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Abstract

Recent advanced deep convolutional networks (CNNs)

achieved great successes in many computer vision tasks,

because of their compelling learning complexity and the p-

resences of large-scale labeled data. However, as obtaining

per-pixel annotations is expensive, performances of CNNs

in semantic image segmentation are not fully exploited.

This work significantly increases segmentation accuracy of

CNNs by learning from an Image Descriptions in the Wild

(IDW) dataset. Unlike previous image captioning datasets,

where captions were manually and densely annotated,

images and their descriptions in IDW are automatically

downloaded from Internet without any manual cleaning and

refinement. An IDW-CNN is proposed to jointly train IDW

and existing image segmentation dataset such as Pascal

VOC 2012 (VOC). It has two appealing properties. First,

knowledge from different datasets can be fully explored

and transferred from each other to improve performance.

Second, segmentation accuracy in VOC can be constantly

increased when selecting more data from IDW. Extensive

experiments demonstrate the effectiveness and scalability

of IDW-CNN, which outperforms existing best-performing

system by 12% on VOC12 test set.

1. Introduction

Performances of convolutional networks (CNNs) can be

improved by increasing depths, number of parameters, and

number of labeled training data. They achieved state-of-the-

art results and even surpassed the performances of human

experts in image recognition [6, 7, 30] and object detection

[26, 21]. Nevertheless, since training data with per-pixel

annotations are limited and difficult to obtain in semantic

image segmentation, performance gain of CNNs by merely

increasing its modeling complexity becomes marginal.

To address data limitation in image segmentation, this

work proposes to jointly train CNN from two sources of

∗The first two authors share first-authorship.
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Figure 1: (a) visualizes an image in IDW and its raw descrip-

tion, searched by using ‘sheep’ and ‘human’ as keywords. We

observe that the description contains unimportant details for object

segmentation (e.g. ‘long blonde hair wearing hat happy time’),

missing important details (e.g. number of people and sheep), and

grammatical errors. As a side-by-side comparison, (b) shows an

image and its per-pixel annotation of VOC12.

data. One is a small set of images with per-pixel annotation-

s, which are difficult to obtain such as VOC12. An image

of ‘human’ and ‘sheep’ in VOC12 and its annotation are

given in Fig.1 (b). The other one is a large set of images

automatically downloaded from the Internet, using the

categories of VOC12 as keywords. Each image is equipped

with an Image Description in the Wild but without per-pixel

annotation. This image set is abbreviated as IDW. Unlike

existing image captioning dataset such as MS COCO [13],

where captions are manually generated by satisfying some

annotation rules, image descriptions in IDW are directly

copied from the web pages, including news, blog, forum,

and photography agency. Fig.1 (a) provides an example

with ‘human’ and ‘sheep’ as keywords, where shows that

raw description of IDW may contain unimportant details,

missing details, and grammatical errors.

With VOC12 and IDW, a novel CNN structure namely
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IDW-CNN and its training algorithm are carefully devised,

where knowledge of these two datasets can be transferred

from each other. Specifically, useful object interactions

or relationships can be extracted from IDW, such as ‘girl

holding sheep’ and ‘girl playing with sheep’, which are

not encoded in the per-pixel labelmaps of VOC12. These

object interactions can be transferred to VOC12 to improve

segmentation accuracy. In addition, labelmaps in VOC12

that capture precise object locations and boundaries are

able to improve the extractions of object interactions in

IDW. These two purposes are formulated cooperatively in

IDW-CNN and learned end-to-end. Extensive studies show

that after training, accuracies of image segmentation and

prediction of object interactions in both VOC12 and IDW

are significantly increased. A more appealing property is

that segmentation accuracy of VOC12 can be constantly

improved, when adding more data to IDW. For instance,

adopting 10 thousand images in IDW increases the accuracy

of a state-of-the-art system, DeepLab-v2 [3], by 7.6% in

VOC12 test set (from 74.2% to 81.8%). Adding another

10 thousand samples brings extra 3.37% improvement.

Another 1.1% improvement can be achieved when intro-

ducing 20 thousand more samples. In general, IDW-CNN

increases accuracy of DeepLab-v2 by 12% without any

post-processing such as MRF/CRF smoothing [3].

