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Abstract

Many algorithms for the computation of correspon-

dences between deformable shapes rely on some variant of

nearest neighbor matching in a descriptor space. Such are,

for example, various point-wise correspondence recovery

algorithms used as a post-processing stage in the functional

correspondence framework. Such frequently used tech-

niques implicitly make restrictive assumptions (e.g., near-

isometry) on the considered shapes and in practice suffer

from lack of accuracy and result in poor surjectivity. We

propose an alternative recovery technique capable of guar-

anteeing a bijective correspondence and producing signifi-

cantly higher accuracy and smoothness. Unlike other meth-

ods our approach does not depend on the assumption that

the analyzed shapes are isometric. We derive the proposed

method from the statistical framework of kernel density es-

timation and demonstrate its performance on several chal-

lenging deformable 3D shape matching datasets.

1. Introduction

Estimating the correspondence between 3D shapes is

among the fundamental problems in computer vision, ge-

ometry processing and graphics with a wide spectrum of

applications ranging from 3D scene understanding to tex-

ture mapping and animation. Of particular interest is the

case in which the objects are allowed to deform non-rigidly.

In this setting, research has mainly focused on minimizing

a measure of distortion between the input shapes, reaching

in recent years very high levels of accuracy [43]. However,

point-wise accuracy often comes under restricting require-

ments (isometry assumption), or at the price of a lack of

useful properties on the computed map, namely bijectivity

(each point on either shape should have exactly one corre-

sponding point on the other) and smoothness (nearby points

should match to nearby points).

Figure 1. Our method can be used to recover a dense, smooth, bi-

jective correspondence between highly non-isometric shapes from

minimal input information. In this example, we initialize our algo-

rithm with just two hand-picked matches (red spheres on tail and

front leg). Correspondence quality is visualized by transferring

colors from horse to elephant via the recovered map.

In this paper, we introduce a novel method to recover

smooth bijective maps between deformable shapes. Con-

trarily to previous approaches, we do not rely on the as-

sumption that the two shapes are isometric. We phrase

our matching problem by using the language of statistical

inference, whereas the input to our algorithm is either 1)

a sparse collection of point-wise matches (as few as two)

which are used as landmark constraints to recover the com-

plete map, or 2) a dense, noisy, possibly non-surjective and

non-smooth map which is converted to a better map with

higher accuracy and the aforementioned properties.

1.1. Related works

A traditional approach to correspondence problems is

finding a point-wise matching between (a subset of) the

points on two or more shapes. Minimum-distortion meth-

ods establish the matching by minimizing some structure

distortion, which can include similarity of local features

[32, 14, 8, 45], geodesic [29, 13, 15] or diffusion distances

[17], or a combination thereof [41].

Typically, the computational complexity of such meth-
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ods is high, and there have been several attempts to allevi-

ate the computational complexity using hierarchical [37] or

subsampling [40] methods. Several approaches formulate

the correspondence problem as quadratic assignment and

employ different relaxations thereof [42, 24, 34, 2, 15, 19].

Algorithms in this category typically produce guaranteed

bijective correspondences between a sparse set of points, or

a dense correspondence suffering from poor surjectivity.

Embedding methods try to exploit some assumption on

the correspondence (e.g. approximate isometry) in order to

parametrize the correspondence problem with a few degrees

of freedom. Elad and Kimmel [18] used multi-dimensional

scaling to embed the geodesic metric of the matched shapes

into a low-dimensional Euclidean space, where alignment

of the resulting “canonical forms” is then performed by sim-

ple rigid matching (ICP) [16, 10]. The works of [27, 38]

used the eigenfunctions of the Laplace-Beltrami operator

as embedding coordinates and performed matching in the

eigenspace. Lipman et al. [25, 20, 21] used conformal em-

beddings into disks and spheres to parametrize correspon-

dences between homeomorphic surfaces as Möbius trans-

formations. Despite their overall good performance, the

majority of the matching procedures performed in the em-

bedding space often produces noisy correspondences at fine

scales, and suffers from poor surjectivity. More recently,

in [6, 5] the authors obtain a bijective correspondence by

first computing compatible embeddings of the two shapes,

and then aligning the embeddings through the use of sparse

input correspondences. As opposed to point-wise corre-

spondence methods, soft correspondence approaches assign

a point on one shape to more than one point on the other.

