropy loss aligns the target hash values to their corresponding

source categories. Best viewed in color.

is the sign function. Once the network has been trained,

the probability of x being assigned a label y is given by

f(x) = p(y|h). We train the network using Ds and Dt and

predict the target data labels ŷt∗ using f(.).
In order to address the issue of domain-shift, we need to

align the feature representations of the target and the source.

We do that by reducing the domain discrepancy between the

source and target feature representations at multiple layers

of the network. In the following subsections, we discuss

the design of the domain adaptive hash (DAH) network in

detail.

3.1. Reducing Domain Disparity

Deep learning methods have been very successful in do-

main adaptation with state-of-the-art algorithms [17, 31, 34,

46] in recent years. The feature representations transition

from generic to task-specific as one goes up the layers of

a deep CNN [49]. The convolution layers conv1 to conv5

have been shown to be generic and so, readily transferable,

whereas the fully connected layers are more task-specific

and need to be adapted before they can be transferred. In

the DAH algorithm, we attempt to minimize the MK-MMD

loss to reduce the domain difference between the source

and target feature representations for fully connected lay-

ers, F = {fc6, fc7, fc8}. Such a loss function has been used

in previous research [31, 34]. The multi-layer MK-MMD

loss is given by,

M(Us, Ut) =
∑

l∈F

d2k(U
l
s, U

l
t), (1)

where, U
l
s = {us,l

i }ns

i=1
and U

l
t = {ut,l

i }nt

i=1
are the set

of output representations for the source and target data at

layer l, where u
∗,l
i is the output representation of x∗

i for the

lth layer. The final layer outputs are denoted as Us and Ut.

The MK-MMD measure d2k(.) is the multi-kernel maximum

mean discrepancy between the source and target representa-

tions, [24]. For a nonlinear mapping φ(.) associated with a

reproducing kernel Hilbert space Hk and kernel k(.), where

k(x,y) = 〈φ(x), φ(y)〉, the MMD is defined as,

d2k(U
l
s, U

l
t) =

∣

∣

∣

∣

∣

∣
E[φ(us,l)]− E[φ(ut,l)]

∣

∣

∣

∣

∣

∣

2

Hk

. (2)

The characteristic kernel k(.), is determined as a convex

combination of κ PSD kernels, {km}κm=1, K :=
{

k : k =
∑κ

m=1
βmkm,

∑κ

m=1
βm = 1, βm ≥ 0, ∀m

}

. We set

βm = 1/κ according to [34] and it works well in practice.

3.2. Supervised Hashing for Source Data

The Hamming distance for a pair of hash values hi and

hj has a unique relationship with the dot product 〈hi,hj〉,
given by: distH(hi,hj) = 1

2
(d − h⊤

i hj), where d is the

hash length. The dot product 〈hi,hj〉 can be treated as

a similarity measure for the hash codes. Larger the value

of the dot product (high similarity), smaller is the distance

distH and smaller the dot product (low similarity), larger is

the distance distH . Let sij ∈ {0, 1} be the similarity be-

tween xi and xj . If xi and xj belong to the same category,

sij = 1 and 0, otherwise. The probability of similarity be-

tween xi and xj given the corresponding hash values hi

and hj , can be expressed as a likelihood function, given by,

p(sij |hi,hj) =

{

σ(h⊤
i hj), sij = 1

1− σ(h⊤
i hj), sij = 0,

(3)

where, σ(x) = 1

1+e−x is the sigmoid function. As the

dot product 〈hi,hj〉 increases, the probability of p(sij =
1|hi,hj) also increases, i.e., xi and xj belong to the same

category. As the dot product decreases, the probability

p(sij = 1|hi,hj) also decreases, i.e., xi and xj belong

to different categories. We construct the (ns × ns) similar-

ity matrix S = {sij}, for the source data with the provided

labels, where sij = 1 if xi and xj belong to the same cat-

egory and 0, otherwise. Let H = {hi}
ns

i=1
be the set of

source data hash values. If the elements of H are assumed

to be i.i.d., the negative log likelihood of the similarity ma-

trix S given H can be written as,

min
H

L(H) = −log p(S|H)

= −
∑

sij∈S

(

sijh
⊤
i hj − log

(

1 + exp(h⊤
i hj)

)

)

.