This work has three main contributions. (1) This

is the first attempt to show that image descriptions in

the wild without manually cleaning and refinement are

able to improve image segmentation. An IDW dataset

containing more than 40 thousand images are constructed

to demonstrate this result. (2) IDW-CNN is proposed to

jointly learn from VOC12 and IDW. Knowledge from both

datasets are fully explored and transferred from each other.

Performances of segmentation and object interaction pre-

diction in both datasets can be significantly improved. (3)

IDW-CNN is capable of constantly improving segmentation

accuracy, when more data are appended to IDW, showing its

scalability and potential in large-scale applications.

1.1. Related Work

Supervised Image Segmentation CNNs achieved out-

standing performances in semantic image segmentation.

For instance, Long et al. [16] transformed fully-connected

layers of CNN into fully convolutional layers (FCN),

making accurate per-pixel classification possible by the

contemporary CNN architectures that were pre-trained on

ImageNet [27]. Since then, the combination of FCN and

MRF/CRF attracts a lot of attention, and achieved great

successes in semantic image segmentation [15, 2, 28, 34].

However, all works above use per-pixel annotations as full

supervision, which are limited and hard to obtain.

Semi- and Weakly-supervised Image Segmentation

Previous works [14, 24, 25, 23] tried to solve semantic

Table 1: Comparisons of semi- and weakly-supervised image

segmentation methods. Different approaches utilize different

supervision as indicated by ‘
√

’. Different from the other methods

that employed manually annotated labels, IDW-CNN learns from

images and descriptions without any human intervention.

Pixel Img Tag BBox Scribble Language

WSSL(weak)[22]
√

WSSL(semi)[22]
√ √ √

MIL-FCN[24]
√

MIL-sppxl[25]
√

CCNN[23]
√

BoxSup[4]
√ √

ScribbleSup[10]
√

NLE [8]
√

DeepStruct[12]
√ √

IDW-CNN
√ √

image segmentation using only weak labels (e.g. image-

level annotation), which are easier to attain but the problem

is ill-posed and more challenging. Recent works [22, 4, 10,

8, 12] address this trade-off by combining both the weak

and strong labels to reduce labeling efforts while improve

segmentation performance. Supervision of these works

are compared in Table 1, including per-pixel annotation,

image-level annotation, bounding boxes (bbox), scribble,

and language. Typically, the methods leverage both the

pixel-level labels and weak labels (e.g. image and bbox)

outperform the others.

For example, WSSL(semi) [22] improves accuracy of

VOC12 val set from 62.5% to 65.1% by leveraging addi-

tional manually labeled bounding boxes and image-level

tags. BoxSup [4] also benefits from bounding box anno-

tations. NLE [8] and DeepStruct [12] employed language

models in image segmentation, but addressed a task dif-

ferent from most of previous works, by parsing an image

into structured regions according to a language expression.

The key disparity between the above approaches and IDW-

CNN is that previous works leveraged manual annotations

but IDW-CNN does not. Extensive experiments show that

IDW-CNN outperforms existing methods by a significantly

large margin.

2. Learning Image Descriptions

Data Collection We construct an image description

in the wild (IDW) dataset to improve the segmentation

accuracy in VOC12. IDW is built with two stages, which

can be easily generalized to different benchmarks other

than VOC12. In the first stage, we prepare 21 prepositions

and verbs that are frequently presented, such as ‘hold’,

‘play with’, ‘hug’, ‘ride’, and ‘stand near’, and 20 object

categories from VOC12 such as ‘person’, ‘cow’, ‘bike’,

‘sheep’, and ‘table’. Their combinations in terms of

‘subject + verb/prep. + object’ leads to 20×21×20 = 8400
different phrases, such as ‘person ride bike’, ’person sit near
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Figure 2: The statistics of IDW dataset.

bike’, and ‘person stand near bike’. However, the semantic

meanings of most of these phrases are rarely presented in

practice, for example ‘cow hug sheep’. After removing

meaningless phrases, we collect hundreds of meaningful

phrases. In the second stage, these phrases are used as

key words to search images and their surrounding texts

from the Internet1. We further discard the invalid phrases,

such as ‘person ride cow’, if the number of their retrieved

images is smaller than 150 to prevent rare cases or outliers,

which may lead to over-fitting in training. As a result, we

have 59 valid phrases. Finally, IDW has 41, 421 images

and descriptions. Fig.2 (a) plots the number of images in

IDW with respect to each object category in VOC12. This

histogram reveals the image distribution of these objects in

real world without any manually cleaning and refinement.