Several methods formulated soft correspondence as a mass-

transportation problem [28, 39]. Ovsjanikov et al. [31] in-

troduced the functional correspondence framework, model-

ing the correspondence as a linear operator between spaces

of functions on two shapes, which has an efficient repre-

sentation in the Laplacian eigenbases. This approach was

extended in several follow-up works [33, 22, 3, 35] . A

point-wise map is typically recovered from a low-rank ap-

proximation of the functional correspondence by a match-

ing procedure in the representation basis, which also suf-

fers from poor surjectivity. A third class of matching meth-

ods formulates the correspondence problem as an optimiza-

tion problem in the product space of the considered shapes.

Windheuser et al. [44] seek for a two-dimensional minimal

surface in the four-dimensional product space of the two in-

put surfaces; this was later extended to a 2D-to-3D setting

by Lähner et al. [23]. Making use of the graph structure of

the considered shapes, the discretization leads to an integer

linear program on the product mesh where desirable proper-

ties of the matching such as smoothness and surjectivity be-

come linear constraints. However, the computational com-

plexity is prohibitive even for a modestly-sized problem.

Figure 2. The Product Manifold Filter (PMF) can be applied to

a variety of problems that are aiming for bijective, smooth map-

pings between metric spaces. Here we map a 2D shape (contour)

to a 3D shape. We initialize the PMF with two semantically mean-

ingful matches (black spheres) and obtain a dense semantically

meaningful bijection.

1.2. Main contributions

Many of the works mentioned above provide a match-

ing that is neither bijective nor smooth. In some cases the

matching is only available as a sparse set of points in the

product space of the two shapes. We treat these match-

ings as corrupted versions of the latent correspondence and

propose the Product Manifold Filter (PMF), a framework

that increases the quality of the input mapping. We show

that the considered filter leads to a linear assignment prob-

lem (LAP) guaranteeing bijective correspondence between

the shapes. Despite the common wisdom, we demonstrate

that the problem is efficiently solvable for relatively densely

sampled shapes by means of the well-established auction

algorithm [9] and a simple multi-scale approach. Unlike

many of the previously mentioned techniques that assume

the shapes to be (nearly) isometric, we allow them to un-

dergo more general deformations (Figure 1) or even have

different dimensionality (Figure 2).

Finally, we present a significant amount of empirical ev-

idence that the proposed smoothing procedure consistently

improves the quality of the input correspondence coming

from different algorithms, including point-wise recovery

methods from functional map pipelines. We also show the

performance of PMF as an interpolator of sparse input cor-

respondences.

2. A probabilistic framework

We consider a pair of three-dimensional shapes that are

represented by their boundaries X and Y , two-dimensional

manifolds embedded in R
3 and thus equipped with intrin-

sic metrics dX and dY . Our goal is to find a semantically

meaningful correspondence between X and Y . A corre-

spondence is a diffeomorphism π : X → Y , i.e., a smooth

mapping with a smooth inverse. We do not make any other

assumptions such as isometry. The correspondence π can

be represented as a two-dimensional manifold Π in the four-

dimensional product space X×Y: a pair (x, y) belongs to Π
iff π(x) = y. We henceforth assume that the true correspon-
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dence π between X and Y and the manifold Π representing

it are latent.

Let {(xk, yk)}k∈K ⊂ Π be a possibly sparse sam-

ple of the said manifold. For example, these can be

pairs of corresponding points on X and Y computed us-

ing a feature detector followed by descriptor matching.

