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Abstract

Statistical decomposition methods are of paramount im-

portance in discovering the modes of variations of visual

data. Probably the most prominent linear decomposition

method is the Principal Component Analysis (PCA), which

discovers a single mode of variation in the data. However,

in practice, visual data exhibit several modes of variations.

For instance, the appearance of faces varies in identity, ex-

pression, pose etc. To extract these modes of variations from

visual data, several supervised methods, such as the Ten-

sorFaces, that rely on multilinear (tensor) decomposition

(e.g., Higher Order SVD) have been developed. The main

drawbacks of such methods is that they require both labels

regarding the modes of variations and the same number of

samples under all modes of variations (e.g., the same face

under different expressions, poses etc.). Therefore, their ap-

plicability is limited to well-organised data, usually cap-

tured in well-controlled conditions. In this paper, we pro-

pose the first general multilinear method, to the best of our

knowledge, that discovers the multilinear structure of visual

data in unsupervised setting. That is, without the presence

of labels. We demonstrate the applicability of the proposed

method in two applications, namely Shape from Shading

(SfS) and expression transfer.

1. Introduction

Statistical methods for data decomposition are cor-

nerstones in statistics, image and signal processing, and

computer vision. Probably, the most popular data de-

composition method is the Principal Component Analysis

(PCA) and the closely related Singular Value Decomposi-

tion (SVD).

Assuming that the data are stacked in the columns of a

matrix, the PCA finds a single mode of variation that ex-

plains the data. Nevertheless, most forms of visual data

have many different and possibly independent, modes of

variations and therefore the SVD is unable to extract them.

In order to disentangle the independent modes of variations,

several multilinear (tensor) decomposition methods have

Figure 1: Visualisation of the unsupervised multilinear de-

composition and its applications. A sample vector xi is as-

sumed to be generated by a common multilinear structure

B (in this example with two modes) and sample specific

weights li and ci.

been employed [25, 6, 15, 14, 16]. For example, the High

Order SVD (HOSVD) [6] assumes that the data are formed

as a result of some multifactor confluence and aims to find

the different modes of variation by decomposing the a care-

fully designed data tensor. Having found the HOSVD, the

data admit to a linear analysis per mode, since each mode

is allowed to vary in turn, while the remaining modes are

held constant. For instance, assume a population of faces

with differing identities, expressions and seen under differ-

ent views (poses), then the HOSVD decomposes the pop-

ulation into different modes of variation for expressions,

identities, and poses per pixel. This method is known as

TensorFaces [26]. Thus, having disentangled the modes of

variation, we can vary expressions independently to identity

and pose.

The main limitation in applying the above multilinear

decompositions is that they require a complete data tensor

which has to be built using labels for each mode of varia-

tion. That is, each mode of variation must be represented in

the data. Using the aforementioned example of faces with

varying expression, identity and pose, we require that for

each and every person samples for every possible expres-

sion and pose should exist in order to build the required
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complete tensor1. Clearly, these requirements limit the ap-

plicability of multilinear decompositions to data captured

in controlled conditions (e.g. PIE [23], Multi-PIE [10] and

BU-3DFE [28]), where it can be guaranteed that all the nec-

essary data variations along with their labels are available.

This paper is concerned with the problem of unsuper-

vised multilinear decomposition of data, a problem which,

even though it has many applications, has received very lim-

ited attention. In particular, we propose the first, to the best

of our knowledge, multilinear decomposition which finds

the potential multilinear structure of data without labels or

requiring a complete set of data. That is, assuming a set of

vectorial data stacked in a matrix, our aim is find the multi-

linear structure and the corresponding weights (coefficients)

that best explain the data under a known number of varia-

tions. The proposed model is schematically summarised in

Figure 1. We show that the proposed methodology indeed

disentangles the modes of variations without any labels, as

well as having a wide number of applications including 3D

object reconstruction “in-the-wild”.

The contributions of the paper are summarised as fol-

lows:

• We propose a novel unsupervised decomposition that

recovers the multilinear structure of visual data and

thus an arbitrary number of different modes of varia-

tion.

• We develop an efficient alternating least squares type

of algorithm to perform the decomposition.

• We highlight the relationship between the proposed

decomposition and recent Shape from Shading (SfS)

methods [11, 24], and show that the methods in [11,

24] are very special cases of the proposed general mul-

tilinear decomposition.

• We demonstrate the usefulness of the proposed decom-

position to various applications including SfS and fa-

cial expression transfer.