Image Description Representation Each image de-

scription is automatically turned into a parse tree, where we

select useful objects (e.g. nouns) and actions (e.g. verbs)

as supervisions during training. Each configuration of two

objects and the action between them can be considered as an

object interaction, which is valuable information for image

segmentation but it is not presented in the labelmaps of

VOC12.

Here, we use the Stanford Parser [29] to parse image

descriptions and produce constituency trees, which are two-

way trees with each word in a sentence as a leaf node, as

shown in Fig.3(a). Constituency trees from the Stanford

Parser still contains irrelevant words that do neither describe

object categories nor interactions (e.g. adjectives). There-

fore, we need to convert constituency trees into semantic

trees, which only contains objects and their interactions.

The conversion process generally involves three steps.

Given a constituency tree in (a), we first filter the leaf nodes

by their part-of-speech, preserving only nouns as object

candidates, and verbs and prepositions as action candidates.

Second, nouns are converted to objects. We use the lexical

relation data in WordNet [19] to unify the synonyms. Those

nouns that do not belong to the 20 object categories will

be removed from the tree. Third, verbs should also be

recognized and refined. We map the verbs to the defined 21
actions using word2vec [18]. When the mapping similarity

1Images and descriptions are downloaded from photography agency

such as www.dreamstime.com.
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Figure 3: An illustration of image description representation. (a)

is the constituency tree generated by language parser. (b) is the

constituency tree after POS tag filtering. (c) presents the object

interactions.

is smaller than a threshold, the verbs will be categorized into

an additional action class, i.e. ‘unknown’. Step 1 to 3 are

shown in Fig.3. Finally, we extract the object interactions

from the semantic tree through the nodes. An example of

description parsing is illustrated in (b), where the principal

component message ‘girl plays with lamb, holding lamb’

is first filtered out of the description, and then is further

transferred into ‘person plays with sheep, holding sheep’.

After parsing all image descriptions in IDW, we obtain

62, 100 object interactions in total. Fig.2 (b) summaries

the number of images with respect to the number of

interactions, showing that each image has 1.5 interactions

on average. Different from existing datasets such as Visual

Genome [9] that each image is manually and densely

labeled with 17.68 relationships per image, the construction

of IDW has no manual intervention and has extremely low

expense compared to previous datasets. By partitioning

IDW into different subsets, we show that IDW-CNN is able

to progressively improve accuracy of VOC12 when training

with more subsets of IDW.

To evaluate the generalization capacity of IDW-CNN,

three test sets are constructed. First, we randomly choose

1, 440 images from IDW as a test set of object inter-

action prediction, denoted as int-IDW. These images are

not utilized in training. Second, we annotate the per-

pixel labelmap for each image in int-IDW, resulting in a

segmentation test set, denoted as seg-IDW. Fig.2 (c) plots

the number of images with respect to the number of objects,

where seg-IDW is compared to the validation set of VOC12,

indicating that seg-IDW is more challenging than VOC12

in terms of the object diversity in each image. Third,

another interesting evaluation is a zero-shot test set denoted

as zero-IDW, which includes 1, 000 images of unseen object

interactions. For instance, the image of ‘person ride cow’
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is a rare case (e.g. in bullfight) and is not appeared in

training. This evaluates that IDW-CNN is able to generalize

to unseen object interactions.

2.1. Network Overview

Fig.4 (a) illustrates the diagram of IDW-CNN, which has

three important parts, including a ResNet-101 network for

feature extraction, a network stream for image segmentation

(denoted as ‘Seg-stream’), and another stream for object

interaction (denoted as ‘Int-stream’). They are discussed

as below.

Feature Extraction IDW-CNN employs DeepLab-v2

[3] as a building block for feature extraction. It is a

recent advanced image segmentation system, incorporat-

ing ResNet-101, multi-scale fusion, and CRF smoothing

into a unified framework. To identify the usefulness of

IDW dataset, IDW-CNN only inherits ResNet-101 from

DeepLab-v2, yet removing the other components such as

multi-scale fusion and CRF in DeepLab-v2. Given an

image I , ResNet-101 produces features of 2048 channels.

