
Discriminative Optimization:

Theory and Applications to Point Cloud Registration

Jayakorn Vongkulbhisal†,‡, Fernando De la Torre‡, João P. Costeira†
†ISR - IST, Universidade de Lisboa, Lisboa, Portugal
‡Carnegie Mellon University, Pittsburgh, PA, USA

jvongkul@andrew.cmu.edu, ftorre@cs.cmu.edu, jpc@isr.ist.utl.pt

Abstract

Many computer vision problems are formulated as the

optimization of a cost function. This approach faces two

main challenges: (1) designing a cost function with a lo-

cal optimum at an acceptable solution, and (2) developing

an efficient numerical method to search for one (or multi-

ple) of these local optima. While designing such functions

is feasible in the noiseless case, the stability and location of

local optima are mostly unknown under noise, occlusion, or

missing data. In practice, this can result in undesirable lo-

cal optima or not having a local optimum in the expected

place. On the other hand, numerical optimization algo-

rithms in high-dimensional spaces are typically local and

often rely on expensive first or second order information to

guide the search. To overcome these limitations, this pa-

per proposes Discriminative Optimization (DO), a method

that learns search directions from data without the need of a

cost function. Specifically, DO explicitly learns a sequence

of updates in the search space that leads to stationary points

that correspond to desired solutions. We provide a formal

analysis of DO and illustrate its benefits in the problem of

2D and 3D point cloud registration both in synthetic and

range-scan data. We show that DO outperforms state-of-

the-art algorithms by a large margin in terms of accuracy,

robustness to perturbations, and computational efficiency.

1. Introduction

Mathematical optimization is fundamental to solving

many problems in computer vision. This fact is apparent

as demonstrated by the plethora of papers that use opti-

mization techniques in any major computer vision confer-

ence. For instance, camera calibration, structure from mo-

tion, tracking, or registration are traditional computer vision

problems that are posed as optimization problems. Formu-

lating computer vision problems as optimization problems

faces two main challenges: (1) Designing a cost function

Ground truth Pt.Local min. / Stationary Pt. Initial Pt. Update path

ICP

DO

ICP

DO DO

ICP

(a
) 

D
a
ta

(b
) 

IC
P

(c
) 

D
O

(d
) 

C
o
n

v.
 R

eg
io

n
s

Find θ,t
Corrupted DataClean Data

tx

θ

Figure 1. 2D point alignment with ICP and DO. (a) Data. (b) Level

sets of the cost function for ICP. (c) Inferred level sets for the pro-

posed DO. (d) Regions of convergence for ICP and DO. See text

for detailed description (best seen in color).

that has a local optimum that corresponds to a suitable so-

lution. (2) Selecting an efficient and accurate algorithm

for searching the parameter space. Traditionally these two

steps have been treated independently, leading to different

cost functions and search algorithms. However, in the pres-

ence of noise, missing data, or inaccuracies of the model,

this traditional approach can lead to having undesirable lo-

cal optima or even not having an optimum in the expected

solution.

Consider Fig. 1a-left which illustrates a 2D alignment

problem in a case of noiseless data. A good cost function

for this problem should have a global optimum when the

4104



two shapes overlap. Fig. 1b-left illustrates the level sets of

the cost function for the Iterative Closest Point (ICP) algo-

rithm [4] in the case of complete and noiseless data. Ob-

serve that there is a well-defined optimum and that it coin-

cides with the ground truth. Given a cost function, the next

step is to find a suitable algorithm that, given an initial con-

figuration (green square), finds a local optimum. For this

particular initialization, the ICP algorithm will converge to

the ground truth (red diamond in Fig. 1b-left), and Fig. 1d-

left shows the convergence region for ICP in green. How-

ever, in realistic scenarios with the presence of perturbations

in the data, there is no guarantee that there will be a good

local optimum in the expected solution, while the number of

local optima can be large. Fig. 1b-center and Fig. 1b-right

show the level set representation for the ICP cost function

in the cases of corrupted data. We can see that the shape of

cost functions have changed dramatically: there are more

local optima, and they do not necessarily correspond to the

ground truth (red diamond). In this case, the ICP algorithm

with an initialization in the green square will converge to

wrong optima. It is important to observe that the cost func-

tion is only designed to have an optimum at the correct solu-

tion in the ideal case, but little is known about the behavior

of this cost function in the surroundings of the optimum and

how it will change with noise.