2. Related Work

For the past fifteen years, the computer vision com-

munity has made considerable efforts to collect databases

in controlled conditions that can capture the variations of

visual objects such as human faces. Arguably, the most

comprehensive efforts were made in order to collect the

so-called PIE [23] and Multi-PIE [10] databases. These

databases contain a number of people (i.e., multiple iden-

tities) captured under different poses and illuminations, dis-

playing a variety of facial expressions. Thus, these datasets

contain many different modes of variation. These datasets

1 Methods for completing the tensor have been proposed but they are only

approximate[18, 22, 8].

Figure 2: Visualisation of the Multi-PIE [10] dataset. Col-

lecting data where every person is present in all the lighting

and expression variations is an expensive process that does

not scale well.

motivated the use of multilinear decompositions, such as

HOSVD [6], in order to disentangle the different modes

of variations, with the most popular being the TensorFaces

representation [26]. Nevertheless, even though the methods

succeed in recovering the modes of variation, their applica-

bility is rather limited since they not only require the data

to be labelled but also the data tensor must contain all sam-

ples in all different variations. This is the primary reason

that tensor decompositions [19] are still mainly applied to

tightly controlled databases such as PIE and Multi-PIE, vi-

sualised in Figure 2, and not to “in-the-wild” data.

A seemingly unrelated area of research that relies heavily

on data decomposition is that of facial SfS [27] and Uncali-

brated Photometric Stereo in General Lighting (UPS) [2].

Starting from a totally different perspective, the current

state-of-the-art object-specific UPS techniques [11, 24] per-

form a rank constrained Khatri-Rao (KR) factorization [12].

The first paper where the decomposition has been proposed

and applied in 3D facial shape reconstruction was [11]. [11]

was inspired by the decomposition techniques employed in

the related area of Structure-from-Motion [4]. Recently,

[24] made the link between the KR factorisation and the

UPS. In this paper, we show that the decompositions pro-

posed in [11, 24] are very special cases of the proposed

unsupervised tensor decomposition. Furthermore, the pro-

posed decomposition goes much further than the special

case [11, 24] and can be used for disentangling an arbitrary

number of modes of variation.

3. Notations and Multilinear Algebra Basics

Throughout the paper, matrices (vectors) are denoted by

uppercase (lowercase) boldface letters e.g., X, (x). I de-

notes the identity matrix of compatible dimensions. The ith
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column of X is denoted as xi. Tensors are considered as the

multidimensional equivalent of matrices (second-order ten-

sors) and vectors (first-order tensors) and denoted by calli-

graphic letters, e.g., X . The order of a tensor is the number

of indices needed to address its elements. Consequently,

each element of an M th-order tensor X is addressed by M

indices, i.e., (X )i1,i2,...,iM
.
= xi1,i2,...,iM .

The sets of real and integers numbers is denoted by R

and Z, respectively. A set of N real matrices (vectors) of

varying dimensions is denoted by {X(m) 2 R
In⇥N}Nm=1

({x(m) 2 R
Im}Mm=1). An M th-order real-valued tensor

X is defined over the tensor space R
I1⇥I2⇥···⇥IM , where

Im 2 Z for m = 1, 2, . . . ,M .

An M th-order tensor X 2 R
I1⇥I2⇥···⇥IM has rank-1,

when it is decomposed as the outer product of M vectors

{x(m) 2 R
Im}Mm=1. That is, X = x

(1) ◦x(2) ◦· · ·◦x(M) .
=

©M
m=1x

(m), where ◦ denotes for the vector outer product.

The mode-m matricisation of a tensor X 2
R

I1⇥I2⇥···⇥IM maps X to a matrix X(m) 2 R
Im⇥Īm with

Īm =
QM

k=1
k 6=m

Ik such that the tensor element xi1,i2,...,iM

is mapped to the matrix element xim,j where j = 1 +
PM

k=1
k 6=m

(ik − 1)Jk with Jk =
Qk−1

n=1
n 6=m

In.

The mode-m vector product of a tensor X 2
R

I1⇥I2⇥...⇥IM with a vector x 2 R
Im , denoted by X ⇥n

x 2 R
I1⇥I2⇥···⇥In−1⇥In+1⇥···⇥IN . The result is of order

M − 1 and is defined element-wise as

(X ⇥m x)i1,...,im−1,im+1,...,iM =

Im
X

im=1

xi1,i2,...,iMxim .

(1)

In order to simplify the notation, we denote X ⇥1 x
(1) ⇥2

x
(2) ⇥3 · · · ⇥M x

(M) = X
QM

m=1⇥mx
(m).

The Khatri-Rao (column-wise Kronecker product) prod-

uct of matrices A 2 R
I⇥N and B 2 R

J⇥N is denoted

by A & B and yields a matrix of dimensions (IJ) ⇥ N .