The size of each channel is 45× 45.

Seg-stream As shown in Fig.4 (a), the above features are

employed by a convolutional layer to predict segmentation

labelmap (denoted as Ĩs), the size of which is 21×45×45.

Each channel indicates the possibility of an object category

presented in image I . The final prediction Is is produced

by refining Ĩs using object interaction. The component of

refinement will be introduced below.

Int-stream This stream has three stages. In the first

stage, we reduce the number of feature channels from

2048 to 512 by a convolutional layer, denoted as h, so

as to decrease computations for the subsequent stages.

Then, we produce a set of 21 object feature maps, de-

noted as {hm

i
} where the subscript i ∈ C and C =

{person, cow, ..., bkg}21. Each hm

i
is obtained by preform-

ing the elementwise product (“⊗”) between h and each

channel of Ĩs, which represents a mask. Therefore, each

hm

i
∈ R

512×45×45 represents the masked features of the i-

th object class. Examples of hm

person and hm

bike in an image

are given in Fig. 5 (a) and (b).

In the second stage, each hm

i
is utilized as input to train

a corresponding object subnet, which outputs a probability

characterizing whether object i is presented in image I .

Thus, as shown in orange in Fig.4 (a), we have 21 object

subnets, which have the same network structures but their

parameters are not shared and the parameters in the fully-

connected layers are shared. (b) visualizes this structure in

orange, where hm

i
is forwarded to one convolution, one max

pooling, and one full-connection layer. Overall, the second

stage determines which objects are appeared in I .

In the third stage, we train 22 action subnets2 as outlined

2These represent 21 action items and another one subnet indicates no

action is performed between objects.

(a)                               (b)                                (c)

Figure 5: Combined feature of person and bicycle. The features

of person h
m

person and bicycle h
m

bike are visualized in (a) and (b),

respectively. Then the combined feature h
m

person+bike are the

element-wise summation of hm

person and h
m

bike, visualized in (c).

in blue, each of which predicts the action between two

appeared objects. Similarly, these subnets have the same

architectures but their parameters are not shared. As shown

in (b), structure of the action subnet is analogous to that

of the object subnet, except an elementwise sum (“⊕”)

in the input (in blue). For instance, if both ‘person’ and

‘bike’ are presented in I , the combination of their features,

hm

person ⊕ hm

bike ∈ R
512×45×45, is propagated to all action

subnets. Then, the largest response is more likely to be

produced by one of the following action subnets, ‘ride’, ‘sit

near’, and ‘stand near’, to determine the true action between

these two objects. The combination of features is performed

in object pair selection as introduced below.

Object-Pair Selection (OPS) As shown in purple in

Fig.4 (a), OPS is an important component in Int-stream,

which merges features of the presented objects. For exam-

ple, if object subnets of ‘person’, ’bike’, and ‘car’ have high

responses, each pair of features among hm

person, hm

bike, and

hm

car are summed together elementwisely, resulting in three

combined features denoted as hm

person+bike, hm

person+car,

and hm

bike+car. An example of hm

person+bike is plotted in

Fig.5 (c). To resolve the action between each pair of objects,

each merged feature is then forwarded to all 22 action

subnets as discussed above. An appealing property of OPS

is that the number of object interactions of different images

can be different, adaptively determining by the cooperation

between two groups of object and action subnets.

Refinement This is an essential component in Seg-

stream to improve segmentation accuracy. Recall that the

i-th object subnet produces a score (probability), denoted

as lo
i

in Fig.4(a), indicating how likely object i is appeared

in image I . So, we concatenate all 21 scores as a vector

l
o ∈ R

21×1 and treat it as a filter to refine the segmentation

map Ĩs using convolution. We have Is = conv(Ĩs, lo).

