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Abstract

We consider the task of automated estimation of fa-

cial expression intensity. This involves estimation of mul-

tiple output variables (facial action units — AUs) that are

structurally dependent. Their structure arises from statisti-

cally induced co-occurrence patterns of AU intensity levels.

Modeling this structure is critical for improving the esti-

mation performance; however, this performance is bounded

by the quality of the input features extracted from face im-

ages. The goal of this paper is to model these structures and

estimate complex feature representations simultaneously by

combining conditional random field (CRF) encoded AU de-

pendencies with deep learning. To this end, we propose

a novel Copula CNN deep learning approach for model-

ing multivariate ordinal variables. Our model accounts for

ordinal structure in output variables and their non-linear

dependencies via copula functions modeled as cliques of a

CRF. These are jointly optimized with deep CNN feature

encoding layers using a newly introduced balanced batch

iterative training algorithm. We demonstrate the effective-

ness of our approach on the task of AU intensity estimation

on two benchmark datasets. We show that joint learning

of the deep features and the target output structure results

in significant performance gains compared to existing deep

structured models for analysis of facial expressions.

1. Introduction

Automated analysis of human facial expressions aims to

make inference about affective states, emotion expressions,

pain levels, etc., from face images of the target person. Fa-

cial expressions are typically described in terms of config-

uration and intensity of facial muscle actions using the Fa-

cial Action Coding System (FACS) [11]. FACS defines a

unique set of 30+ atomic non-overlapping facial muscle ac-

tions named Action Units (AUs) [27], with rules for scoring

their intensity on a six-point ordinal scale. Using FACS,

nearly any anatomically possible facial expression can be

described as a combination of AUs and their intensities.

Recent advances in deep neural networks (DNN), and,

in particular, convolutional models (CNNs) [14], have al-

lowed to completely remove or highly reduce the depen-

dence on physics-based models and/or other pre-processing

techniques, by enabling the “end-to-end” learning in the

pipeline directly from input images. While the effective-

ness of these models has been demonstrated on many gen-

eral vision problems [19, 40, 38], only baseline tasks such

as expression recognition and AU detection [23, 44, 17] and

AU intensity estimation [14] have been investigated. All of

them, however, follow the traditional “blind deep learning”

paradigm that relies on large labeled training datasets (e.g.,

100K+ samples in [32]). Yet, in the facial data domain ob-

taining accurate and comprehensive labels is typically pro-

hibitive. For instance, it takes more than an hour for an

expert annotator to code AUs’ intensity for 1 sec of face

video. Even then, the annotations are highly biased and

have low inter-annotator agreement. Coupled with large

variability in imaging conditions, facial morphology, dy-

namics of expressions, this has resulted in the lack of suit-

able large datasets for effective deep model learning.

To improve deep learning for facial expression analy-

sis and, in particular, intensity estimation of facial AUs,

from available (annotated) facial images, we exploit and

combine two modeling approaches: structured learning and

data-sharing (e.g., between multiple datasets). We focus on

the AU intensity estimation as the intensities are very dif-

ficult to annotate manually (high number of AUs and their

intensity levels) but are of critical importance for high level

interpretation of facial expressions. This, inevitably, entails

a scarcity in available annotated data. Furthermore, the AU

intensities are highly imbalanced due to the highest inten-

sity levels occurring rarely and varying considerably among

subjects. Finally, the dynamics of AUs also vary across con-

texts (e.g., in facial expressions of pain vs expressions of

basic emotions).
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To tackle these challenges, we first constrain the deep

CNN models by imposing their structure at different lev-

els. Specifically, we model the network output (i.e., dif-

ferent AUs) jointly as ordinal variables to account for the

monotonicity constraints in the (discrete) intensity levels of

each AU. Also, explicitly modeling the relations between

co-occurrences of AU intensity levels has been addressed

for binary outputs only (e.g., for object detection [22]), and

not for multi-level intensities. In this work, we model the

AU intensity relations by allowing them to be non-linearly

related – in contrast to present models that account only for

linear dependencies. We do so by means of copula functions

[4], known for their ability to capture highly non-linear de-

pendencies through a simple parametrization. The notion

of the copula functions has previously been explored for

modeling of structured output [42] but not in the context

of structured deep learning.

To efficiently model these two types of structure within

our deep CNN model, we borrow the modeling approach

of conditional graph models (Conditional Random Fields

– CRFs) to define (ordinal) unary and (copula) binary

cliques in the output graph (i.e., the output layer of the deep

net), which are then learned jointly with the CNN layers.

