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Abstract

Many computer vision problems are formulated as the
optimization of a cost function. This approach faces two
main challenges: (1) designing a cost function with a lo-
cal optimum at an acceptable solution, and (2) developing
an efficient numerical method to search for one (or multi-
ple) of these local optima. While designing such functions
is feasible in the noiseless case, the stability and location of
local optima are mostly unknown under noise, occlusion, or
missing data. In practice, this can result in undesirable lo-
cal optima or not having a local optimum in the expected
place. On the other hand, numerical optimization algo-
rithms in high-dimensional spaces are typically local and
often rely on expensive first or second order information to
guide the search. To overcome these limitations, this pa-
per proposes Discriminative Optimization (DO), a method
that learns search directions from data without the need of a
cost function. Specifically, DO explicitly learns a sequence
of updates in the search space that leads to stationary points
that correspond to desired solutions. We provide a formal
analysis of DO and illustrate its benefits in the problem of
2D and 3D point cloud registration both in synthetic and
range-scan data. We show that DO outperforms state-of-
the-art algorithms by a large margin in terms of accuracy,
robustness to perturbations, and computational efficiency.

1. Introduction

Mathematical optimization is fundamental to solving
many problems in computer vision. This fact is apparent
as demonstrated by the plethora of papers that use opti-
mization techniques in any major computer vision confer-
ence. For instance, camera calibration, structure from mo-
tion, tracking, or registration are traditional computer vision
problems that are posed as optimization problems. Formu-
lating computer vision problems as optimization problems
faces two main challenges: (1) Designing a cost function
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Figure 1. 2D point alignment with ICP and DO. (a) Data. (b) Level
sets of the cost function for ICP. (c¢) Inferred level sets for the pro-
posed DO. (d) Regions of convergence for ICP and DO. See text
for detailed description (best seen in color).

that has a local optimum that corresponds to a suitable so-
lution. (2) Selecting an efficient and accurate algorithm
for searching the parameter space. Traditionally these two
steps have been treated independently, leading to different
cost functions and search algorithms. However, in the pres-
ence of noise, missing data, or inaccuracies of the model,
this traditional approach can lead to having undesirable lo-
cal optima or even not having an optimum in the expected
solution.

Consider Fig. la-left which illustrates a 2D alignment
problem in a case of noiseless data. A good cost function
for this problem should have a global optimum when the
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two shapes overlap. Fig. 1b-left illustrates the level sets of
the cost function for the Iterative Closest Point (ICP) algo-
rithm [4] in the case of complete and noiseless data. Ob-
serve that there is a well-defined optimum and that it coin-
cides with the ground truth. Given a cost function, the next
step is to find a suitable algorithm that, given an initial con-
figuration (green square), finds a local optimum. For this
particular initialization, the ICP algorithm will converge to
the ground truth (red diamond in Fig. 1b-left), and Fig. 1d-
left shows the convergence region for ICP in green. How-
ever, in realistic scenarios with the presence of perturbations
in the data, there is no guarantee that there will be a good
local optimum in the expected solution, while the number of
local optima can be large. Fig. Ib-center and Fig. 1b-right
show the level set representation for the ICP cost function
in the cases of corrupted data. We can see that the shape of
cost functions have changed dramatically: there are more
local optima, and they do not necessarily correspond to the
ground truth (red diamond). In this case, the ICP algorithm
with an initialization in the green square will converge to
wrong optima. It is important to observe that the cost func-
tion is only designed to have an optimum at the correct solu-
tion in the ideal case, but little is known about the behavior
of this cost function in the surroundings of the optimum and
how it will change with noise.