3. Training Approach

IDW-CNN jointly trains images from IDW and VOC12,

by using back-propagation (BP) with stochastic gradient

descent (SGD). Each image in IDW contains object inter-

actions but without labelmap, whilst each image in VOC12
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Figure 4: (a) illustrates the diagram of IDW-CNN, which has two streams. Given an image I , the first stream predicts its segmentation

labelmap I
s and the second stream estimates its object interactions. The second stream contains two groups of sub-networks, where 21

object subnets recognize object classes appeared in the object interactions, while 22 action subnets predict action items between them. Each

subnet has the same network structure as shown in (b), but are learned to achieve different goals. Thus, their parameters of convolutional

layers are not shared and the parameters in the fully-connected layers are shared. ‘conv’, ‘max pool’, and ‘fc’ indicate convolution, max

pooling, and full-connection respectively. IDW-CNN has four groups of losses functions as marked by 1.-4. in red.

has labelmap but no interactions. Therefore, IDW-CNN

posses a large challenge of missing labels. Unlike previous

multitask deep models [31, 33] that ignore the gradients

of an unlabeled sample in the training stage, IDW-CNN

estimates a pseudo label for each sample and treats it as

ground truth in BP. Experiments show that this process is

important and improves performance. Here, we discuss the

backward propagations of two streams, with respect to two

kinds of data respectively.

Backwards of Seg-stream As shown in the first two red

arrows of Fig.4 (a), seg-stream has two identical softmax

loss functions. One minimizes the per-pixel discrepancy

between a ground truth labelmap I
s

and Ĩs, whilst the

other involves Is. Both loss functions are indispensable

in seg-stream. The first one learns to update the 2048 ×
45 × 45 features of ResNet-101. Besides these features,

the second one also updates 21 object subnets, improving

object categorizations.

In the following, we employ subscripts ‘voc’ and ‘idw’

to distinguish the images and labels from each dataset re-

spectively. In particular, for an image in VOC, the gradients

of these two losses are calculated as in conventional BP,

since the ground truth labelmap I
s

voc is available. However,

given an image in IDW, as I
s

idw is unavailable, only the

first loss is activated. We estimate a latent I
s

idw as ‘pseudo

ground truth’ by combining the predicted segmentation

map, Ĩsidw, and the predicted object labels, loidw. Intuitively,

to attain I
s

idw, we zero those regions presented in Ĩsidw but

their corresponding object labels are absent in l
o

idw.

Backwards of Int-stream As illustrated in the third and

forth red arrows of Fig. 4(a), int-stream consists of two

groups of loss functions. In the first group, each object

subnet is trained by a 1-of-2 softmax loss to determine if

the specific object appeared in an image. In the second

group, each action subnet produces a response, forming

totally 22 responses. Then the entire action nets optimize

a 1-of-22 softmax loss, the largest response represents the

true action between these two objects. Here, we introduce

BP for two datasets respectively. For an image in IDW, as

both ground truth labels of objects and actions, l
o

idw and

l
a

idw, are available, gradients can be simply obtained by BP.

For an image in VOC, ground truth of the presence of an

object, l
o

voc, can be easily determined from the labelmaps

I
s

voc. However, as the ground truth actions, l
a

voc, between

objects are not available, they need to be inferred in the

learning stage. For example, if ‘bike’ and ‘person’ are

presented in Isvoc, there are four different possible actions

between them such as ‘sit’, ‘stand’, ‘ride’, and ‘sleep’.

In our implementation, we obtain a prior distribution with

respect to actions between each pair of objects. For ‘bike’

and ‘person’, this prior produces high probabilities over the

above four actions and low probabilities over the others. In

the training stage, the loss function offers low penalty if the

predicted action is among one the above, otherwise provides

high penalty.

Implementation Details As mentioned in Sec.2.1, IDW-

CNN employs ResNet-101 as building block, where the pa-

rameters are initialized by classifying one thousand image

classes in ImageNet. The other parameters in IDW-CNN are

initialized by sampling from a normal distribution. IDW-

CNN is trained in an incremental manner with three stages.

First, all losses are deactivated except the first one as

marked by ‘1.’ in red of Fig. 4(a). In this stage,

MS COCO [13] is used to train the model following [3],

in order to adapt features from image classification to

image segmentation. Second, three losses except the fourth

one are optimized by using VOC training set to improve

segmentation. Third, parameters are jointly fine-tuned by

all loss functions to transfer knowledge between VOC and

IDW.
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(a) sit near         (b) ride    (c) stand near   (d) sleep near

(e) sit near          (f) ride    (g) stand near   (h) sleep near

(i) sit near           (j) ride     (k) stand near  (l) sleep near

Figure 6: Visualization of interaction feature maps, where the

verbs here denotes the interactions between ‘person’ and ‘bike’.

This results indicate that learning image description benefits image

segmentation.