To address the aforementioned problems, this paper pro-

poses Discriminative Optimization (DO). DO exploits the

fact that we often know from the training data where the so-

lutions should be, whereas traditional approaches formulate

optimization problems based on an ideal model. Rather than

following a descent direction of a cost function, DO directly

learns a sequence of update directions leading to a station-

ary point. These points are placed “by design” in the de-

sired solutions from training data. This approach has three

main advantages. First, since DO’s directions are learned

from training data, they take into account the perturbations

in the neighborhood of the ground truth, resulting in more

robustness and a larger convergence region. This can be

seen in Fig. 2, where we show DO’s update directions for

the same examples of Fig. 1. Second, because DO does

not optimize any explicit function (e.g., ℓ2 registration er-

ror), it is less sensitive to model misfit and more robust to

different types of perturbations. Fig. 1c illustrates the con-

tour level inferred1 from the update directions learned by

DO. It can be seen that the curve levels have a local opti-

mum on the ground truth and fewer local optima than ICP

in Fig. 1b. Fig. 1d shows that the convergence regions of

DO change little despite the perturbations, and always in-

clude the regions of ICP. Third, to compute update direc-

1Recall that DO does not use a cost function. The contour level is ap-

proximately reconstructed using the surface reconstruction algorithm [13]

from the update directions of DO. For ICP, we used the optimal matching

at each parameter value to compute the ℓ2 cost.

Find θ,t

Figure 2. Update directions of DO in Fig. 1c.

tions, traditional approaches require the cost function to be

differentiable or continuous, whereas DO’s directions can

always be computed. We also provide a proof of DO’s con-

vergence in the training set. We named our approach DO to

reflect the idea of learning to find a stationary point directly

rather than optimizing a “generative” cost function.

We demonstrate the potential of DO in problems of rigid

2D and 3D point cloud registration. Specifically, we aim

to solve for a 2D/3D rotation and translation that registers

two point clouds together. Using DO, we learn a sequence

of directions leading to the solution for each specific shape.

In experiments on synthetic data and cluttered range-scan

data, we show that DO outperforms state-of-the-art local

registration methods such as ICP [4], GMM [14], CPD [17]

and IRLS [3] in terms of computation time, robustness, and

accuracy. In addition, we show how DO can be used to track

3D objects.

2. Related Work

2.1. Point cloud registration

Point cloud registration has been an important problem

in computer vision for the last few decades. Arguably, Iter-

ative Closest Point (ICP) [4] and its variants [9, 18] are the

most well-known algorithms. These approaches alternate

between solving for the correspondence and the geometric

transformation until convergence. A typical drawback of

ICP is the need for a good initialization to avoid a bad local

minimum. To alleviate this problem, Robust Point Match-

ing (RPM) [10] uses soft assignment instead of binary as-

signment. Recently, Iteratively Reweighted Least Squares

(IRLS) [3] proposes using various robust cost functions to

provide robustness to outliers and avoid bad local minima.

In contrast to the above point-based approaches, density-

based approaches model each point as the center of a den-

sity function. Kernel Correlation [20] aligns the densi-

ties of the two point clouds by maximizing their correla-

tion. Coherent Point Drift (CPD) [17] assumes the point

cloud of one shape is generated by the density of the other

shape, and solves for the parameters that maximize their

likelihood. Gaussian Mixture Model Registration (GMM-

4105



Reg) [14] minimizes the L2 error between the densities of

the two point clouds. More recently, [6] uses Support Vec-

tor Regression to learn a new density representation of each

point cloud before minimizing L2 error, while [11] models

point clouds as particles with gravity as attractive force, and

solves differential equations to obtain the registration.

In summary, previous approaches tackle the registration

problem by first defining different cost functions, and then

solving for the optima using iterative algorithms (e.g., ex-

pectation maximization, gradient descent). Our approach

takes a different perspective by not defining new cost func-

tions, but directly learning a sequence of updates of the rigid

transformation parameters such that the stationary points

match the ground truths from a training set.

2.2. Supervised sequential update (SSU) methods

Our approach is inspired by the recent practical success

of supervised sequential update (SSU) methods for body

pose estimation and facial feature detection. Cascade re-

gression [8] learns a sequence of maps from features to re-

finement parameters to estimate the pose of target objects

in single images. Explicit shape regression [7] learns a se-

quence of boosted regressors that minimizes error in search

space. Supervised descent method (SDM) [23, 24] learns a

sequence of descent maps as the averaged Jacobian matrices

for solving non-linear least-squares functions. More recent

works include learning both Jacobian and Hessian matri-

ces [22]; running Gauss-Newton algorithm after SSU [1];

and using different maps in different regions of the param-

eter space [25]. Most of these works focus on facial land-

mark alignment and tracking.