(4)

By minimizing Equation (4), we can determine hash val-

ues H for the source data which are consistent with the

similarity matrix S . The hash loss has been used in pre-

vious research for supervised hashing [30, 50]. Equation

5020

(4) is a discrete optimization problem that is challenging to

solve. We introduce a relaxation on the discrete constraint

hi ∈ {−1,+1}d by instead solving for ui ∈ R
d, where

Us = {ui}
ns

i=1
is the output of the network and ui = ψ(xi)

(the superscript denoting the domain has been dropped for

ease of representation). However, the continuous relaxation

gives rise to (i) approximation error, when 〈hi,hj〉 is sub-

stituted with 〈ui,uj〉 and, (ii) quantization error, when the

resulting real codes ui are binarized [50]. We account for

the approximation error by having a tanh(.) as the final ac-

tivation layer of the neural network, so that the components

of ui are bounded between −1 and +1. In addition, we also

introduce a quantization loss ||ui − sgn(ui)||
2
2 along the

lines of [22], where sgn(.) is the sign function. The contin-

uous optimization problem for supervised hashing can now

be outlined;

min
Us

L(Us) =−
∑

sij∈S

(

siju
⊤
i uj − log

(

1 + exp(u⊤
i uj)

)

)

+

ns
∑

i=1

∣

∣

∣

∣ui − sgn(ui)
∣

∣

∣

∣

2

2
. (5)

3.3. Unsupervised Hashing for Target Data

In the absence of target data labels, we use the similarity

measure 〈ui,uj〉, to guide the network to learn discrimina-

tive hash values for the target data. An ideal target output

ut
i, needs to be similar to many of the source outputs from

the jth category
(

{u
sj
k }Kk=1

)

. We assume without loss of

generality,K source data points for every category j where,

j ∈ {1, . . . , C} and u
sj
k is the kth source output from cat-

egory j. In addition, ut
i must be dissimilar to most other

source outputs usl
k belonging to a different category (j 6= l).

Enforcing similarity with all the K data points makes for a

more robust target data category assignment. We outline

a probability measure to capture this intuition. Let pij be

the probability that input target data point xi is assigned to

category j where,

pij =

∑K

k=1
exp(ut

i

⊤
u
sj
k)

∑C

l=1

∑K

k=1
exp(ut

i

⊤
u
sl
k)

(6)

The exp(.) has been introduced for ease of differentiabil-

ity and the denominator ensures
∑

j pij = 1. When the

target data point output is similar to one category only and

dissimilar to all the other categories, the probability vec-

tor pi = [pi1, . . . , piC]
T tends to be a one-hot vector. A

one-hot vector can be viewed as a low entropy realization

of pi. We can therefore envisage all the pi to be one-hot

vectors (low entropy probability vectors), where the target

data point outputs are similar to source data point outputs in

one and only one category. To this end we introduce a loss

to capture the entropy of the target probability vectors. The

entropy loss for the network outputs is given by,

H(Us, Ut) = −
1

nt

nt
∑

i=1

C
∑

j=1

pij log(pij) (7)

Minimizing the entropy loss gives us probability vectors pi

that tend to be one-hot vectors, i.e., the target data point

outputs are similar to source data point outputs from any

one category only. Enforcing similarity with K source data

points from a category, guarantees that the hash values are

determined based on a common similarity between multiple

source category data points and the target data point.

3.4. Domain Adaptive Hash Network

We propose a model for deep unsupervised domain adap-

tation based on hashing (DAH) that incorporates unsuper-

vised domain adaptation between the source and the target

(1), supervised hashing for the source (5) and unsupervised

hashing for the target (7) in a deep convolutional neural net-

work. The DAH network is trained to minimize

min
U

J = L(Us) + γM(Us, Ut) + ηH(Us, Ut), (8)

where, U := {Us ∪ Ut} and (γ, η) control the importance

of domain adaptation (1) and target entropy loss (7) respec-

tively. The hash values H are obtained from the output of

the network using H = sgn(U). The loss terms (5) and

(7) are determined in the final layer of the network with the

network output U. The MK-MMD loss (1) is determined

between layer outputs {Ul
s, U

l
t} at each of the fully con-

nected layers F = {fc6, fc7, fc8}, where we adopt the lin-

ear time estimate for the unbiased MK-MMD as described

in [24] and [31]. The DAH is trained using standard back-

propagation. The detailed derivation of the derivative of (8)

w.r.t. U is provided in the supplementary material.