4. Experiments

We evaluate IDW-CNN in two aspects. Sec.4.1 con-

ducts an extensive ablation study, including effectiveness

of region pair selection, scalability, and object interaction

prediction. Sec.4.2 compares segmentation accuracy of

IDW-CNN with those of the state-of-the-art methods. To

identify the usefulness of IDW, for all experiments, IDW-

CNN employs ResNet-101 of DeepLab-v2 as backbone

network, yet removing any pre- and post-processing such

as multi-scale fusion and CRF. In this case, ResNet-101

achieves 74.15% accuracy compared to 79.7% of the full

DeepLab-v2 model.

4.1. Ablation Study

Effectiveness of Object-Pair Selection (OPS) We com-

pare performances of IDW-CNN with and without OPS.

The latter method is abbreviated as ‘IDW-CNN w/o OPS’,

which turns into a multi-task model, such that the entire

shared features (2048×45×45 as in Fig.4) are directly

utilized to predict both segmentation map and object inter-

action, without OPS as the full model did. We consider

two variants of ‘IDW-CNN w/o OPS’. The first one directly

trains 20 + 22 + 20 = 62 subnets, indicating two objects

(20 categories each) and 22 actions. This is similar to [17],

denoted as ‘IDW-CNN w/o OPS-1’. The second one trains

59 subnets, corresponding to 59 valid object interactions,

denoted as ‘IDW-CNN w/o OPS-2’.

Segmentation accuracies on VOC12 test and seg-IDW

are reported in Table 2 and 3 respectively, showing that

performances drop 7.1% and 6.5% when removing OPS,

which is a key to the success of IDW-CNN. It is worth not-

(a) input image (b) person rides horse (c) stand near horse

Figure 7: Visualizations of features in action subnets.

ing that ‘IDW-CNN w/o OPS-1’ still outperforms ResNet-

101 by 5% on VOC12 test, demonstrating the usefulness

of IDW dataset. As an example, Fig.6 visualizes features

of hm

bike+person, which are the inputs to the action subnets.

They help refine the predicted labelmaps. The first row

shows the images. The second and third rows show the fea-

tures of IDW-CNN and IDW-CNN w/o OPS-1 respectively.

Good features for segmentation should have high responses

on both objects. Intuitively, OPS learns discriminative

features for ‘person’ and ‘bike’, therefore improving their

segmentation performance. Fig.7 exhibits the effectiveness

of action subnets. With OPS, each action subnet is able

to identify informative region of a specific action. For

instance, given the same image of two ‘person’ and a

‘horse’, both ‘ride-subnet’ and ‘stand near-subnet’ correctly

identify the ‘person’ who is involved in the corresponding

action. IDW captures this information, which is missing in

VOC12.

Scalability of IDW-CNN The entire IDW is randomly

partitioned into three subsets, which contain 10, 10, and 20

thousand images respectively. We evaluate the scalability

of IDW-CNN by gradually adding one subset in training.

Segmentation accuracies on VOC12 test and seg-IDW are

reported in Table 2 and 3, respectively. For example, the

first model is trained with the first 10 thousand samples

and the number of samples is doubled (20 thousand) in

the second model. The third model is trained with the

full IDW (40 thousand). Table 2 shows that the accuracies

increase when we simply double the scale of IDW. For

instance, IDW-CNN trained with full IDW achieves the best

performance. It outperforms the other two models by 3.4%

and 1.1% respectively. Another interesting observation

is that performances of nearly all object categories can

be improved, when presenting more data of IDW. This

may because IDW-CNN learns from more diverse data,

increasing its modeling complexity. Similar trend is ob-

served in Table 3, where accuracies have much larger room

for improvements compared to VOC12, showing that seg-

IDW is a competitive complementary test set to evaluate

segmentation methods.