Building upon previous works, we provide a new inter-

pretation to SSU methods as a way of learning update steps

such that the stationary points correspond to the problem

solutions. This leads to several novelties. First, we allow

the number of iterations on the learned maps to be adaptive

rather than constant as in previous works. Second, we apply

DO to the new problem setting of point cloud registration,

where we show that the updates can be learned from only

synthetic data. In addition, we provide a theoretical result

on the convergence of training data and an explanation for

why the maps should be learned in a sequence, which has

been previously treated as a heuristic [24].

3. Discriminative Optimization (DO)

3.1. Intuition from gradient descent

DO aims to learn a sequence of update maps (SUM)

to update an initial estimate of the parameter to a station-

ary point. The intuition of DO can be understood when

compared with the underlying principle of gradient descent.

Let2 J : Rp → R be a differentiable cost function. The gra-

dient descent algorithm for minimizing J can be written as,

xk+1 = xk − µk

∂

∂x
J(xk), (1)

where xk ∈ R
p is the parameter at step k, and µk is a step

size. This update is performed until the gradient vanishes,

i.e., until a stationary point is reached [5].

In contrast to gradient descent where the updates are de-

rived from a cost function, DO learns the updates from the

training data. A major advantage is that no cost function is

explicitly optimized and the neighborhoods around the so-

lutions of perturbed data are taken into account when the

maps are learned.

3.2. Sequence of update maps (SUM)

DO uses an update rule that is similar to (1). Let h :
R

p → R
f be a function that encodes a representation of the

data (e.g., h(x) extracts features from an image at positions

x). Given an initial parameter x0 ∈ R
p, DO iteratively

updates xk, k = 0, 1, . . . , using:

xk+1 = xk −Dk+1h(xk), (2)

until convergence to a stationary point. The matrix3

Dk+1 ∈ R
p×f maps the feature h(xk) to an update vec-

tor. The sequence of matrices Dk+1, k = 0, 1, . . . learned

from training data forms the SUM.

Learning a SUM: Suppose we are given a training set

as a set of triplets {(x
(i)
0 ,x

(i)
∗ ,h(i))}Ni=1, where x

(i)
0 ∈ R

p

is the initial parameter for the ith problem instance (e.g.,

the ith image), x
(i)
∗ ∈ R

p is the ground truth parameter

(e.g., position of the object on the image), and h(i) : Rp →
R

f provides information of the ith problem instance. The

goal of DO is to learn a sequence of update maps {Dk}k
that updates x

(i)
0 to x

(i)
∗ . In order to learn Dk, we use the

following least-square regression:

Dk+1 = argmin
D̃

1

N

N∑

i=1

‖x
(i)
∗ −x

(i)
k +D̃h(i)(x

(i)
k )‖2. (3)

After we learn a map Dk+1, we update each x
(i)
k using (2),

then proceed to learn the next map. This process is repeated

until some terminating conditions, such as until the error

does not decrease much, or until a maximum number of

iterations. To see why (3) learns stationary points, we can

see that for i with x
(i)
k ≈ x

(i)
∗ , (3) will force Dh(i)(x

(i)
k ) to

2Bold capital letters denote a matrix X, bold lower-case letters a col-

umn vector x. All non-bold letters represent scalars. 0n ∈ R
n is the

vector of zeros. Vector xi denotes the ith column of X. Bracket subscript

[x]i denotes the ith element of x. ‖x‖ denotes ℓ2-norm
√
x⊤x.

3Here, we use linear maps for their computational efficiency, but other

non-linear regression functions can be used in a straightforward manner.

4106



Algorithm 1 Training a sequence of update maps (SUM)

Input: {(x
(i)
0 ,x

(i)
∗ ,h(i))}Ni=1,K, λ

Output: {Dk}
K
k=1

1: for k = 0 to K − 1 do

2: Compute Dk+1 with (4).

3: for i = 1 to N do

4: Update x
(i)
k+1 := x

(i)
k −Dk+1h

(i)(x
(i)
k ).

5: end for

6: end for

Algorithm 2 Searching for a stationary point

Input: x0,h, {Dk}
K
k=1,maxIter, ǫ

Output: x

1: Set x := x0

2: for k = 1 to K do

3: Update x := x−Dkh(x)
4: end for

5: Set iter := K + 1.