Note that several approaches to combining CNNs and CRFs

have been proposed [35, 45, 6]. However, these model a

different type of (spatial) dependencies, and, more impor-

tantly, deal only with (object) detection tasks- thus can not

be directly scaled to the multi-class ordinal classification

problems, as addressed here. Our main contributions can be

summarized as follows:

• We propose a novel structured deep CNN-CRF model

for joint learning of multiple ordinal outputs. The data

structure is seamlessly embedded in the deep CNN

via an output graph, capturing the ordinal structure in

AU intensity levels via ordinal unary cliques, and non-

linear dependencies between the network outputs via

the copula binary cliques. We show that this model

learns better the target AUs from scarce and highly im-

balanced data compared to existing deep models.

• Joint learning of the deep CNN and target dependency

structure (CRF) in our model is challenging and can

easily lead to overfitting if standard learning is applied.

To ameliorate this, we propose a novel approximate

training: balanced-batch iterative training that care-

fully feeds the model with balanced variety of subjects,

AU intensity levels and their co-occurrences during

learning. We show that this is critical for the model’s

performance and leads to efficient learning.

• To leverage annotations from multiple datasets effi-

ciently, our approach augments the learning of the

shared marginals (AUs) across multiple datasets. This,

in turn, results in models that are more robust to im-

balanced and scarce data.

We show on benchmark datasets of naturalistic facial ex-

pressions, coded in terms of AU intensity, that our approach

outperforms by a large margin related deep models applica-

ble to the target task.

2. Related Work

2.1. Facial Action Unit Intensity Estimation

Estimation of AU intensity is often posed as a multi-class

problem approached using Neural Networks [16], Adaboost

[2], SVMs [26] and belief network classifeirs [24]. Yet,

these methods are limited to a single output, thus, a sepa-

rate classifier is learned for each AU – ignoring the AU de-

pendencies. This has been addressed using the multi-output

learning approaches. For example, [29] proposed a multi-

task learning for AU detection where a metric with shared

properties among multiple AUs was learned. Similarly, [34]

proposed a MRF-tree-like model for joint intensity estima-

tion of AUs. This method performs a two step learning –

by first obtaining the intensity scores for each AU indepen-

dently, followed by the MRF-graph optimization – aimed

at capturing the AU relations. The proposed Latent-Trees

(LTs) [15] for joint AU-intensity estimation capture higher-

order dependencies among the input features and multiple

target AU intensities. More recently, [42] proposed a multi-

output Copula Ordinal Regression approach for estimation

of AU intensity, where the co-occurring AU intensity levels

are modeled using the statistical framework of copula func-

tions. However, these methods are highly dependent on the

feature pre-processing, involving (dense) facial point track-

ing and extraction of hand-crafted image features. More

importantly, these cannot deal with high-dimensional input

features. To this end, this paper investigates alternative ap-

proaches based on CNNs for the target task.

2.2. CNN Models for Facial Expression Analysis

So far, only a few works addressed the task of facial ex-

pression recognition using CNNs. [23] introduced an AU-

aware receptive field layer in a deep network, designed to

search subsets of the over-complete representation, each

of which aims at best simulating the combination of AUs.

Its output is then passed through additional layers aimed

at the expression classification, showing a large improve-

ment over the traditional hand-crafted image features such

as LBPs, SIFT and Gabors. Another example is [14], where

a CNN is jointly trained for detection and intensity estima-

tion of multiple AUs. The authors proposed a network ar-

chitecture composed of 3 convolutional and 1 max-pooling

layers. More recently, [44] introduced an intermediate re-

gion layer that is able to learn region specific weights of
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(a) Joint learning of deep facial features from

     multiple dataset 

 

(b) Dependencies are modeled separately for each

     database. Copulas are used as pairwise potentials.
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Figure 1: The proposed model pipeline. The input is a preprocessed face image, and the outputs are the model likelihood

values for each intensity level of each AU. The CNN features are jointly learned for estimation of intensities of all AUs and

the parameters of the unary potentials are shared. The pairwise potentials, however, model the AU dependencies that are

specific to the context of the database.

CNNs. The region layer returns an importance map for each

input image and the network is trained for joint AU detec-

tion. All these methods focus solely on feature extraction

while the network output remains unstructured. By contrast,

we capture the output structure by means of a CRF graph

that explicitly accounts for ordinal and non-linear relations

between multiple outputs. Note that ordinal modeling has

been attempted in the context of deep networks for the age

estimation task [30]. However, in contrast to our model, this

method does not handle multi-output multi-class problems.