In practice, we only have access to a noisy realization

of these points, {(ξk, ηk)}k∈K, which we assume to ad-

mit a separable i.i.d. Gaussian density, f(ξk, ηk) ∝
K(dX (xk, ξk))K(dY(yk, ηk)), where

K(d) = exp

(

− d2

2σ2

)

is an unnormalized Gaussian kernel with the parameter σ2.

Note that the density on the manifolds is expressed in terms

of the intrinsic metrics dX and dY .

Given the set of noisy corresponding points

{(ξk, ηk)}k∈K as the input, our goal is to produce a

faithful estimate of the correspondence π. We propose to

estimate the latent manifold Π via kernel density estimation

in the product space X × Y . To that end, we estimate the

density function using the Parzen sum

f(x, y) ∝
∑

k∈K
K(dX (x, ξk))K(dY(y, ηk)). (1)

For every point x ∈ X , an estimate of π(x) is given by a

point y maximizing f(x, y),

π̂(x) = argmax
y

f(x, y). (2)

One can further impose bijectivity of π̂ : X → Y as a

constraint, obtaining the following estimator of the entire

map

π̂ = arg max
π̂:X 1:1→Y

∫

X
f(x, π̂(x))dx. (3)

The process can be iterated as shown in the one-dimensional

illustration in Figure 3.

Procedures (2) or (3) have an area reduction effect on the

manifold Π producing a more regular version thereof and

thus a more regular correspondence π. We interpret (3) as

a filter of correspondences and will henceforth refer to it a

product manifold filter (PMF). While we defer the rigorous

proof of the area reduction property to the extended version

of the paper, in what follows, we illustrate it by a simple

one-dimensional example.

One dimensional illustration. Let us consider a config-

uration of three points {x−, x, x+} and the corresponding

noisy points {y−, y, y+} on a pair of one-dimensional man-

ifolds X and Y like those depicted in Figure 3. We assume

that the points are directly given in arclength parametriza-

tion, such that dX (x, x±) = |x − x±| = b, dY(y, y−) =

|y− y−| = a, and dY(y, y+) = |y− y+| = a+ δ. For con-

venience, we henceforth denote x = y = 0, x± = ±b,

y− = −a and y+ = a + δ. In this setting, the one-

dimensional manifold Π0 representing the input correspon-

dence in the product space comprises two segments con-

necting (−b,−a), (0, 0), and (b, a + δ), and its length is

given by L(Π0) =
√
b2 + a2 +

√

b2 + (a+ δ)2.
PMF maximizes the density function

h(ŷ) = f(0, ŷ) = K(0)K(ŷ) + (4)

K(b)K(ŷ + a) +K(b)K(ŷ − a− δ)

= K(ŷ) +K(b)(K(ŷ + a) +K(ŷ − a− δ))

over the values ŷ for the point y. First, we observe that since

K(b) > 0, the global maximum of h(ŷ) has to be around

ŷ = 0. For ŷ = 0 and δ = 0, one has

dh

dŷ
= K ′(0) +K(b)(K ′(a) +K ′(−a))

and

d2h

dŷ2
= K ′′(0) +K(b)(K ′′(a) +K ′′(−a))

Since K ′(0) = 0 and K ′(−a) = −K ′(a), the first deriva-

tive vanishes, while the fact that K ′′(0) < 0 and K ′′(−a) =
K ′′(a) implies that ŷ = 0 is the maximum of h.

Next, we perform perturbation analysis of the above

maximizer by invoking the first-order Taylor expansion of

h around (δ, ŷ) = (0, 0):

∂h

∂ŷ
≈ ∂h

∂ŷ

∣

∣

∣

∣

ŷ=0,δ=0

+ ŷ
∂2h

∂ŷ2

∣

∣

∣

∣

ŷ=0,δ=0

+ δ
∂2h

∂ŷ∂δ

∣

∣

∣

∣

ŷ=0,δ=0

.

Demanding equality to zero yields the maximizer of the per-

turbed problem

ŷ ≈ K(b)K ′′(a)δ

2K(b)K ′′(a) +K ′′(0)
=

δ

2 + K′′(0)
K(b)K′′(a)

= cδ.