6: while ‖DKh(x)‖ ≥ ǫ and iter ≤ maxIter do

7: Update x := x−DKh(x)
8: Update iter := iter + 1
9: end while

be close to zero, thereby inducing a stationary point around

x
(i)
∗ . In practice, to prevent overfitting, ridge regression is

used to learn the maps:

min
D̃

1

N

N∑

i=1

‖x
(i)
∗ − x

(i)
k + D̃h(i)(x

(i)
k )‖2 +

λ

2
‖D̃‖2F , (4)

where λ is a hyperparameter. The pseudocode for training

a SUM is shown in Alg. 1.

Solving a new problem instance: When solving a new

problem instance, we are given an unseen function h and

an initialization x0. To solve this new problem instance,

we update xk, k = 0, 1, . . . with the obtained SUM us-

ing (2) until a stationary point is reached. However, in

practice, the number of maps is finite, say K maps. We

observed that many times the update at the Kth iteration

is still large, which means the stationary point is still not

reached, and also the result parameter xK is far from the

true solution. For the registration task, this is particularly

the problem when there is a large rotation angle between

the initialization and the solution. To overcome this prob-

lem, we keep updating x using the Kth map until the update

is small or the maximum number of iterations is reached.

This approach makes DO different from previous works in

Sec. 2.2, where the updates are only performed up to the

number of maps. Alg. 2 shows the pseudocode for updating

the parameters.

3.3. Theoretical analysis

This section provides theoretical analysis for DO.

Specifically, we show that under a weak assumption on h(i),

it is possible to learn a SUM that strictly decreases training

error in each iteration. First, we define the monotonicity at

a point condition:

Definition 1 (Monotonicity at a point) A function f : Rp →
R

p is monotone at a point x∗ ∈ R
p if it satisfies (x −

x∗)
⊤f(x) ≥ 0 for all x ∈ R

p. f is strictly monotone if

the equality holds only at x = x∗.4

With the above definition, we can show the following result:

Theorem 1 (Strict decrease in training error under a

sequence of update maps (SUM)) Given a training set

{(x
(i)
0 ,x

(i)
∗ ,h(i))}Ni=1, if there exists a linear map D̂ ∈

R
p×f such that, for each i, D̂h(i) is strictly monotone at

x
(i)
∗ , and if ∃i : x

(i)
k 6= x

(i)
∗ , then the update rule:

x
(i)
k+1 = x

(i)
k −Dk+1h

(i)(x
(i)
k ), (5)

with Dk+1 ∈ R
p×f obtained from (3), guarantees that the

training error strictly decreases in each iteration:

N∑

i=1

‖x
(i)
∗ − x

(i)
k+1‖

2 <

N∑

i=1

‖x
(i)
∗ − x

(i)
k ‖2. (6)

The proof of Thm. 1 is provided in the supplementary mate-

rial. In words, Thm. 1 says that if each instance i is similar

in the sense that each D̂h(i) is strictly monotone at x
(i)
∗ ,

then sequentially learning the optimal maps with (3) guar-

antees that training error strictly decreases in each iteration.

Note that h(i) is not required to be differentiable or contin-

uous. The SDM theorem [24] also presents a convergence

result for a similar update rule, but it shows the convergence

of a single function under a single ideal map. It also re-

quires an additional condition called ‘Lipschitz at a point.’

This condition is necessary for bounding the norm of the

map, otherwise the update can be too large, preventing the

convergence to the solution. In contrast, Thm. 1 explains

the convergence of multiple functions under the same SUM

learned from the data, where the learned maps Dk can be

different from the ideal map D̂. Thm. 1 also does not re-

quire the ‘Lipschitz at a point’ condition to bound the norms

of the maps since they are adjusted based on the training

data. Not requiring this Lipschitz condition has an impor-

tant implication as it allows robust discontinuous features,

such as HOG [24], to be used as h(i). In this work, we will

also propose a discontinuous function h for point-cloud reg-

istration. Lastly, we wish to point out that Thm. 1 does not

guarantee that the error of each instance i reduces in each

iteration, but guarantees the reduction in the average error.

4The strict version is equivalent to the one used in the proof in [24].

4107



n1

m1

h
1
2

NM-1
NM
NM+1
NM+2

2NM-1
2NM

...
...

T'Front': n1(T(sb;x)-m1)>0

Σexp(...)

Σexp(...)

n1

'Back': n1(T(sb;x)-m1)<0T

(a) (b) (c)

Figure 3. Feature h for registration. (a) Model points (square) and

scene points (circle). (b-c) Weights of sb that are on the ‘front’ or

‘back’ of model point m1 are assigned to different indices in h.