To address the aforementioned problems, this paper pro-
poses Discriminative Optimization (DO). DO exploits the
fact that we often know from the training data where the so-
lutions should be, whereas traditional approaches formulate
optimization problems based on an ideal model. Rather than
following a descent direction of a cost function, DO directly
learns a sequence of update directions leading to a station-
ary point. These points are placed “by design” in the de-
sired solutions from training data. This approach has three
main advantages. First, since DO’s directions are learned
from training data, they take into account the perturbations
in the neighborhood of the ground truth, resulting in more
robustness and a larger convergence region. This can be
seen in Fig. 2, where we show DO’s update directions for
the same examples of Fig. 1. Second, because DO does
not optimize any explicit function (e.g., {5 registration er-
ror), it is less sensitive to model misfit and more robust to
different types of perturbations. Fig. 1c illustrates the con-
tour level inferred' from the update directions learned by
DO. It can be seen that the curve levels have a local opti-
mum on the ground truth and fewer local optima than ICP
in Fig. 1b. Fig. 1d shows that the convergence regions of
DO change little despite the perturbations, and always in-
clude the regions of ICP. Third, to compute update direc-

IRecall that DO does not use a cost function. The contour level is ap-
proximately reconstructed using the surface reconstruction algorithm [13]
from the update directions of DO. For ICP, we used the optimal matching
at each parameter value to compute the 2 cost.
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Figure 2. Update directions of DO in Fig. lc.
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tions, traditional approaches require the cost function to be
differentiable or continuous, whereas DO’s directions can
always be computed. We also provide a proof of DO’s con-
vergence in the training set. We named our approach DO to
reflect the idea of learning to find a stationary point directly
rather than optimizing a “generative” cost function.

We demonstrate the potential of DO in problems of rigid
2D and 3D point cloud registration. Specifically, we aim
to solve for a 2D/3D rotation and translation that registers
two point clouds together. Using DO, we learn a sequence
of directions leading to the solution for each specific shape.
In experiments on synthetic data and cluttered range-scan
data, we show that DO outperforms state-of-the-art local
registration methods such as ICP [4], GMM [14], CPD [17]
and IRLS [3] in terms of computation time, robustness, and
accuracy. In addition, we show how DO can be used to track
3D objects.

2. Related Work
2.1. Point cloud registration

Point cloud registration has been an important problem
in computer vision for the last few decades. Arguably, Iter-
ative Closest Point (ICP) [4] and its variants [9, 18] are the
most well-known algorithms. These approaches alternate
between solving for the correspondence and the geometric
transformation until convergence. A typical drawback of
ICP is the need for a good initialization to avoid a bad local
minimum. To alleviate this problem, Robust Point Match-
ing (RPM) [10] uses soft assignment instead of binary as-
signment. Recently, Iteratively Reweighted Least Squares
(IRLS) [3] proposes using various robust cost functions to
provide robustness to outliers and avoid bad local minima.

In contrast to the above point-based approaches, density-
based approaches model each point as the center of a den-
sity function. Kernel Correlation [20] aligns the densi-
ties of the two point clouds by maximizing their correla-
tion. Coherent Point Drift (CPD) [17] assumes the point
cloud of one shape is generated by the density of the other
shape, and solves for the parameters that maximize their
likelihood. Gaussian Mixture Model Registration (GMM-
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Reg) [14] minimizes the L, error between the densities of
the two point clouds. More recently, [6] uses Support Vec-
tor Regression to learn a new density representation of each
point cloud before minimizing Lo error, while [1 1] models
point clouds as particles with gravity as attractive force, and
solves differential equations to obtain the registration.

In summary, previous approaches tackle the registration
problem by first defining different cost functions, and then
solving for the optima using iterative algorithms (e.g., ex-
pectation maximization, gradient descent). Our approach
takes a different perspective by not defining new cost func-
tions, but directly learning a sequence of updates of the rigid
transformation parameters such that the stationary points
match the ground truths from a training set.

2.2. Supervised sequential update (SSU) methods

Our approach is inspired by the recent practical success
of supervised sequential update (SSU) methods for body
pose estimation and facial feature detection. Cascade re-
gression [8] learns a sequence of maps from features to re-
finement parameters to estimate the pose of target objects
in single images. Explicit shape regression [7] learns a se-
quence of boosted regressors that minimizes error in search
space. Supervised descent method (SDM) [23, 24] learns a
sequence of descent maps as the averaged Jacobian matrices
for solving non-linear least-squares functions. More recent
works include learning both Jacobian and Hessian matri-
ces [22]; running Gauss-Newton algorithm after SSU [1];
and using different maps in different regions of the param-
eter space [25]. Most of these works focus on facial land-
mark alignment and tracking.