2.3. Structured Deep Models

Structured models allow us to learn task-specific con-

straints and relations between output variables directly from

the data (see [31]). Recently, this has been a focus of re-

search within deep learning – an attempt to regulate the net-

work output. This is typically achieved by combining multi-

output CNNs and graph models such as CRFs and MRFs.

For instance, DeepLab-CRF [35] combines a CNN and fully

connected CRF, where the binary cliques are used to model

relations between image color and location. More recently,

[22] proposed a fully connected CRF with linear binary

cliques to capture semantic correlations between neighbor-

ing image patches, showing its effectiveness on the image

segmentation task. Other applications of structured CNNs

include image restoration [10], image super-resolution [8],

depth-estimation [9], and image-tagging [5]. However, to

the best of our knowledge, the deep structred learning has

not been attempted before in context of facial expression

analysis, and in particular, intensity estimation. Also, while

the structured models mentioned above may be applicable

to the target task, the key difference to our CCNN model is

that they fail to model ordinal structure in their CRF model -

which is critical when dealing with ordinal variables. Also,

since these methods deal with binary outputs, they assume

linear relations in the binary cliques of a CRF. This can eas-

ily be violated when dealing with multi-class outputs, as in

our case. To this end, we propose non-linear dependence

modeling using the framework of copula functions.

3. Structured Deep CRFs: Methodology

Fig.1 summarizes our deep structured learning approach.

We assume here several settings. In the first setting, given

an input face image, we first apply a pre-defined CNN net-

work layer to the (normalized) input image, in order to

generate a feature map. The learned deep features are of

a lower resolution than the original image because of the

down-sampling operations in the pooling layers. To embed

the target structure, we place a CRF graph on the (fully)

connected output layer of our network. Here, each output

(AU) of the network represents a node in this graph, and

relations between different nodes (AUs) are modeled using

pairwise connections in this CRF. To leverage information

from multiple datasets, we propose a data-augmented learn-

ing approach (the second setting). In this approach, the

CNN layers are trained using data from multiple datasets

simultaneously, resulting in enriched feature representation.

As these datasets may contain non-overlapping sets of AUs,

the model output will be a union of all these AUs, thus,

instead of having multiple “weak” models, we arrive at

a single shared model for multiple AUs. However, it is

important to mention that for each combination of AUs

(dataset-specific), we learn different dependencies in CRF

pairwise connections, as their dynamics may vary consider-

ably across the datasets. On the other hand, modeling of the

marginals/nodes in the graphs is performed jointly, by shar-

ing the model parameters of the overlapping AUs in these

datasets.

For simplicity, we start with the notation that describes a

3407



single dataset as D = {Y,X} (we extend this to multiple

datasets in Sec.3.3). Y = [y1, . . . ,yi, . . . ,yN ]T is com-

prised of N instances of multivariate outputs stored in yi =

{y1
i , . . .y

q
i , . . .y

Q
i }, whereQ is the number of AUs, and y

q
i

takes one of {1, ..., Lq} discrete intensity levels of the q-th

unary potential. Furthermore, X = [x1, . . . ,xi, . . . ,xN ]T

are input images that correspond to the combinations of la-

bels in Y.

Deep Facial Features: In our experiments, we first use

a CNN to extract the feature map fd(x,W ) from an input

image x, where the network parameters are defined by W .

We used 3 convolutional layers containing 32, 64 and 128

filters. The filter size was set to 9 × 9 pixel followed by

ReLu (Rectified Linear Unit) activation functions. We also

used max pooling layers with a filter size of 2 × 2 after

each convolutinonal layer. The last component of the CNN

is the fully connected layer (fcl) which returns 128 facial

features. These parameters have been found via a validation

procedure (Sec.4).

Structured CRFs: We assume a graph with unary and

binary cliques in our CRF[20]. Specifically, we introduce

a random field with an associated graph G = (V, C), where

nodes v ∈ V, |V | = Q, correspond to individual AUs and

cliques c ∈ C correspond to subsets of dependent AUs mod-

eled using the copula functions. The conditional likelihood

for image x having the labels y is then defined as follows:

P (y|x,Ω) =
1

Z(x)
exp

[

− E(y,x,Ω)
]

. (1)

Here, Z(x) =
∑

y∗ exp
[

− E(y∗,x,Ω)
]

is the partition

function and the energy function is defined by a set of unary

and pairwise potential functions.

E(y,x,Ω) =
∑

q∈V

U(yq
, fd, φ

q) +
∑

(r,s)∈E

V (yr
,y

s
, fd, θ

r,s).

(2)

where U is the unary potential function and V the pair-

wise potential function. The parameters of U and V are

φ and θ, respectively. The input features are computed us-

ing fd(x,W ) where x is the input andW the weights of the

network.