4. DO for Point Cloud Registration

This section describes how to apply DO to register point

clouds under rigidity. For simplicity, this section discusses

the case for registering two 3D shapes with different num-

bers of points, but the idea can be simply extended to 2D

cases. Let M ∈ R
3×NM be a matrix containing 3D coordi-

nates of one shape (‘model’) and S ∈ R
3×NS for the second

shape (‘scene’). Our goal is to find the rotation and transla-

tion that registers S to M5. Recall that the correspondence

between points in S and M is unknown.

4.1. Parametrization of the transformations

Rigid transformations are usually represented in matrix

form with nonlinear constraints. Since DO does not admit

constraints, it is inconvenient to parametrize the transforma-

tion parameter x in such matrix form. However, the matrix

representation of rigid transformation forms a Lie group,

which associates with a Lie algebra [12, 15]. In essence,

the Lie algebra is a linear vector space with the same di-

mensions as the degrees of freedom of the transformation;

for instance, R6 is the Lie algebra of the 3D rigid transfor-

mation. Each element in the Lie algebra is associated with

an element in the Lie group via exponential and logarithm

maps, where closed form computations exists (provided in

supplementary material). Being a linear vector space, Lie

algebra provides a convenient parametrization for x since it

requires no constraints to be enforced. Note that multiple

elements in the Lie algebra can represent the same trans-

formation in Lie group, i.e., the relation is not one-to-one.

However, the relation is one-to-one locally around the ori-

gin of the Lie algebra, which is sufficient for our task. Pre-

vious works that use Lie algebra include motion estimation

and tracking in images [2, 21].

4.2. Features for registration

The function h encodes information about the problem

to be solved, e.g., it extracts features from the input data.

5The transformation that register M to S can be found by inversing the

transformation that registers S to M.

For point cloud registration, we observe that most shapes

of interest are comprised of points that form a surface,

and good registration occurs when the surfaces of the two

shapes are aligned. To align surfaces of points, we design h

to be a histogram that indicates the weights of scene points

on the ‘front’ and the ‘back’ sides of each model point (see

Fig. 3). This allows DO to learn the parameters that update

the point cloud in the direction that aligns the surfaces. Let

na ∈ R
3 be a normal vector of the model point ma com-

puted from neighboring points; T (y;x) be a function that

applies rigid transformation with parameter x to vector y;

S+
a = {sb : n⊤

a (T (sb;x) − ma) > 0} be the set of scene

points on the ‘front’ of ma; and S−
a contains the remaining

scene points. We define h : R6 × R
3×NS → R

2NM as:

[h(x;S)]a =
1

z

∑

sb∈S
+
a

exp

(

−
1

σ2
‖T (sb;x)−ma‖

2

)

, (7)

[h(x;S)]a+NM
=

1

z

∑

sb∈S
−

a

exp

(

−
1

σ2
‖T (sb;x)−ma‖

2

)

, (8)

where z normalizes h to sum to 1, and σ controls the width

of the exp function. The exp term calculates the weight

depending on the distance between the model and the scene

points. The weight due to sb is assigned to index a or a +
NM depending on the side of ma that sb is on. Note that h

is specific to a model M, and it returns a fixed length vector

of size 2NM . This is necessary since h is to be multiplied to

Dk, which are fixed size matrices. Thus, the SUM learned

is also specific to the shape M. However, h can take the

scene shape S with an arbitrary number of points to use with

the SUM. Although we do not prove that this h complies

with the condition in Thm. 1, we show empirically in Sec. 5

that it can be effectively used for our task.

4.3. Fast computation of feature

Empirically, we found that computing h directly is slow

due to pairwise distance computations and the evaluation

of exponentials. To perform fast computation, we quantize

the space around the model shape into uniform grids, and

store the value of h evaluated at the center of each grid.

When computing features for a scene point T (sb;x), we

simply return the precomputed feature of the grid center that

is closest to T (sb;x). Note that since the grid is uniform,

finding the closest grid center can be done in O(1). To get a

sense of scale in this section, we assume the model is mean-

subtracted and normalized so that the largest dimension is

in [−1, 1]. We compute the uniform grid in the range [−2, 2]
with 81 points in each dimension. We set any elements of

the precomputed features that are smaller than 10−6 to 0,

and since most of the values are zero, we store them in a

sparse matrix. We found that this approach significantly re-

duces the feature computation time by 6 to 20 times while

maintaining the same accuracy. In our experiments, the pre-

computed features require less than 50MB for each shape.

4108