Network Architecture: Owing to the paucity of images

in a domain adaptation setting, we circumvent the need to

train a deep CNN with millions of images by adapting the

pre-trained VGG-F [8] network to the DAH. The VGG-F

has been trained on the ImageNet 2012 dataset and it con-

sists of 5 convolution layers (conv1 - conv5) and 3 fully

connected layers (fc6, fc7, fc8). We introduce the hashing

layer hash-fc8 that outputs vectors in R
d in the place of fc8.

To account for the hashing approximation, we introduced

a tanh() layer. However, we encounter the issue of van-

ishing gradients [26] when using tanh() as it saturates with

large inputs. We therefore preface the tanh() with a batch

normalization layer which prevents the tanh() from saturat-

ing. In effect, hash-fc8 := {fc8 → batch-norm → tanh()}.

The hash-fc8 provides greater stability when fine-tuning the

learning rates than the deep hashing networks [30, 50]. Fig-

ure 1 illustrates the proposed DAH network.

5021

Figure 2: Sample images from the Office-Home dataset. The dataset consists of images of everyday objects organized into 4 domains;

Art: paintings, sketches and/or artistic depictions, Clipart: clipart images, Product: images without background and Real-World:

regular images captured with a camera. The figure displays examples from 16 of the 65 categories.

Table 1: Statistics for the Office-Home dataset. Min: # is the

minimum number of images amongst all the categories, Min: Size

and Max: Size are the minimum and maximum image sizes across

all categories and Acc. is the classification accuracy.

Domain. Min: # Min: Size Max: Size Acc

Art 15 117×85 pix. 4384×2686 pix. 44.99±1.85

Clipart 39 18×18 pix. 2400×2400 pix. 53.95±1.45

Product 38 75×63 pix. 2560×2560 pix. 66.41±1.18

Real-World 23 88×80 pix. 6500×4900 pix. 59.70±1.04

4. The Office-Home Dataset

Supervised deep learning models require a large volume

of labeled training data. Unfortunately, existing datasets

for vision-based domain adaptation are limited in their

size and are not suitable for validating deep learning al-

gorithms. The standard datasets for vision based domain

adaptation are, facial expression datasets CKPlus [35] and

MMI [40], digit datasets SVHN [36], USPS and MNIST[28],

head pose recognition datasets PIE [33], object recogni-

tion datasets COIL[33], Office [42] and Office-Caltech [20].

These datasets were created before deep-learning became

popular and are insufficient for training and evaluating deep

learning based domain adaptation approaches. For instance,

the object-recognition dataset Office has 4110 images across

31 categories and Office-Caltech has 2533 images across 10
categories.

We release the Office-Home dataset for domain adap-

tation based object recognition, that can be used to evalu-

ate deep learning algorithms for domain adaptation. The

Office-Home dataset consists of 4 domains, with each do-

main containing images from 65 categories of everyday ob-

jects and a total of around 15, 500 images. The domains

include, Art: artistic depictions of objects in the form of

sketches, paintings, ornamentation, etc.; Clipart: collec-

tion of clipart images; Product: images of objects with-

out a background, akin to the Amazon category in Office

dataset; Real-World: images of objects captured with a

regular camera.

Public domain images were downloaded from web-

sites like www.deviantart.com and www.flickr.com to cre-

ate the Art and Real-World domains. Clipart im-

ages were gathered from multiple clipart websites. The

Product domain images were exclusively collected from

www.amazon.com using web-crawlers. The collected im-

ages were manually filtered on the basis of quality, size and

content. The dataset has an average of around 70 images

per category and a maximum of 99 images in a category.

The primary challenge in creating this dataset was acquir-

ing sufficient number of public domain images across all

the 4 domains. Figure 2 depicts a sampling of 16 categories

from the Office-Home dataset and Table 1 outlines some

meta data for the dataset. The Acc. column in the Table

1 refers to classification accuracies using the LIBLINEAR

SVM [15] classifier (5-fold cross validation) with deep fea-

tures extracted using the VGG-F network. The dataset is

publicly available for research 1.