3.1. Unary potentials

To impose increasing monotonicity constraints on the

AU intensity levels, we formulate the unary potentials us-

ing the notion of ordinal regression [1]. Let l ∈ {1, . . . , L}
be the ordinal label for the intensity level of the q-th AU.

We employ the standard threshold model:

yq∗ = βqfd(x,W )
T
+ εq,yq = l iff ψ

q
l−1 < yq∗ ≤ ψ

q
l .

(3)

where βq is the ordinal projection vector, ψ
q
l is the lower

bound threshold for count level l (ψ
q
0 = −∞ < ψ

q
1 <

ψ
q
2... < ψ

q
L−1 < ψ

q
L = +∞). By assuming that the er-

ror (noise) terms εq are Gaussian with zero mean and vari-

ance (σq)2, their normal cumulative density function (cdf)

is F (zq) = Pr(εq <zq) =
∫ zq

−∞
N (ξ; 0, 1)dξ, and the

probability of AU q having intensity l is defined as:

Pr(yq = l|fd(x,W ), φq) = F (zql )− F (z
q
l−1). (4)

where z
q
k =

(ψq

k
−βqfd(x,W )T )

σq . The model parameters are

stored in φq = {ψq1, ψ
q
2, . . . , ψ

q
L−1, β

q, σq}. Finally, the

unary node potentials in our structured deep CRF are de-

fined as:

U(yq,x,W, φq) = Pr(yq = l|fd(x,W ), φq). (5)

Note that these ordinal potentials embed the label struc-

ture in our graph – this is in contrast to existing structured

deep CRFs [35, 10, 8, 5], which typically use the soft-

max/sigmoid function.

3.2. Pairwise potentials

The structured deep CRFs reviewed in Sec.3 focus on

modeling of binary co-occurrence patterns, and the use of

linear binary potentials. Yet, in case of multiple intensity

levels, various and highly non-linear co-occurrence patterns

are expected (e.g., for two AUs, there are 6×6 possible con-

figurations). To this end, we propose a more powerfull mod-

eling of these dependencies using the copula functions[36].

The main idea of copulas is closely related to that of his-

togram equalization: for a random variable yq with (con-

tinuous) cdf F , the random variable uq := F (yq)1 is uni-

formly distributed on the interval [0, 1]. Using this prop-

erty, the marginals can be separated from the dependency

structure in a multivariate distribution [3]. In the context of

structured learning, the copula functions allow us (i) to eas-

ily model non-linear dependencies among the outputs, and

(ii) do so independently of their marginal models. The latter

is particularly important when designing efficient learning

algorithms for deep learning (see Sec.3.3).

Formally, a copula C(u1, u2, . . . uQ): [0, 1]
Q → [0, 1]

is a multivariate distribution function on the unit cube with

uniform marginals [43]. When the random variables are dis-

crete, as is the case with the AU intensity levels, we can

construct the joint distribution for discrete variables as:

Pr(y1 = l1, . . . , yQ = lQ) =

Pr(ψl1−1 < y1∗ < ψl1 , . . . , ψlQ−1 < y
Q
∗ < ψlQ)

=
1
∑

c1=0
. . .

1
∑

cQ=0
(−1)c1+...+cQF (z1

l1−c1
, ..., z

Q

lQ−cQ
)

=
1
∑

c1=0
. . .

1
∑

cQ=0
(−1)c1+...+cQCθ(u

1
l1−c1

, ..., u
Q

lQ−cQ
).

(6)

1Sometimes we omit dependence on fd(x|W ) for notational simplic-

ity.
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where u
q
lq−cq

= F (zqlq−cq ), cq ∈ {0, 1}, is defined in

Sec.3.1, and θ are the copula parameters, as defined be-

low. It is important to note that the the joint density model

induced by the copula is conditioned on the deep features

fd(x|W ), i.e., F (y1, . . . , yQ) ← F (y1, . . . , yQ|fd(x|W )).
This, in contrast to the models in [34, 21] that rely solely on

the AU labels, allows the deep features to directly influence

the dependence structure of AUs, and the other way round,

during learning. Under this formulation, for the binary case,

the model reduces to:

Pr(yr = lr, ys = ls) = F (zrlr , z
s
ls
)

+F (zrlr−1, z
s
ls−1)− F (z

r
lr−1, z

s
ls
)− F (zrlr , z

s
ls−1).