Furthermore, the Khatri-Rao of a set of matrices {X(m) 2
R

Im⇥N}Nm=1 is denoted by X
(1) & X

(2) & · · · & X
(M)

.
=

JM

m=1 X
(m). More details on tensors and multilinear

operators can be found in [13] for example.

Finally, k · kF denotes the Frobenius norm.

4. Proposed Method

Let X = [x1,x2, · · · ,xN ] 2 R
d⇥N be a matrix of ob-

servations, where each of the N columns represent a vec-

torised image of d pixels. In order to discover M − 1 dif-

ferent modes of variation we propose the following decom-

position:

xi = B ⇥2 a
(2)
i ⇥3 a

(3)
i · · · ⇥M a

(M)
i = B

M
Y

m=2

⇥ma
(m)
i ,

(2)

where B 2 R
d⇥K2⇥···⇥KM representing the common

multilinear basis of X and the set of vectors {a(m)
i 2

R
Km}Mm=2 represents the variation coefficients in each

mode specific to the vectorised image xi.

Therefore, for the observation matrix X , and by exploit-

ing the properties of multilinear operators e.g., [13], the

above decomposition is written in matrix form as

X = B(1)(A
(2)&A(3) · · ·&A(M)) = B(1)

(

M
K

m=2

A
(m)

)

,

(3)

where B(1)R
d⇥K2·K3···KM is the mode-1 matricisation of

B and {A(m)}Mm=2 2 R
Km⇥N gathers the variation coef-

ficients for all images across M − 1 modes of variation.

Clearly, this formulation is different from the Tucker de-

composition [25] and the HOSVD [6].

To find the unknown multilinear basis B and the varia-

tion coefficients {A(m)}Mm=2, we propose to solve:

argmin
B(1),{A(m)}M

m=2

kX −B(1)

(

M
K

m=2

A
(m)

)

k2F

s.t. BT
(1)B(1) = I.

(4)

Optimisation problem (4) is non-convex. Therefore, we

propose to solve (4) by employing an Alternating Least

Squares (ALS) scheme, where each variable is updated in

an alternating fashion. Let t denotes the iteration index,

given B(1)[0] and {A(m)[0]}Mm=2, the iteration of the ALS

solver reads as follows:

B(1)[t+ 1] = argmin
B(1)

kX −B(1)

(

M
K

m=2

A
(m)[t]

)

k2F

s.t. BT
(1)B(1) = I.

(5)

{A(m)[t+ 1]}Mm=2 =

argmin
{A(m)}M

m=2

kX −B(1)[t+ 1]
(

M
K

m=2

A
(m)

)

k2F
(6)

Solving (5): Problem (5) is an orthogonal Procrustes prob-

lem, whose solution is given by [9]: B(1)[t + 1] = UV T ,

where UΣV T = X
(
JM

m=2 A
(m)[t]

)T
is the SVD.

Solving (6): Due to the unitary invariance of the Frobe-

nius norm (5) is equivalent to

argmin
{A(m)}M

m=2

kB(1)[t+ 1]TX −
M
K

m=2

A
(m)k2F , (7)

which is a Khatri-Rao factorisation problem [20]. Let Q =
B(1)[t+1]TX 2 R

K2·K3···KM⇥N , then each column of Q

is written as:

qi =

M
K

m=2

a
(m)
i (8)

Let us partition qi into a set KM−1 · KM−2 · · ·K2

vectors {qBb

i 2 R
KM }KM−1·KM−2···K2

b=1 such that
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qi = [qB1
i

T
qB2
i

T · · · qBKM−1·KM−2···K2

i

T

]T . This

partitioning enables us to rearrange the elements of

qi into a tensor Qi 2 R
KM⇥KM−1⇥···⇥K2 such

that Qi(1) = [qB1
i , qB2

i , · · · , qBKM−1·KM−2···K2

i ] 2
R

KM⇥(KM−1·KM−2···K2). Therefore, based on (8), Qi is

written as

Qi = a
(M)
i ◦ a(M−1)

i ◦ · · · ◦ a(2)i (9)

Equation (9) indicates that we can recover the set of vectors

{a(m)
i }Mm=2 and therefore the set of matrices {A(m)}Mm=2,

by seeking a best (in the least squares sense) rank-1 approx-

imation of Qi, for i = 1, 2, . . . , N . An efficient way to

find the best rank-1 approximation of Qi is to exploit the

truncated HOSVD [6]. That is,

Qi = s

M−1
Y

n=1

⇥nu
(n)
i , (10)

where {u(n)
i 2 R

KM−n+1}M−1
n=1 is the the set of the first

higher order singular vector along M − 1 modes of ten-

sor Qi and s = (S)1,1,...,1 is the first high-order singular

value stored as a first element in the core tensor S. Con-

sequently, the columns of the variation coefficient matrices

{A(m)}Mm=2 can be estimated by

a
(m)
i = s

1
M−1u

(M−m+1)
i , (11)

for m = 2, 3, . . . ,M . Interestingly, the estimation of the

variation coefficients according to (11) resolves the inherent

scaling ambiguity in (7) by assigning the same Euclidean-

norm to each column of A(m). The procedure of solving (4)

is summarised in Algorithm 1.