5. Experiments

In this section we conduct extensive experiments to

evaluate the DAH algorithm. Since we propose a do-

main adaptation technique based on hashing, we evalu-

ate objection recognition accuracies for unsupervised do-

main adaptation and also study the discriminatory capabil-

ity of the learned hash codes for unsupervised domain adap-

tive hashing. The implementation details are available at

https://github.com/hemanthdv/da-hash

5.1. Datasets

Office [42]: This is currently the most popular benchmark

dataset for object recognition in the domain adaptation com-

puter vision community. The dataset consists of images of

everyday objects in an office environment. It has 3 domains;

Amazon (A), Dslr (D) and Webcam (W). The dataset has

1https://hemanthdv.github.io/officehome-dataset/

5022

around 4, 100 images with a majority of the images (2816
images) in the Amazon domain. We adopt the common

evaluation protocol of different pairs of transfer tasks for

this dataset [31, 34]. We consider 6 transfer tasks for all

combinations of source and target pairs for the 3 domains.

Office-Home: We introduce this new dataset and evaluate

it in a similar manner to the Office dataset. We consider 12

transfer tasks for the Art (Ar), Clipart (Cl), Product

(Pr) and Real-World (Rw) domains for all combinations

of source and target for the 4 domains. Considering all the

different pairs of transfer enables us to evaluate the inherent

bias between the domains in a comprehensive manner [45].

5.2. Implementation Details

We implement the DAH using the MatConvnet frame-

work [47]. Since we train a pre-trained VGG-F, we fine-

tune the weights of conv1-conv5, fc6 and fc7. We set

their learning rates to 1/10
th

the learning rate of hash-fc8.

We vary the learning rate between 10−4 to 10−5 over 300
epochs with a momentum 0.9 and weight decay 5 × 10−4.

We set K = 5 (number of samples from a category). Since

we have 31 categories in the Office dataset, we get a source

batch size of 31 × 5 = 155. For the target batch, we ran-

domly select 155 samples. The total batch size turns out to

be 310. For the Office-Home dataset, with K = 5 and 65
categories, we get a batch size of 650. We set d = 64 (hash

code length) for all our experiments. Since there is imbal-

ance in the number of like and unlike pairs in S , we set the

values in similarity matrix Si,j ∈ {0, 10}. Increasing the

similarity weight of like-pairs improves the performance of

DAH. For the entropy loss, we set η = 1. For the MK-

MMD loss, we follow the heuristics mentioned in [24], to

determine the parameters. We estimate γ, by validating a

binary domain classifier to distinguish between source and

target data points and select γ which gives largest error on a

validation set. For MMD, we use a Gaussian kernel with a

bandwidth σ given by the median of the pairwise distances

in the training data. To incorporate the multi-kernel, we

vary the bandwidth σm ∈ [2−8σ, 28σ] with a multiplicative

factor of 2. We define the target classifier f(xt
i) = p(y|ht

i)
in terms of 6. The target data point is assigned to the class

with the largest probability, with ŷi = maxj(pij) using the

hash codes for the source and the target.

5.3. Unsupervised Domain Adaptation

In this section, we study the performance of the DAH

for unsupervised domain adaptation, where labeled data is

available only in the source domain and no labeled data is

available in the target domain. We compare the DAH with

state-of-the-art domain adaptation methods: (i) Geodesic

Flow Kernel (GFK) [20], (ii) Transfer Component Analy-

sis (TCA) [38], (iii) Correlation Alignment (CORAL) [44]

and (iv) Joint Distribution Adaptation (JDA) [33]. We also

Table 2: Recognition accuracies (%) for domain adaptation exper-

iments on the Office dataset. {Amazon (A), Dslr (D), Webcam

(W)}. A→W implies A is source and W is target.

Expt. A→D A→W D→A D→W W→A W→D Avg.