(7)

We use these joint probabilities to define binary cliques in

our CRF model as:

V (yr,ys,x,W, θr,s) = Pr(y1 = l1, y2 = l2|fd(x|W ), θr,s).
(8)

One specific benefit of copulas is that they can model

different forms of (non-linear) dependency using simple

parametric models for C(·). We limit our consideration

to the commonly used Frank copula [12] from the class of

Archimedean copulas, defined as:

Cθ(u
r
, u

s) = −

1

θ
ln

(

1 +
(exp (−θur)− 1) (exp (−θus)− 1)

exp (−θ)− 1

)

.

(9)

The dependence parameter θ ∈ (−∞,+∞)\{0}, and the

perfect positive/negative dependence is obtained if θ →
±∞. When θ → 0, we recover the ordinal model in Eq.4.

3.3. Learning and Inference

Optimizing the network parameters can be done a in

naive way by minimizing the (regularized) negative log-

likelihood of Eq. (1). However, this is prohibitively expen-

sive as it involves computation of the normalization con-

stant Z, which, in case of 10 AUs, would involve 210 evalu-

ations of the copula functions. We mitigate this by resorting

to the approximate methods based on piece-wise training of

CRFs [22, 39], that allows us to define a composite likeli-

hood function (instead of fully normalized pdf in Eq.(1)):

P (Y|X) =
∏

q∈V

P (yq|x)
∏

r,s∈E

P (yr,ys|x). (10)

We include l2 regularization on the Unary potential. Fi-

nally, the overall cost is then given by:

min
Ω
λ||φ||22−

N
∑

i





∑

q∈V

Pq(y
q
i |xi) +

∑

r,s∈E

Prs(y
r
i ,y

s
i |xi)



 .

(11)

Where λ defines the strength of the regularized. How-

ever, as we show empirically, minimizing the negative log-

likelihood of Eq.(11) using all training data leads easily to

W43…W2 W4 W6 W17 W20 W26W1 W12
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2
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Figure 2: Three step parameter learning of the CCNN

model. The input to the network is a facial image and the

global negative log likelihood is optimized in an iteratively

manner. First, the wights of the CNN are optimized in step 1

(S1). In the second step (S2), we optimize the parameter of

the unary potentials and finally, in step 3 (S3), we optimize

the parameter of the pairwise potentials. The frank cop-

ula density function is shown for a strongly correlated pair

of AUs (1&2), for a weakly correlated pair of AUs (6&12)

and for a negatively correlated pair (21&20).

model overfitting and, thus, poor performance. This is also

due to the inherent hierarchical structure of our model (deep

layers, CRF marginals and edge dependencies).

Iterative Balanced Batch Learning. To tackle the chal-

lenges mentioned above, we introduce an iterative balanced

batch (IBB) learning approach to deal with the data imbal-

ance during optimization of our deep structured CRF. This

imbalance is highly pronounced in the number of images

per training subject, average number of examples per in-

tensity level, as well as number of different label combina-

tions, adversely affecting the learning of the CNN weights

(W ) and the unary (φ) and pairwise (θ) potential param-

eters, respectively. The main idea behind our IBB is to

update each set of parameters with batches that are most

representative of the target structure and, more importantly,

balanced for that structure. To this end, when optimizing

CNN weights, we generate batches (bbn) that are balanced

with respect to subjects in the dataset. This ensures that the

learned network is not biased toward a specific subject. We

adopt the same approach when creating batches for learn-

ing the marginals (balanced AU levels – bbm) and copula

parameters (balanced AU co-occurrences – bbe). The learn-

ing algorithm for our network is shown in Alg.1. We opti-

mize different areas of the network in each step of the al-
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gorithm. We also compute the batches in each iteration of

the algorithm by sampling from the target distribution func-

tion. We apply the three step optimization iteratively, where

we update the parameters of one network region and fix the

remaining parameters. All updates are made with respect

to the global objective defined in Eq.(12) and we tune the

validation parameter λr separately for each AU. Finally, we

used Stochastic GradientDescent (SGD) with a batch size

of 128, learning rate of 0.001 and momentum of 0.9.