For a < σ√
2

the ratio in the denominator is positive and

consequently c ∈ (0, 1
2 ).

The length of the estimated manifold Π̂ can be obtained

using a series of first-order Taylor approximations,

L(Π̂) =
√

b2 + (a+ cδ)2 +
√

b2 + (a+ δ − cδ)2

≈ L(Π0) +
acδ√
b2 + a2

− (a+ δ)cδ
√

b2 + (a+ δ)2

≈ L(Π0)−
cb2

(b2 + a2)3/2
δ2 < L(Π0), (5)

which manifests the length reducing effect of the PMF.
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Initialization iteration2 iteration 4

Figure 3. Conceptual illustration of our method on one-dimensional manifolds. Shown are iterations of PMF (|K| = 3 sparse matches

as initialization). Top: Kernel density estimation f(x, y) as defined in (1) in the product space of the two shapes X and Y . Dark areas

correspond to higher density. According to (3), consistently maximizing f(x, ·) gives a bijective and smoothed matching (red curve in

product space) which is used to derive the density estimate in the next iteration. Bottom: matching visualized via color transfer. Shapes

are parametrized counter-clockwise with the origin of the product space corresponding to the noses of horse and dog. Note the circular

boundary conditions of the product space.

2.1. Discretization

In what follows, we consider a discretization of problem

(3). We assume the shape X to be discretized at n points

{xi}ni=1 and the pairwise geodesic distances are stored in

the matrix DX ∈ R
n×n. Similarly, the shape Y is dis-

cretized as {yi}ni=1 and its pairwise distance matrix is de-

noted by DY ∈ R
n×n. Given a (possibly sparse) collection

of input correspondences {(ξk, ηk)}mk=1 the unnormalized

kernel density estimation can be written as an n× n matrix

F = KXK
T
Y (6)

with the matrices KX ∈ R
n×m and KY ∈ R

n×m given by

(KX )ik = K(dX (xi, ξk)) (7)

(KY)ik = K(dY(yi, ηk)). (8)

The objective in (3) thus becomes

∫

X
f(x, π(x))dx =

∫

X×Y
f(x, y)δπ(x)(y)dydx

≈
n
∑

i,j=1

FijPji = 〈P,F〉 (9)

with P ∈ {0, 1}n×n being a permutation matrix repre-

senting a bijection between {xi}ni=1 and {yi}ni=1. At some

points it will be convenient to use the vector representation

p ∈ {1, . . . , n}n of P. Estimating the bijective correspon-

dence as in (3) thus turns out to be a linear assignment prob-

lem (LAP) of the form

P̂ = argmax
P

〈P,F〉 (10)

where the optimization is performed over the space of all

n× n permutation matrices.

2.2. Multiscale

While linear assignment problems like (10) can be

solved in polynomial time, the memory consumption is

quadratic in the vertex set size n. To alleviate this burden,

we propose a multi-scale technique based on the assumption

of local regularity of the manifold Π.

Given two shapes discretized at n points each, we per-

form farthest point sampling to obtain a hierarchy of p mul-

tiscale representations consisting of n1 < n2 < . . . <

np = n points. Each of the samplings comes with a se-

quence of sampling radii, rX1 > rX2 > . . . > rXp and

rY1 > rY2 > . . . > rYp , respectively.

For sufficiently large shapes, the n×n pairwise distance

matrices DX and DY can be no more stored entirely in

memory. We follow [4, 26] and store only the projection of

the latter matrices on the first r eigenfunctions of the Lapla-

cian resulting in an n× r matrix. The original distances are

reconstructed on-demand, with negligible error as shown in

[1, 26].