GFK 48.59 52.08 41.83 89.18 49.04 93.17 62.32

TCA 51.00 49.43 48.12 93.08 48.83 96.79 64.54

CORAL 54.42 51.70 48.26 95.97 47.27 98.59 66.04

JDA 59.24 58.62 51.35 96.86 52.34 97.79 69.37

DAN 67.04 67.80 50.36 95.85 52.33 99.40 72.13

DANN 72.89 72.70 56.25 96.48 53.20 99.40 75.15

DAH-e 66.27 66.16 55.97 94.59 53.91 96.99 72.31

DAH 66.47 68.30 55.54 96.10 53.02 98.80 73.04

compare the DAH with state-of-the-art deep learning meth-

ods for domain adaptation: (v) Deep Adaptation Network

(DAN) [31] and (vi) Domain Adversarial Neural Network

(DANN) [17]. For all of the shallow learning methods,

we extract and use deep features from the fc7 layer of the

VGG-F network that was pre-trained on the ImageNet 2012

dataset. We also evaluate the effect of the entropy loss on

hashing for the DAH. The DAH-e is the DAH algorithm

where η is set to zero, which implies that the target hash

values are not driven to align with the source categories.

We follow the standard protocol for unsupervised domain

adaptation, where all the labeled source data and all the un-

labeled target data is used for training.

Results and Discussion: The results are reported for the

target classification in each of the transfer tasks in Tables 2

and 3, where accuracies denote the percentage of correctly

classified target data samples. We present results with hash

length d = 64 bits. The DAH algorithm consistently out-

performs the baselines across all the domains for the Office-

Home dataset. However, DANN marginally surpasses DAH

for the Office dataset, prompting us to reason that domain

adversarial training is more effective than DAH when the

categories are fewer in number. Since domain alignment is

category agnostic, it is possible that the aligned domains are

not classification friendly in the presence of large number

of categories. When the number of categories is large, as in

Office-Home, DAH does best at extracting transferable fea-

tures to achieve higher accuracies. We also note that DAH

delivers better performance than DAH-e; thus, minimizing

the entropy on the target data through 7 aids in improved

alignment of the source and target samples, which boosts

the accuracy.

Feature Analysis: We also study the feature representa-

tions of the penultimate layer (fc7) outputs using t-SNE em-

beddings as in [12]. Figure 3a depicts the A-distance be-

tween domain pairs using Deep (VGG-F), DAN and DAH

features. Ben-David et al. [2] defined A-distance as the

distance between two domains that can be viewed as the

discrepancy between two domains. Although it is difficult

to estimate its exact value, an approximate distance mea-

sure is given by 2(1 − 2ǫ), where ǫ is the generalization

error for a binary classifier trained to distinguish between

5023

Table 3: Recognition accuracies (%) for domain adaptation experiments on the Office-Home dataset. {Art (Ar), Clipart (Cl),

Product (Pr), Real-World (Rw)}. Ar→Cl implies Ar is source and Cl is target.

Expt. Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

GFK 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89 32.40

TCA 19.93 32.08 35.71 19.00 31.36 31.74 21.92 23.64 42.12 30.74 27.15 48.68 30.34

CORAL 27.10 36.16 44.32 26.08 40.03 40.33 27.77 30.54 50.61 38.48 36.36 57.11 37.91

JDA 25.34 35.98 42.94 24.52 40.19 40.90 25.96 32.72 49.25 35.10 35.35 55.35 36.97

DAN 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46

DANN 33.33 42.96 54.42 32.26 49.13 49.76 30.49 38.14 56.76 44.71 42.66 64.65 44.94

DAH-e 29.23 35.71 48.29 33.79 48.23 47.49 29.87 38.76 55.63 41.16 44.99 59.07 42.69

DAH 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54 45.54

the two domains. We used a LIBLINEAR SVM [15] clas-

sifier with 5-fold cross-validation to estimate ǫ. Figure 3a

indicates that the DAH features have the least discrepancy

between the source and target compared to DAN and Deep

features. This is also confirmed with the t-SNE embeddings

in Figures 3b-3d. The Deep features show very little over-

lap between the domains and the categories depict minimal

clustering. Domain overlap and clustering improves as we

move to DAN and DAH features, with DAH providing the

best visualizations. This corroborates the efficacy of the

DAH algorithm to exploit the feature learning capabilities

of deep neural networks to learn representative hash codes

to address domain adaptation.