Input: Training data: D = {xi,yi}
N
i=1

Model parameters: Ω = {W,φ, θ, U, V }

while Eq.11 not converged do

Step 1: train W with balanced batches:

W ←
argmax

W

∑N(bbn)
i P (yi|xi,W ), i ∈ bbn

Step 2: train φ with balanced batches:

∀q ∈ U : φq ←

argmax
φq

∑N(bbm)
i Pr(yq

i |xi, φ
q) + λq||φq||22

, i ∈ bbm
Step 3: train θ with balanced batches:

∀(rs) ∈ V : θrs ←

argmax
θrs

∑N(bbe)
i Pr(yr

i ,y
s
i |xi, θ

rs) , i ∈ bbe

end

Output: Model parameters: Ωopt = {W,φ, θ}

Algorithm 1: Structured CNN Learning with balanced

batches

Augmented Learning from Multiple Datasets. As dis-

cussed in Sec.1, leveraging data from multiple datasets ef-

ficiently is expected to further improve the AU estimation

performance. To achieve this, we assume we are given K

datasets D ∈ {D1, D2, . . . , DK}. We then generalize the

objective function of our deep structured CRFs:

P (Y|X) = PD1
· PD2

· · · · · PDK

=
∏

u∈D

∏

q∈Vu

P (yq|x)

×
∏

h∈D

∏

r,s∈Eh

Ph(y
r,ys|x).

(12)

The key property of these sets is that they may have

different AUs annotated, different dependency distributions

but also contain overlapping AUs. To handle this in a princi-

pled manner, we account for the shared marginals P (yq|x)
– the common AUs, while preserving the context-specific

AU dependencies – Pv(y
r,ys|x) – data-specific joints.

This joint modeling is expected to result in (i) improved

feature representations, and (ii) more robust learning of the

(shared) marginals. To avoid bias due to the dataset or-

der during optimization, we combined the balanced batches

from all datasets, in the same manner as in the proposed

IBB learning, resulting in bbc ∈ {bb
1
c , bb

2
c , , ..., bb

K
c }, where

c ∈ {n,m, e}.

3.3.1 Joint Inference

The resulting CRF graph is an undrected graphical model

that can contain loops and its potentials are not submodu-

lar. The inference of test data in this model is in general

an np-hard problem due to the need to evaluate all possi-

ble label configurations. Because of this, we resort to ap-

proximate decoders based on the message-passing and dual

decomposition algorithms. Specifically, we employed the

AD3 decomposition algorithm [7].

4. Experiments

Datasets. We evaluate the proposed model on two ma-

jor benchmark datasets – DISFA [28] and on the subset

of the BinghamtonPittsburgh 4D (FERA2015) [41]. These

databases include acted and spontaneous expressions and

vary in context eliciting facial expressions. The DISFA

dataset contains video recordings of 27 subjects while

watching YouTube videos. We performed the experiments

in a subject independent setting (dividing data in training

and test partion. For DISFA, we used 18 subjects for train-

ing and 9 for testing. In FERA2015 we used the official

Training/Development splits. We also include the UNBC-

McMaster Shoulder-Pain dataset for learning of the deep

models[25]2. In these datasets, each frame is coded in terms

of the AU intensity on a six-point ordinal scale. We use the

Intra-class Correlation ICC(3,1), which is commonly used

in behavioral sciences to measure agreement between anno-

tators (in our case, the AU intensity levels). We also report

the Mean Absolute Error (MAE), commonly used for ordi-

nal prediction tasks [18, 33].

Pre-Processing. To do the basic image normalization,

we used the openCV eye detector [13] to extract the loca-

tions of the eyes from facial images in each dataset. We

then registered the 2 facial points to a reference frame (av-

erage points in each dataset) using an affine transform. We

then normalized each image using per-image contrast nor-

malization, which increases the robustness against illumi-

nation changes. Lastly, we cropped a random bounding box

to 85% of the original image size for data augmentation and

robustness against displacements (as usually done in deep

models).

Models: Baselines. We fist conducted experiments

using standard CNN architectures employed in previous

works ([14, 17]). The CNN [14] model is a standard CNN

2We use this dataset only to improve learning of our deep model; how-

ever, the evaluation results are in the supplementary materials.
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(a) DISFA (b) FERA (c) PAIN

Figure 3: Different types of dependences of AU intensity

levels in the used datasets. The thickness of the edges cor-

responds to the magnitude of the θ parameter. Connections

with a low association (θ > 0.05) were removed.

with fully connected layer and softmax layer for multi-

output classification. The OCNN is the same network but

with an ordinal classification layer. This is a special case of

the proposed CCNN where the pairwise potentials are ig-

nored. For both methods, the weights are jointly learned and

the predictions are computed independently.We conducted

our experiments on a relative shallow CNN (see Fig. 2).

We used 3 CNN-Layer for all our experiments but we per-

formed cross validation to find the optimal filter size and

number of channels per layer (see supplementary). Finally,

the network parameters were optimized until the cost con-

verged (see Fig.4).

Models: CNNs. The R-CNN [44] was introduced for

AU detection tasks. It combines a basic CNN with a cus-

tomized conditional layer that has region specific weights.