We recursively apply a variant of the PMF to the sparse

set of input matches obtained by the coarser scale:

Pi+1 = arg max
P∈{0,1}n

2
i+1

〈P,Fi 〉 (11)
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Figure 4. Our method finds smooth bijective maps between non-

isometric shapes even when one single match is given as input

(marked as small red spheres). Note that the map remains smooth

even if the initial match is wrong (rightmost column).

where

Fi(s, t) = W(s, t)

ni
∑

k=1

KX (s, k)KY(t, pi(k)) . (12)

The weighting matrix W ∈ {0, 1}(n2
i+1×n2

i
) assures that the

image of a point xs being in the vicinity of xi
k is constrained

to be mapped to a point in the vicinity of p(k) and vice

versa (i.e., the matching and its inverse are supposed to be

smooth):

W(s, t) = (13)










0 if ∃k : DX (s, k) < rXi and DY(t, pi(k)) > 2rYi
0 if ∃k : DY(t, pi(k)) < rYi and DX (s, k) > 2rXi
1 otherwise

This construction leads to a sparse payoff matrix corre-

sponding to a smaller space of feasible permutations, so that

the corresponding LAP can be solved efficiently. Note the

factor 2 in (13). Since we cannot guarantee the Voronoi

cells on the two shapes to have the same number of points

and we want to be able to remove errors from the coarser

scale, we permit moving a point to an adjacent Voronoi cell.

3. Experiments

While our method can be applied to a variety of prob-

lems aiming at bijective and smooth mappings between

metric spaces (see Figure 2 for an extreme case), here we

focus on the recovery of a correspondence between non-

rigid and possibly non-isometric 3D shapes. We show

the performance of our method in two very different sce-

narios, namely refinement of noisy dense correspondence,

and completion of sparse correspondence. We additionally

demonstrate the performance of our multi-scale technique

by recovering bijective correspondences between high res-

olution shapes.

3.1. Recovery from sparse correspondences

In our first set of experiments we consider a scenario in

which the input shapes come with a (possibly very sparse)

collection of initial matches. These, in turn, can be obtained

by a sparse non-rigid matching technique such as [34] or

be hand-picked, depending on the application. In these ex-

periments we compare PMF with the Tutte embedding ap-

proach recently introduced in [5]. Similarly to PMF, this

approach produces guaranteed bijective and smooth maps

starting from a sparse set of point-wise matches; to our

knowledge, this method represents the state-of-the-art for

this class of problems.

The results of this comparison are shown in Figure 5.

The input matches were obtained by mapping farthest point

samples on a reference shape via the ground-truth corre-

spondence to the target shape, and are visualized by trans-

ferring a texture from reference to target via the recovered

dense map. As we can read from the plots, our approach

yields maps of better quality when fewer than ten matches

are provided as the input, and maps of comparable quality

when more matches are available. It is important to note

that while our method still produces meaningful solutions

when just one or two matches are given as the input (see

Figures 1, 4), the approach of [5] has the theoretical mini-

mum of five matches; furthermore, the latter approach gives

different solutions depending on the specific ordering of the

inputs, while our method is invariant to their permutations.

Finally, as we demonstrate in the next section, a key ability

of our method is being able to recover correct maps from

noisy inputs, while the Tutte approach requires exact input.

3.2. Recovery from noisy input

In this set of experiments we assume to be given a low-

rank approximation of the latent correspondence P in terms

of a functional map

C = Ψ
T
PΦ ∈ R

r×r, (14)

where Φ,Ψ ∈ R
n×r are truncated orthonormal bases on

X and Y . We refer the reader to the original paper [31]

for details and allow ourselves to condense its ideas to the

above equation.

While a plurality of methods for finding C have been

proposed in the last years, there currently exist only three

approaches to recover a point-wise correspondence ma-

trix P from it. In [31] the authors proposed to recover a

pointwise correspondence between X and Y by solving the

nearest-neighbor problem (NN)

min
P∈{0,1}n×n

‖CΦ
T −Ψ

T
P‖2F s.t. PT

1 = 1 . (15)

alternated with an orthogonality-enforcing refinement of C

(ICP). A variant is its bijective version (Bij. NN)

min
P∈{0,1}n×n

‖CΦ
T −Ψ

T
P‖2F s.t. PT

1 = 1 , P1 = 1 .