5.4. Unsupervised Domain Adaptive Hashing

In this section, we study the performance of our algo-

rithm to generate compact and efficient hash codes from the

data for classifying unseen test instances, when no labels

are available. This problem has been addressed in the litera-

ture, with promising empirical results [7, 11, 21]. However,

in a real-world setting, labels may be available from a dif-

ferent, but related (source) domain; a strategy to utilize the

labeled data from the source domain to learn representative

hash codes for the target domain is therefore of immense

practical importance. Our work is the first to identify and

address this problem. We consider the following scenar-

ios to address this real-world challenge: (i) No labels are

available for a given dataset and the hash codes need to be

learned in a completely unsupervised manner. We evaluate

against baseline unsupervised hashing methods (ITQ) [22]

and (KMeans) [25] and also state-of-the-art methods for

unsupervised hashing (BA) [7] and (BDNN) [11]. (ii) La-

beled data is available from a different, but related source

domain. A hashing model is trained on the labeled source

data and is used to learn hash codes for the target data. We

refer to this method as NoDA, as no domain adaptation is

performed. We used the deep pairwise-supervised hashing

(DPSH) algorithm [30] to train a deep network with the

source data and applied the network to generate hash codes

for the target data. (iii) Labeled data is available from a

different, but related source domain and we use our DAH

formulation to learn hash codes for the target domain by

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(a) Amazon

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(b) Webcam

Figure 5: Precision-Recall curves @64 bits for the Office dataset.

Comparison of hashing without domain adaptation (NoDA), shal-

low unsupervised hashing (ITQ, KMeans), state-of-the-art deep

unsupervised hashing (BA, BDNN), unsupervised domain adap-

tive hashing (DAH) and supervised hashing (SuH). Best viewed

in color.

Table 4: Mean average precision @64 bits. For the NoDA and

DAH results, Art is the source domain for Clipart, Product

and Real-World and Clipart is the source domain for Art.

Similarly, Amazon and Webcam are source target pairs.

Expt. NoDA ITQ KMeans BA BDNN DAH SuH

Amazon 0.324 0.465 0.403 0.367 0.491 0.582 0.830

Webcam 0.511 0.652 0.558 0.480 0.656 0.717 0.939

Art 0.155 0.191 0.170 0.156 0.193 0.302 0.492

Clipart 0.160 0.195 0.178 0.179 0.206 0.333 0.622

Product 0.239 0.393 0.341 0.349 0.407 0.414 0.774

Real-World 0.281 0.323 0.279 0.273 0.336 0.533 0.586

Avg. 0.278 0.370 0.322 0.301 0.382 0.480 0.707

reducing domain disparity. (iv) Labeled data is available

in the target domain. This method falls under supervised

hashing (SuH) (as it uses labeled data in the target domain

to learn hash codes in the same domain) and denotes the

upper bound on the performance. It is included to com-

pare the performance of unsupervised hashing algorithms

relative to the supervised algorithm. We used the DPSH al-

gorithm [30] to train a deep network on the target data and

used it to generate hash codes on a validation subset.

Results and Discussion: We applied the precision-recall

curves and the mean average precision (mAP) measures to

evaluate the efficacy of the hashing methods, similar to pre-

vious research [7, 11, 21]. The results are depicted in Fig-

5024

Ar -> Cl Ar -> Pr Ar -> Rw

A
-D

is
ta

n
c
e

0

0.5

1

1.5

2
Deep

DAN

DAH

(a) A-Distance (b) Deep Features (Ar,Cl) (c) DAN Features (Ar,Cl) (d) DAH Features (Ar,Cl)

Figure 3: Feature analysis of fc7 layer. (a) A-distances for Deep, DAN and DAH, (b), (c) and (d) t-SNE embeddings for 10 categories

from Art (•) and Clipart(+) domains. Best viewed in color.

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(a) Art

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(b) Clipart

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(c) Product

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NoDA

ITQ

KMeans

BA

BDNN

DAH

SuH

(d) Real-World

Figure 4: Precision-Recall curves @64 bits for the Office-Home dataset. Comparison of hashing without domain adaptation (NoDA),

shallow unsupervised hashing (ITQ, KMeans), state-of-the-art deep unsupervised hashing (BA, BDNN), unsupervised domain adaptive

hashing (DAH) and supervised hashing (SuH). Best viewed in color.