Building upon previous works, we provide a new inter-
pretation to SSU methods as a way of learning update steps
such that the stationary points correspond to the problem
solutions. This leads to several novelties. First, we allow
the number of iterations on the learned maps to be adaptive
rather than constant as in previous works. Second, we apply
DO to the new problem setting of point cloud registration,
where we show that the updates can be learned from only
synthetic data. In addition, we provide a theoretical result
on the convergence of training data and an explanation for
why the maps should be learned in a sequence, which has
been previously treated as a heuristic [24].

3. Discriminative Optimization (DO)
3.1. Intuition from gradient descent

DO aims to learn a sequence of update maps (SUM)
to update an initial estimate of the parameter to a station-
ary point. The intuition of DO can be understood when
compared with the underlying principle of gradient descent.

Let> J : R? — R be a differentiable cost function. The gra-
dient descent algorithm for minimizing .JJ can be written as,

0
Xpt1 = Xp —Mkafo(Xk), 9]

where x;, € RP is the parameter at step &, and ji, is a step
size. This update is performed until the gradient vanishes,
i.e., until a stationary point is reached [5].

In contrast to gradient descent where the updates are de-
rived from a cost function, DO learns the updates from the
training data. A major advantage is that no cost function is
explicitly optimized and the neighborhoods around the so-
lutions of perturbed data are taken into account when the
maps are learned.

3.2. Sequence of update maps (SUM)

DO uses an update rule that is similar to (1). Let h :
RP — R be a function that encodes a representation of the
data (e.g., h(x) extracts features from an image at positions
x). Given an initial parameter xo € RP, DO iteratively
updates xj, k = 0,1, ..., using:

Xp+1 = X — Dyppih(xy), ()

until convergence to a stationary point. The matrix®
Dy.1 € RP*S maps the feature h(xy) to an update vec-
tor. The sequence of matrices D1,k = 0,1,... learned
from training data forms the SUM.

Learning a SUM: Suppose we are given a training set
as a set of triplets {(x\", x!" h®)}¥  where x{") € RP
is the initial parameter for the i*” problem instance (e.g.,
the i*" image), xg) € RP is the ground truth parameter
(e.g., position of the object on the image), and h(*) : R? —
RS provides information of the i*" problem instance. The
goal of DO is to learn a sequence of update maps {Dy, }1
that updates x. to x\”). In order to learn Dy, we use the
following least-square regression:

N
D1 = argmin — S —x(?+ DR (x()12. 3)
b N i=1

After we learn a map Dy 1, we update each x,(j) using (2),
then proceed to learn the next map. This process is repeated
until some terminating conditions, such as until the error
does not decrease much, or until a maximum number of
iterations. To see why (3) learns stationary points, we can

see that for i with x”) ~ x\”, (3) will force Dh” (x\") to

2Bold capital letters denote a matrix X, bold lower-case letters a col-
umn vector x. All non-bold letters represent scalars. 0, € R” is the
vector of zeros. Vector x; denotes the i* column of X. Bracket subscript
[x]; denotes the i** element of x. ||x|| denotes £2-norm v'x T x.

3Here, we use linear maps for their computational efficiency, but other
non-linear regression functions can be used in a straightforward manner.
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Algorithm 1 Training a sequence of update maps (SUM)
Input: {(xéi), x{" h(®) NIK A
Output: {Dy}£ |

I: fork=0to K —1do

2 Compute Dy ; with (4).

33 fori=1toNdo 4
4 Update xgll = x](;) — Dk+1h(i)(x§€Z)).
5 end for

6: end for

Algorithm 2 Searching for a stationary point

Input: x¢,h, {Dy}E | maxlter,e

Output: x
I: Setx := X
2: fork=1to K do
3:  Update x := x — D;h(x)
4: end for
5: Setiter := K + 1.
6: while |[Dxh(x)|| > € and iter < maxIter do
7. Update x := x — Dgh(x)
8:  Update iter := iter + 1
9: end while

be close to zero, thereby inducing a stationary point around
XS). In practice, to prevent overfitting, ridge regression is
used to learn the maps:

N
1 i D) L ) A
min 3~ x =+ DhO ()P + FIDIE, @)

i=1

where A is a hyperparameter. The pseudocode for training
a SUM is shown in Alg. 1.