(16)
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Reference [5]
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Ours [5]

5

Ours [5]

10

Ours

Figure 5. Comparison between our method and the method of [5] at increasing number of input matches (reported on top). Both methods

produce smooth, guaranteed bijective solutions; our method requires little computational effort (a few minutes as opposed to ∼1 hour for

[5]), and yields in comparison more accurate solutions when fed with a very sparse input.

The orthogonal refinement of (15) assumes the underly-

ing map to be area-preserving [31], and is therefore bound

to fail in case the two shapes are non-isometric. Rodolà et

al. [36] proposed to consider the non-rigid counterpart for

a given C:

min
P∈[0,1]n×n

DKL(CΦ
T,ΨT

P) + λ‖Ω(CΦ
T −Ψ

T
P)‖2

s.t. PT
1 = 1 . (17)

Here DKL denotes the Kullback-Leibler divergence be-

tween probability distributions, Ω is a low-pass operator

promoting smooth velocity vectors, and λ > 0 controls the

regularity of the assignment. The problem is then solved via

expectation-maximization by the coherent point drift algo-

rithm (CPD) [30].

We construct the low-rank functional map using the

known ground-truth correspondences between the shapes.

Since this is supposed to be the ideal input for all the com-

peting methods, we abandon the refinement step in (15).

Correspondences returned by the other methods are treated

as noisy realizations of the latent bijection and are recovered

via PMF with σ2 set to 2% of the target shape area.

We show quantitative comparisons on 71 pairs from the

SCAPE dataset [7] (near isometric, 1K vertices) and 100

pairs from the FAUST dataset [11] (including inter-class

pairs, 7K vertices). In Figures 11 and 9 we compare the

correspondence accuracy, while in Figure 12 we visualize

how lack of smoothness, bijectivity and accuracy affect tex-

ture transfer.

The accuracy of all input matchings is increased by ap-

plying the product manifold filter. To our knowledge, the

matchings obtained by the PMF are the most accurate ones

that can be recovered from this type of low-rank approx-

imation. While linear assignment problems are known to

be time demanding to solve for larger numbers of variables,

the most dramatic increase of run time occurs when apply-

ing the coherent point drift algorithm (see Table 1).

Figure 6. Result of our method on two cat shapes from TOSCA

[12]. This high resolution shape has 27894 vertices, making it

infeasible to store the entire pairwise distance matrix in memory.

Our multi-scale approach recovered a smooth matching from only

20 sparse correspondences given as the input using five hierarchi-

cal scales as detailed in Section 2.2.

Figure 7. Visualization of the multiscale iterations evaluated in

Fig. 8. From left to right: 1K, 2K, 8K, 28K (all) vertices.

3.3. Recovering high­resolution correspondences
using multiscale

In this set of experiments we demonstrate how the PMF

together with the multiscale method described in 2.2 can re-

cover very accurate matchings on shapes being sampled at

high resolution. Figure 6 shows a dense bijective match-

ing between two shapes sampled at n = 27894 points each.

At each of the six scales ni ∈ {103, 2 × 103, 4 × 103, 8 ×
103, 1.6 × 104, n} the constrained LAP (11) was solved.
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Figure 8. Quantitative analysis of correspondences between the

two cats shown in Figure 6, recoverd using the multiscale ap-

proach. The geodesic errors are measured with respect to the

ground-truth on the finest scale. At coarse scales the minimal ex-

pected geodesic error introduced by any matching is in the order

of the sampling radius. As expected, the accuracy of the matching

increases with each iteration.

n 1000 1000 6890 6890
r 20 50 20 50
Nearest neighbors 0.04 0.06 1.35 2.88

Bijective NN 2.79 2.30 463.66 253.03

CPD 4.79 4.67 1745.06 2085.65

NN + PMF 1.75 1.28 382.86 244.10

Bij. NN + PMF 4.06 3.44 746.00 440.94

Table 1. Average runtimes in seconds. We compare the runtimes

of different correspondence recovery methods. Given the rank k

of a functional map approximating the correspondence between

shapes sampled at n points each, we report the time it takes to

obtain a dense matching. See Figures 11,9 and 12 for evaluations

of accuracy.