This feature makes the model flexible and robust by allow-

ing the weights to be different for background and face re-

gions, for example. The OR-CNN [30] is another ordinal

CNN. This network was introduced for the task of age es-

timation from images but can be readily applied to AU in-

tensity estimation. VGG16 [37] is a widely used very deep

CNN for object detection. In order to adapt it for out task,

we used the pre-trained model and fine-tuned the last 3 lay-

ers for the task of AU intensity estimation. SCNN [22] is a

structured CNN introduced for object detection. The linear

pairwise potentials build a fully connected CRF, which is

trained using piecewise [39] optimization. Since this model

only performs binary detection, we extended it to multi-

class classification by replacing its unary potentials with the
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Figure 4: The plots show the learning curves of the CCNN

model on the DISFA dataset when balanced batches is ac-

tive and inactive.

ordinal classifier. Finally, the CCNN is the proposed copula

conditional neural network where the pairwise potentials

are defined by the copula function. The proposed model

with the stepwise balanced batch optimization is named

CCNN-IT, and with the data augmentation CCNN-IT (*).

Likewise, the compared model is SCNN-IT.

4.1. Results

Ordinal vs. Softmax Unary Potentials. Table 1 shows

the comparative results for the different models evaluated.

On average, ordinal models largely outperform the output

softmax models including related CNNs, across both mea-

sures on most of the AUs. This is particularly evident in

the ICC scores, where the average difference is 7% on the

DISFA database, and 3% on the FERA2015. We attribute

this to modeling not just the different classes of intensity

but also their ordinal relationship. Independent vs. Struc-

tured CNNs. Both, OCNN and R-CNN achieve an ICC

of 29% on the DISFA dataset, which is the highest perfor-

mance among the independent models. The CCNN model

is equivalent to OCNN but with additional copula output

for structured prediction. This results in average improve-

ment of 4%. This is in particular visible on AU1&2, which

are strongly correlated (see dependencies in Fig. 3). This

correlation is modeled through the copula functions with

high associations parameter. The comparison with Re-

lated Deep Models. OR-CNN [30] performs poorly in our

experiments. This model learns one binary classifier for

each AU intensity level, resulting in a large number of pa-

rameters and overfitting. We achieved better results with the

standard VGG16 [37] network. However, also this model

does not reach comparative results with our proposed model

as it does not account for ordinal intensity levels. The same

applies for the R-CNN [44]. While both models have a sig-

nificant improvement over the standard CNN [14], they fail

to accurately predict ordinal intensities.

Effect of batch balancing. Next, we observe that the

average performance of the CCNN-IT model is another 3%
higher than that achieved by the CCNN model (directly op-

3411



Table 1: The intensity estimation results on the DISFA & FERA2015 datasets for different AUs. The best results are shown

in bold and in brackets. The second best results are highlighted bold. We also highlight the methods where data augmentation

with multiple datasets was used with a asterix.

FERA2015 DISFA

AU: 6 10 12 14 17 avr. 1 2 4 5 6 9 12 15 17 20 25 26 avr.

IC
C

(3
,1

)

CCNN-IT (*) [.75] .69 [.86] [.40] [.45] [.63] .18 [.15] [.61] .07 [.65] [.55] [.82] [.44] .37 [.28] [.77] [.54] [.45]

SCNN [22] (*) .75 .67 [.86] .39 .42 .62 .16 .12 .43 .06 .62 .54 [.82] .43 .37 [.28] [.77] .53 .43

CCNN-IT [.75] .69 [.86] [.40] [.45] [.63] [.20] .12 .46 [.08] .48 .44 .73 .29 [.45] .21 .60 .46 .38

OCNN-IT [.75] .68 [.86] .40 .44 .62 [.20] .07 .46 .08 .48 .41 .73 .29 .41 .21 .60 .44 .36

CCNN .74 .67 .85 [.40] [.45] .62 .14 .12 .37 [.08] .46 .44 .64 .25 .37 .09 .58 .31 .32

OCNN .73 .63 .81 [.40] .43 .60 .04 .05 .41 .01 .35 .19 .72 .23 [.45] .06 .53 .44 .29

CNN [14] .67 [.69] .77 .35 .33 .56 .05 .04 .36 .02 .44 .27 .67 .25 .08 .03 .46 .22 .23

R-CNN [44] .62 .64 .74 .31 .32 .52 .05 .06 .32 .02 .36 .39 .77 .29 .19 .04 .65 .35 .29

VGG16 [37] .63 .61 .73 .25 .31 .51 .19 .14 .19 .02 .39 .33 .68 .14 .27 .03 .59 .38 .28

OR-CNN [30] .60 .61 .59 .25 .31 .47 .03 .07 .01 .00 .29 .08 .67 .13 .27 .00 .59 .33 .20

M
A

E

CCNN-IT (*) [1.14] 1.30 .99 1.65 [1.08] [1.23] .87 .63 [.86] .26 .73 .57 [.55] [.38] .57 .45 [.81] [.64] [.61]