Object Interaction Prediction We study the perfor-

mance of predicting object interactions on int-IDW. To

exhibit the superiority of IDW-CNN, we use the two strong
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Table 2: Per-class comparisons on VOC12 test. Best result is highlighted.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

ResNet-101 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 74.2

IDW-CNN(10k) 91.4 68.1 85.0 71.3 82.3 93.8 87.7 88.8 51.7 81.1 73.8 89.1 80.3 89.8 87.2 71.8 91.3 70.9 90.0 77.1 81.8

IDW-CNN(20k) 94.5 67.3 93.1 69.5 83.0 95.1 89.4 93.2 52.0 94.8 75.5 92.8 95.3 91.6 89.1 73.7 93.7 74.9 93.9 80.5 85.2

IDW-CNN(40k) 94.8 67.3 93.4 74.8 84.6 95.3 89.6 93.6 54.1 94.9 79.0 93.3 95.5 91.7 89.2 77.5 93.7 79.2 94.0 80.8 86.3

IDW-CNN w/o OPS - 1 93.6 62.1 91.3 64.3 75.4 91.9 87.4 90.7 34.4 88.1 69.0 86.5 90.1 85.7 85.8 66.4 89.5 58.6 86.2 71.3 79.2

DeepLab2+CRF [3] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

CentraleSupelec [1] 92.9 61.2 91.0 66.3 77.7 95.3 88.9 92.4 33.8 88.4 69.1 89.8 92.9 87.7 87.5 62.6 89.9 59.2 87.1 74.2 80.2

LRR-4x [5] 92.4 45.1 94.6 65.2 75.8 95.1 89.1 92.3 39.0 85.7 70.4 88.6 89.4 88.6 86.6 65.8 86.2 57.4 85.7 77.3 79.3

HP[32] 91.9 48.1 93.4 69.3 75.5 94.2 87.5 92.8 36.7 86.9 65.2 89.1 90.2 86.5 87.2 64.6 90.1 59.7 85.5 72.7 79.1

DPN[15] [15] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

RNN[34] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

Piecewise[11] 87.5 37.7 75.8 57.4 72.3 88.4 82.6 80.0 33.4 71.5 55.0 79.3 78.4 81.3 82.7 56.1 79.8 48.6 77.1 66.3 70.7

Zoom-out[20] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

FCN[16] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

WSSL(weak)+CRF[22] 94.7 62.3 93.3 65.5 75.8 94.6 89.7 93.9 38.6 93.8 72.2 91.4 95.5 89.0 88.4 66.0 94.5 60.4 91.3 74.1 81.9

BoxSup[4] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2

Table 3: Per-class comparisons on seg-IDW. Best result is highlighted.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

ResNet-101 50.9 42.0 67.9 17.4 46.4 65.4 59.6 64.8 32.5 21.1 45.8 69.7 74.3 61.2 79.7 25.2 40.0 23.8 34.6 57.6 50.6

IDW-CNN(10k) 61.7 42.9 72.2 18.4 51.2 66.5 61.3 71.3 35.1 61.6 44.4 74.2 74.6 66.2 79.3 30.9 50.7 24.8 36.0 66.7 55.8

IDW-CNN(20k) 60.5 42.6 70.5 23.7 52.0 65.7 61.5 72.2 37.4 74.1 45.0 74.3 75.2 67.6 80.0 42.8 51.3 27.1 37.5 65.0 57.6

IDW-CNN(40k) 64.4 40.1 72.2 21.9 55.7 68.9 62.6 71.7 33.9 75.6 51.2 76.4 78.0 69.7 80.1 35.4 57.6 33.7 37.5 71.6 59.1

IDW-CNN w/o OPS - 1 55.3 37.2 64.8 20.1 54.5 63.5 59.0 67.9 31.8 25.4 51.5 71.7 77.1 55.1 80.2 33.5 39.6 32.1 34.9 66.1 52.6

DeepLab2+CRF [3] 50.9 42.0 67.9 17.4 46.4 65.4 59.6 64.8 32.5 21.1 45.8 69.7 74.3 61.2 79.7 25.2 40.0 23.8 34.6 57.6 50.6

WSSL(weak)+CRF[22] 51.4 42.5 61.6 17.0 48.4 62.4 58.3 65.8 34.2 30.8 47.3 70.5 75.1 60.5 80.4 34.8 43.6 24.6 33.4 65.9 52.0

Method/Task
Action Pred.

Object Pred.
Recall-5 Recall-10

Random Guess 0.0006 0.0012 N/A

IDW-CNN w/o OPS - 1 0.9340 0.9568 0.7954

IDW-CNN w/o OPS - 2 0.9295 0.9591 0.7909

Full Model 0.9620 0.9760 0.9523

Table 4: Results of object interaction prediction.

Method/Task
Action Pred.