ures 4 and 5 (precision-recall curves) and Table 4 (mAP

values), where we present hashing with code length d = 64
bits. Hashing performance with d = 16 bits also follows

a similar trend and is presented in the supplementary mate-

rial. For the sake of brevity, we drop the results with Dslr

as it is very similar to Webcam, with little domain differ-

ence. We note that the NoDA has the poorest performance

due to domain mismatch. This demonstrates that domain

disparity needs to be considered before deploying a hashing

network to extract hash codes. The unsupervised hashing

methods ITQ, KMeans, BA and BDNN perform slightly

better compared to NoDA. The proposed DAH algorithm

encompasses hash code learning and domain adaptation in

a single integrated framework. It is thus able to leverage

the labeled data in the source domain in a meaningful man-

ner to learn efficient hash codes for the target domain. This

accounts for its improved performance, as is evident in Fig-

ures 4 and 5 and Table 4. The supervised hashing technique

(SuH) uses labels from the target and therefore depicts the

best performance. The proposed DAH framework consis-

tently delivers the best performance relative to SuH when

compared with the other hashing procedures. This demon-

strates the merit of our framework in learning representa-

tive hash codes by utilizing labeled data from a different

domain. Such a framework will be immensely useful in a

real-world setting.

6. Conclusions

In this paper, we have proposed a novel domain adap-

tive hashing (DAH) framework which exploits the feature

learning capabilities of deep neural networks to learn effi-

cient hash codes for unsupervised domain adaptation. The

DAH framework solves two important practical problems:

category assignment with weak supervision or insufficient

labels (through domain adaptation) and the estimation of

hash codes in an unsupervised setting (hash codes for target

data). Thus, two practical challenges are addressed through

a single integrated framework. This research is the first

of its kind to integrate hash code learning with unsuper-

vised domain adaptation. We also introduced a new dataset,

Office-Home, which can be used to further research in do-

main adaptation.

Acknowledgements: This material is based upon work
supported by the National Science Foundation (NSF) un-
der Grant No:1116360. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF.

5025

References

[1] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for

object category detection. In IEEE ICCV, 2011. 2

[2] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,

and J. W. Vaughan. A theory of learning from different do-

mains. Machine learning, 79(1-2):151–175, 2010. 6

[3] Y. Bengio, A. Courville, and P. Vincent. Representation

learning: A review and new perspectives. IEEE transactions

on pattern analysis and machine intelligence, 35(8):1798–

1828, 2013. 2

[4] L. Bruzzone and M. Marconcini. Domain adaptation prob-

lems: A dasvm classification technique and a circular valida-

tion strategy. IEEE, PAMI, 32(5):770–787, 2010. 2

[5] Y. Cao, M. Long, J. Wang, Q. Yang, and P. S. Yu. Deep

visual-semantic hashing for cross-modal retrieval. In ACM-

SIGKDD, 2016. 2

[6] Z. Cao, M. Long, and Q. Yang. Transitive hashing network

for heterogeneous multimedia retrieval. In AAAI, 2016. 2

[7] M. A. Carreira-Perpinán and R. Raziperchikolaei. Hashing

with binary autoencoders. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

557–566, 2015. 2, 7

[8] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 2, 4

[9] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Pan-

chanathan, and J. Ye. Multisource domain adaptation and

its application to early detection of fatigue. ACM Transac-

tions on Knowledge Discovery from Data (TKDD), 6(4):18,

2012. 2

[10] W.-S. Chu, F. De la Torre, and J. F. Cohn. Selective transfer

machine for personalized facial action unit detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3515–3522, 2013. 2

[11] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash

with binary deep neural network. In European Conference

on Computer Vision, pages 219–234. Springer, 2016. 2, 7

[12] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. In ICML, pages

647–655, 2014. 2, 6

[13] L. Duan, I. W. Tsang, and D. Xu. Domain transfer multiple

kernel learning. IEEE PAMI, 34(3):465–479, 2012. 2

[14] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep

hashing for compact binary codes learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2475–2483, 2015. 2

[15] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-

J. Lin. Liblinear: A library for large linear classification.

Journal of machine learning research, 9(Aug):1871–1874,

2008. 5, 7

[16] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Un-

supervised visual domain adaptation using subspace align-

ment. In CVPR, pages 2960–2967, 2013. 1, 2

[17] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. Journal of Machine

Learning Research, 17(59):1–35, 2016. 1, 2, 3, 6

[18] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation

for large-scale sentiment classification: A deep learning ap-

proach. In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 513–520, 2011. 1,