Figure 7 shows the sequence of matchings over the scales.

Figure 8 shows the improvement of correspondence accu-

racy at finer scales. By using the weighting functions we

force points to stay close to their nearest neighbor in the

coarser sampling and thus can guarantee to approximately

keep the accuracy from the coarser scale. Solving the con-

strained LAP at the finest resolution took less then 9 min-

utes. Calculating the kernel density matrices (6) for all

scales took less than 40 minutes.

Another test was performed on pairs of shapes from the

FAUST dataset. As Figure 10 shows, the correspondences

obtained using a four-scale scheme are comparable in accu-

racy to the solution of a single-scale scheme. However, the

runtime of the multi-scale approach is significantly lower.

Calculating the kernel density matrices (6) for all scales

took about 4 minutes, while solving the LAPs at all scales

took around 18 seconds.
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Figure 9. Quantitative comparison of methods for pointwise cor-

respondence on the non-isometric FAUST dataset (about 7K ver-

tices).
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Figure 10. Error curves for a multiscale experiment on the FAUST

dataset, showing result for intermediate scales. For comparison,

the solution obtained by a single-scale PMF is shown in dashed

black.

4. Discussion and conclusion

We considered the problem of bijective correspondence

recovery by means of filtering a given set of matches com-

ing from any of the existing algorithms (including those

not guaranteeing bijectivity, or producing sparse correspon-

dences). Viewing correspondence computation as a kernel

density estimation problem in the product space, we intro-

duced the product manifold filter that leads to smooth cor-

respondences, with the additional constraint of bijectivity

embodied through an LAP. We believe that statistical tools

that have been heavily used in other domains of science and

engineering might be very useful in shape analysis, and in-

vite the community to further explore this direction. Of

special interest is the possibility to lift the product space

to higher dimensions encoding local similarity of points on

the two shapes, for instance by using descriptors. The way

the kernel density estimator is constructed does not restrict
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Figure 11. Quantitative comparison of methods for pointwise correspondence recovery from a functional map (20 and 50 eigenfunctions).

We matched 70 pairs from the near-isometric SCAPE dataset (1K). Plotted are the histograms of geodesic errors. Filtering the results of

nearest neighbors (left) outperforms the state of the art method (right) while having only a fraction of its runtime (Table 1). Even better

results are achieved under affordable runtimes when initializing the PMF estimator with the result of bijective NN (center).

1% 3% 5% 7%

×diam

NN NN+PMF CPD CPD+PMF NN NN+PMF CPD CPD+PMF

Figure 12. Qualitative comparison of methods for pointwise correspondence recovery from a functional map. Current methods such as

nearest neighbors (NN) and coherent point drift (CPD) suffer from bad accuracy and lack of surjectivity. Applying the proposed estimation

to either of them gives a guaranteed bijective matching with high accuracy and improved smoothness. Left: We visualize the accuracy

of the methods by transferring texture from the source shape X to the target shape Y . Neither NN nor CPD produce bijective mappings.

The lack of surjectivity is visualized by assigning a fixed color (green) to not-hit points. Right: The geodesic error (distance between

ground-truth and recovered match, relative to the shape diameter) induced by the matching is visualized on the target shape Y .

the samples per shape to be distinct. Together with the use

of weighting factors this alllows to directly work with soft

maps as inputs. Finally, we believe that denoising the cor-

respondence manifold in the product space is a useful per-

spective applicable to different problems in computer vision

where smooth correspondences are desired, such as optical

flow.
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[34] E. Rodolà, A. M. Bronstein, A. Albarelli, F. Bergamasco,

and A. Torsello. A game-theoretic approach to deformable

shape matching. In Proc. CVPR, 2012.
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