SCNN [22] (*) 1.17 1.30 [.97] 1.60 1.18 1.25 .93 .84 1.05 .17 [.71] .52 .59 .39 .51 .45 [.81] .71 .64

CCNN-IT 1.17 1.43 [.97] 1.65 [1.08] 1.26 .73 .72 1.03 .21 .72 [.51] .72 .43 .50 [.44] 1.16 .79 .66

OCNN-IT 1.15 1.28 1.05 1.62 1.19 1.26 .73 .55 1.03 .34 .72 .60 .72 .43 [.47] .45 1.16 .70 .66

CCNN 1.17 1.43 [.97] 1.65 [1.08] 1.26 .69 .72 1.19 .21 .72 [.51] .74 .44 .48 .47 1.28 .73 .68

OCNN 1.16 1.32 1.11 1.65 1.15 1.28 1.07 .82 1.16 .19 .87 .89 .72 .56 .50 .48 1.47 .69 .79

CNN [14] 1.30 1.35 1.28 1.80 1.14 1.37 1.62 1.09 1.44 .23 .86 .71 .83 .50 .63 .47 1.71 .84 .91

R-CNN [44] 1.37 [1.25] 1.13 [1.59] 1.16 1.30 .85 .70 1.07 .20 .75 .58 .59 .47 .57 .48 1.36 .77 .70

VGG16 [37] 1.24 1.39 1.14 1.80 1.19 1.35 [.68] [.52] 1.31 [.16] .76 .59 .67 .43 .59 .47 1.33 .76 .69

OR-CNN [30] 1.37 1.39 1.37 1.80 1.19 1.42 1.05 .87 1.47 .17 .79 .70 .69 .44 .59 .50 1.33 .86 .79

timized without the data balancing). The IBB learning that

we applied in CCNN-IT yields a better performance on the

DISFA dataset. Note that the highest improvement is made

on DISFA and, in particular, on those AUs that occur in-

frequent (AU 1, 5, 17 and 20). As expected, we could not

make this observation on the FERA database, since the la-

bels there are relatively balanced.

Data Augmentation. Finally, we analyse the contribu-

tion of additional databases for training. To study this for

FERA, we augment the training data with data from DISFA

and PAIN. Similarly, for DISFA we augment the training

data with FERA and PAIN. Results obtained in this set-

ting are indicated with (*) in Tab. 1. With augmentation,

the ICC for CCNN-IT increases by 7% on DISFA. The

largest improvement is made on AU6 and AU12, as these

AUs are shared among all datasets. There is also a sig-

nificant improvement on some AUs shared with only one

other database (e.g., AU 4, 9, 20, and 25 that are part of

PAIN data but not FERA). Lastly, we noticed a strong in-

crease of the ICC for AU15, present only in DISFA, and

a decrease on AU17 common to DISFA and FERA. This

behavior is somewhat counter-intuitive but could poten-

tially be explained by different contexts of AU17 in the two

datasets (dependent in DISFA, independent in FERA). Im-

provements in AU15 may be the result of refined but shared

feature representation. To compare with SCNN [22], we

use our implementation in which we minimize the same ob-

jective as in the CCNN-IT model but with linear pairwise

potentials instead of the copula functions. By also applying

our definition of the loss for multiple datasets, we make it

possible to jointly train this model on multiple datasets and

compare it with the CCNN-IT. We can see that, using cop-

ulas gives an improvement especially on the strongly cor-

related AU pairs (AU1-AU2 and AU6-AU12). This is ex-

pected, since the purpose of the Frank copula is to model

pairwise correlations. On average, we obtain the highest

performance with the CCNN-IT model where an ICC of

0.45% was reached.

5. Conclusion

We proposed a novel Copula CNN deep learning ap-

proach for joint estimation of facial intensity for mul-

tiple, dependent AUs. Specifically, we show that the

“end-to-end” pipeline, coupled with key components for

robust dependency modeling (copulas), balanced training

(balanced-batch iterative), and data augmentation (across

cross-context datasets) improves the performance achieved

by existing structured deep models and models for estima-

tion of facial expression intensity that fail to model non-

linear dependencies in the output and also ordinal relations

in the intensity levels.
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