Solving a new problem instance: When solving a new
problem instance, we are given an unseen function h and
an initialization xy. To solve this new problem instance,
we update xx,k = 0,1,... with the obtained SUM us-
ing (2) until a stationary point is reached. However, in
practice, the number of maps is finite, say K maps. We
observed that many times the update at the K" iteration
is still large, which means the stationary point is still not
reached, and also the result parameter x5 is far from the
true solution. For the registration task, this is particularly
the problem when there is a large rotation angle between
the initialization and the solution. To overcome this prob-
lem, we keep updating x using the K *" map until the update
is small or the maximum number of iterations is reached.
This approach makes DO different from previous works in
Sec. 2.2, where the updates are only performed up to the
number of maps. Alg. 2 shows the pseudocode for updating
the parameters.

3.3. Theoretical analysis

This section provides theoretical analysis for DO.
Specifically, we show that under a weak assumption on h(*),
it is possible to learn a SUM that strictly decreases training
error in each iteration. First, we define the monotonicity at
a point condition:

Definition 1 (Monotonicity at a point) A function f : RP —
RP is monotone at a point x, € RP if it satisfies (x —
x,) f(x) > 0 for all x € RP. f is strictly monotone if
the equality holds only at x = x,.*

With the above definition, we can show the following result:

Theorem 1 (Strict decrease in training error under a
sequence of update maps (SUM)) Given a training set
{(x((f),xii),h(i)) N |, if there exists a linear map D €
RP*S such that, for each i, Dh® js strictly monotone at
ng), and if 3i : x,(j) =+ ng), then the update rule:

x), =x — D h@(x)), )

with Dy, € RP *I obtained from (3), guarantees that the
training error strictly decreases in each iteration:

ST =X < ST X2 ©
=1 =1

The proof of Thm. 1 is provided in the supplementary mate-
rial. In words, Thm. 1 says that if each instance ¢ is similar
in the sense that each Dh( is strictly monotone at ng),
then sequentially learning the optimal maps with (3) guar-
antees that training error strictly decreases in each iteration.
Note that h(¥) is not required to be differentiable or contin-
uous. The SDM theorem [24] also presents a convergence
result for a similar update rule, but it shows the convergence
of a single function under a single ideal map. It also re-
quires an additional condition called ‘Lipschitz at a point.’
This condition is necessary for bounding the norm of the
map, otherwise the update can be too large, preventing the
convergence to the solution. In contrast, Thm. 1 explains
the convergence of multiple functions under the same SUM
learned from the data, where the learned maps Dj can be
different from the ideal map D. Thm. 1 also does not re-
quire the ‘Lipschitz at a point’ condition to bound the norms
of the maps since they are adjusted based on the training
data. Not requiring this Lipschitz condition has an impor-
tant implication as it allows robust discontinuous features,
such as HOG [24], to be used as h(®. In this work, we will
also propose a discontinuous function h for point-cloud reg-
istration. Lastly, we wish to point out that Thm. 1 does not
guarantee that the error of each instance ¢ reduces in each
iteration, but guarantees the reduction in the average error.

4The strict version is equivalent to the one used in the proof in [24].
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(a) (® ()
Figure 3. Feature h for registration. (a) Model points (square) and
scene points (circle). (b-c) Weights of s that are on the ‘front’ or
‘back’ of model point m; are assigned to different indices in h.