Object Pred.
Recall-5 Recall-10

Random Guess 0.0006 0.0012 N/A

IDW-CNN w/o OPS - 1 0.0975 0.3048 0.0243

Full Model 0.5488 0.8293 0.9512

Table 5: Results of zero-shot object interaction prediction.

baselines, IDW-CNN w/o OPS-1 and -2. The evaluation

metric of object interaction is Recall-n (n = 5, 10),

measuring the possibility that the true interaction is among

the top 5 or 10 predicted interactions. These interactions

are ranked according to their confidence scores (which

are the responses after softmax function). For example,

since we have 22 actions and 20 object categories, the

total number of possible configurations of interactions are

20 × 22 × 20 = 8800. Then a random guess results in a

Recall-5 of 5 ÷ 8800 = 0.00057. Experimental results are

shown in Table 4, where IDW-CNN outperforms the others

by 3% at Recall-5.

Zero-Shot Prediction Another interesting evaluation is

to predict unseen object interaction on zero-IDW, which

is not presented in the training stage, such as ‘person-

ride-cow’,‘dog-suck-bottle’, and ‘cow-suck-bottle’. Table

5 reports the results. In this setting, IDW-CNN outperforms

IDW-CNN w/o OPS-1 with a large margin, i.e. 54.88%

compared to 9.75% at Recall-5, demonstrating the superior

generalization capacity of IDW-CNN. The result of zero-

shot interaction prediction is illustrated in the last column of

Fig.8. When presenting an image with a man riding a cow,

IDW-CNN accurately predict the interaction ‘person-ride-

cow’. And it also demonstrates advantage in segmenting

this image, see the 3rd and 4th row in the last column.

4.2. Segmentation Benchmarks

The segmentation accuracies of IDW-CNN are com-

pared to state-of-the-art methods on both VOC12 test and

seg-IDW. On VOC12 test, we adopt 9 fully-supervised

methods, including DeepLab2+CRF [3], CentraleSupelec

[1], LRR-4x [5], HP [32], DPN [15], RNN [34], Piece-

wise [11], Zoom-out [20], and FCN [16]. Two state-

of-the art semi-supervised methods are also employed,

WSSL(weak)+CRF [22] and BoxSup [4]. Most of these

approaches employed pre- and post-processing methods

such as multiscale fusion and CRF to improve performance,

while IDW-CNN does not.

Results are reported in Table 2. IDW-CNN signifi-

cantly outperforms the best-performing method by 4.4%.

A significant 12% gain is achieved when comparing to

ResNet-101, which is the backbone network of IDW-CNN,

showing the effectiveness of IDW data and the proposed
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person-ride-cowperson-sit on-chair

(a)

(b)

(c)

(d)

seg-IDW/int-IDW                                                                              VOC test                               zero-IDW

person-suck-bottle.
person-sleep on-sofa person-stand near-car Person-stand near-cow

person-stand 
on-boat

person-sit on-
sofa

Figure 8: Visualization of object interaction prediction. The first three columns refer to IDW dataset. The middle three columns refer

to VOC12 test set. The last column refers to zero-shot novel set. (a) are input images. (b) are the object interaction predictions. (c) are

segmentation predictions using DeepLab-v2. (d) are segmentation predictions based on our model (IDW-CNN).

network architecture to learn from it. We also compare

IDW-CNN with both fully- and semi-supervised methods

on seg-IDW. Table 3 shows the results of IDW-CNN and

the other competing approaches. IDW-CNN achieves best

performances on most of the object categories. Fig.8

visualizes several segmentation and interaction prediction

results. Intuitively, IDW-CNN performs very well in both

task.

5. Conclusion

We proposed a deep convolutional neural network to

increase segmentation accuracy by learning from an Image

Descriptions in the Wild (IDW-CNN). IDW-CNN has sev-

eral appealing properties. First, it fully explores the knowl-

edge from different datasets, thus improves the performance

of both dataset. Second, when adding more data to IDW,

the segmentation performance in VOC12 can be constantly

improved.

IDW-CNN achieves state-of-the-art performance on

VOC12, and many valuable facts about semantic image

segmentation are revealed through extensive experiments.

There are several directions in which we intend to extend

this work, such as improving IDW-CNN by adding a knowl-

edge from object attributes. Deeply combining with some

language processing techniques also would be a possible

way.
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