2

[19] B. Gong, K. Grauman, and F. Sha. Connecting the dots

with landmarks: Discriminatively learning domain-invariant

features for unsupervised domain adaptation. In ICML (1),

pages 222–230, 2013. 2

[20] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow

kernel for unsupervised domain adaptation. In IEEE CVPR,

2012. 1, 2, 5, 6

[21] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on, pages 817–824. IEEE, 2011. 7

[22] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(12):2916–

2929, 2013. 2, 4, 7

[23] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for

object recognition: An unsupervised approach. In 2011 in-

ternational conference on computer vision, pages 999–1006.

IEEE, 2011. 2

[24] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan,

M. Pontil, K. Fukumizu, and B. K. Sriperumbudur. Optimal

kernel choice for large-scale two-sample tests. In Advances

in neural information processing systems, pages 1205–1213,

2012. 3, 4, 6

[25] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-

preserving quantization method for learning binary compact

codes. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2938–2945, 2013. 2, 7

[26] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.

Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies, 2001. 4

[27] J. Hoffman, E. Rodner, J. Donahue, K. Saenko, and T. Dar-

rell. Efficient learning of domain-invariant image represen-

tations. In ICLR, 2013. 2

[28] K. Jarrett, K. Kavukcuoglu, Y. Lecun, et al. What is the

best multi-stage architecture for object recognition? In 2009

IEEE 12th International Conference on Computer Vision,

pages 2146–2153. IEEE, 2009. 5

[29] Q.-Y. Jiang and W.-J. Li. Deep cross-modal hashing. arXiv

preprint arXiv:1602.02255, 2016. 2

[30] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based

deep supervised hashing with pairwise labels. In IJCAI,

2016, 2016. 3, 4, 7

[31] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transfer-

able features with deep adaptation networks. In ICML, pages

97–105, 2015. 1, 2, 3, 4, 6

[32] M. Long, J. Wang, G. Ding, J. Sun, and P. Yu. Transfer joint

matching for unsupervised domain adaptation. In CVPR,

pages 1410–1417, 2014. 2

5026

[33] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu. Transfer

feature learning with joint distribution adaptation. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2200–2207, 2013. 1, 2, 5, 6

[34] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised

domain adaptation with residual transfer networks. In NIPS,

2016. 1, 2, 3, 6

[35] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and

I. Matthews. The extended cohn-kanade dataset (ck+): A

complete dataset for action unit and emotion-specified ex-

pression. In CVPR, pages 94–101. IEEE, 2010. 5

[36] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS Workshop on Deep Learning and Un-

supervised Feature Learning 2011, 2011. 5

[37] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and

transferring mid-level image representations using convolu-

tional neural networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1717–1724, 2014. 2

[38] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain

adaptation via transfer component analysis. Neural Net-

works, IEEE Trans. on, 22(2):199–210, 2011. 1, 2, 6

[39] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE

TKDE, 22(10):1345–1359, 2010. 2

[40] M. Pantic, M. Valstar, R. Rademaker, and L. Maat. Web-

based database for facial expression analysis. In ICME.

IEEE, 2005. 5

[41] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual do-

main adaptation: A survey of recent advances. IEEE signal

processing magazine, 32(3):53–69, 2015. 2

[42] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In ECCV, 2010. 1, 2,

5

[43] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa.

Generalized domain-adaptive dictionaries. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 361–368, 2013. 1

[44] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy

domain adaptation. In ICCV, TASK-CV, 2015. 1, 2, 6

[45] A. Torralba and A. A. Efros. Unbiased look at dataset bias.

In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 1521–1528. IEEE, 2011. 6

[46] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultane-

ous deep transfer across domains and tasks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4068–4076, 2015. 1, 2, 3

[47] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In Proceeding of the ACM Int. Conf. on

Multimedia, 2015. 6

[48] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity

search: A survey. arXiv preprint arXiv:1408.2927, 2014. 1

[49] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-

ferable are features in deep neural networks? In Advances

in neural information processing systems, pages 3320–3328,

2014. 2, 3

[50] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-

work for efficient similarity retrieval. In Thirtieth AAAI Con-

ference on Artificial Intelligence, 2016. 3, 4

5027