4. DO for Point Cloud Registration

This section describes how to apply DO to register point
clouds under rigidity. For simplicity, this section discusses
the case for registering two 3D shapes with different num-
bers of points, but the idea can be simply extended to 2D
cases. Let M € R3*V™ be a matrix containing 3D coordi-
nates of one shape (‘model’) and S € R3*Vs for the second
shape (‘scene’). Our goal is to find the rotation and transla-
tion that registers S to M. Recall that the correspondence
between points in S and M is unknown.

4.1. Parametrization of the transformations

Rigid transformations are usually represented in matrix
form with nonlinear constraints. Since DO does not admit
constraints, it is inconvenient to parametrize the transforma-
tion parameter x in such matrix form. However, the matrix
representation of rigid transformation forms a Lie group,
which associates with a Lie algebra [12, 15]. In essence,
the Lie algebra is a linear vector space with the same di-
mensions as the degrees of freedom of the transformation;
for instance, R is the Lie algebra of the 3D rigid transfor-
mation. Each element in the Lie algebra is associated with
an element in the Lie group via exponential and logarithm
maps, where closed form computations exists (provided in
supplementary material). Being a linear vector space, Lie
algebra provides a convenient parametrization for x since it
requires no constraints to be enforced. Note that multiple
elements in the Lie algebra can represent the same trans-
formation in Lie group, i.e., the relation is not one-to-one.
However, the relation is one-to-one locally around the ori-
gin of the Lie algebra, which is sufficient for our task. Pre-
vious works that use Lie algebra include motion estimation
and tracking in images [2, 21].

4.2. Features for registration

The function h encodes information about the problem
to be solved, e.g., it extracts features from the input data.

3The transformation that register M to S can be found by inversing the
transformation that registers S to M.

For point cloud registration, we observe that most shapes
of interest are comprised of points that form a surface,
and good registration occurs when the surfaces of the two
shapes are aligned. To align surfaces of points, we design h
to be a histogram that indicates the weights of scene points
on the ‘front” and the ‘back’ sides of each model point (see
Fig. 3). This allows DO to learn the parameters that update
the point cloud in the direction that aligns the surfaces. Let
n, € R3 be a normal vector of the model point m, com-
puted from neighboring points; 7 (y;x) be a function that
applies rigid transformation with parameter x to vector y;
S+ = {sp : n] (T (sp;x) — m,) > 0} be the set of scene
points on the ‘front’ of m,; and S, contains the remaining
scene points. We define h : RS x R3*Ns 5 R2Nu gq:

xS =1 3 e (~ 5T ~mal) . )

stS;r

G Sy = 3 e (L T(sr) - mal* ) ®)
spES,

where z normalizes h to sum to 1, and o controls the width
of the exp function. The exp term calculates the weight
depending on the distance between the model and the scene
points. The weight due to s; is assigned to index a or a +
Ny depending on the side of m,, that s, is on. Note that h
is specific to a model M, and it returns a fixed length vector
of size 2N ;. This is necessary since h is to be multiplied to
D, which are fixed size matrices. Thus, the SUM learned
is also specific to the shape M. However, h can take the
scene shape S with an arbitrary number of points to use with
the SUM. Although we do not prove that this h complies
with the condition in Thm. 1, we show empirically in Sec. 5
that it can be effectively used for our task.

4.3. Fast computation of feature

Empirically, we found that computing h directly is slow
due to pairwise distance computations and the evaluation
of exponentials. To perform fast computation, we quantize
the space around the model shape into uniform grids, and
store the value of h evaluated at the center of each grid.
When computing features for a scene point 7T (sp; x), we
simply return the precomputed feature of the grid center that
is closest to 7 (sp; x). Note that since the grid is uniform,
finding the closest grid center can be done in O(1). To get a
sense of scale in this section, we assume the model is mean-
subtracted and normalized so that the largest dimension is
in [—1, 1]. We compute the uniform grid in the range [—2, 2]
with 81 points in each dimension. We set any elements of
the precomputed features that are smaller than 1076 to 0,
and since most of the values are zero, we store them in a
sparse matrix. We found that this approach significantly re-
duces the feature computation time by 6 to 20 times while
maintaining the same accuracy. In our experiments, the pre-
computed features require less than SOMB for each shape.
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