Remarks: In the special case of 2 modes and where

K2 = 4, (3) becomes:

X = B(1)(L&C), (12)

where L = A2 2 R
4⇥n, C = A3 2 R

k⇥n. Equa-

tion (12) corresponds to the formulation used by [24]2.

Let P = L&C then,

X = B(1)P . (13)

Equation (13) corresponds to the formulation used

by [11]. P = L &C has been implied by [11] but not ex-

plicitly formulated as such. Hence this shows that [11, 24]

represent special cases of our general decomposition.

2 A minor difference in [24] is the separation of X into a low-rank A and

sparse error E

Algorithm 1: Multilinear Tensor Decomposition Algo-

rithm

Input: Data Matrix X 2 R
d⇥N and dimensions K2,

K3 . . .KM

Result: B, A(2) , A(3), . . .A(M)

1 Initialisation: t 0
2 [U ,Σ,V ] SVD(X)

3 B(1)[0] = U
p
Σ, Q[0] =

p
ΣV T

4 while not converged do

5 for each image i = 1 . . . N do

6 construct Qi 2 R
KM⇥KM−1···⇥K2 from qi[t]

7 [Si,Ui] HOSVD(Qi)
8 for each mode m = 2 . . . M do

9 a
(m)
i [t] = (Si)

1
M−1

1 U
(M−m+1)
i

10 end

11 end

12 [U ,Σ,V ] SVD(X
(
JM

m=2 A
(m)[t]

)T
)

13 B(1)[t+ 1] = UV T

14 Q[t+ 1] = B(1)[t+ 1]TX
15 Check convergence condition:

kX−B(1)[t+1]Q[t+1]k2
F

kXk2
F

< ✏

16 t t+ 1

17 end

18 Tensorise B(1) into B 2 R
d⇥K2⇥···⇥KM

5. Experiments

In this section we provide a number of experiments to

show that our model recovers meaningful modes of varia-

tions. All the data used have been aligned to a reference

shape to achieve pixelwise correspondence.

Frequently the first mode of variation in visual data is

lighting. Hence we first consider data containing lighting

variations i.e., objects under different lights and decom-

pose the data into illumination and shape/identity compo-

nents. We demonstrate that our method requires neither

complete well-organised data (e.g. all the objects under the

same number of lighting conditions), nor labels to find the

underlying multilinear structure. We also show that this de-

composition can be applied to “in-the-wild” datasets of dif-

ferent objects.

We then investigate synthetic 3D facial data that contains

both facial expression and identity variations. We show that

our decomposition correctly decouples expression and iden-

tity.

Finally, we extend the decomposition to data that simul-

taneously contains lighting, expression and identity varia-

tions.
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Figure 3: 3D shape reconstruction: Comparison of our proposed method with photometric stereo [27] and the person-specific

photometric stereo in general lighting of [2]. Images from the Photoface [29] dataset.

5.1. Illumination and Shape Decomposition

Given a dataset of objects in piecewise correspondence

(e.g. warped to a mean reference shape) but containing light

and identity variations, we seek to recover the illumination

mode of variation. We model illumination using first order

spherical harmonics consisting of 4 components [1]:

X = B(1)(L&C), (14)

where B(1) 2 R
d⇥4k is the orthogonal mode-1 matrici-

sation of our proposed tensor B, L 2 R
4⇥n is the ma-

trix of first order spherical harmonic light coefficients and

C 2 R
k⇥n is a matrix of shape and identity coefficients.

Evidently, this is a special case of our proposed decomposi-

tion in (3). The choice of k is subject to a trade-off between

reconstruction detail of the images and the ability of the de-

composition to separate illumination and shape/identity.

Given this setting and an appropriate choice for k, we

performed a number of experiments to show that our de-

composition is able to separate lighting from shape and

identity. Our model indeed recovers illumination as the first

mode of variation. The recovered basis B(1), subject to or-

thogonality constraints, corresponds to a spherical harmon-

ics basis and can be applied to estimate the normals and

albedo of the object. The estimated normals are then warped

back into the original space of the image and integrated us-

ing the method of [7] to recover the 3D reconstruction. We

run this experiment on a variety of a number datasets in-

cluding Photoface [29], HELEN [17] and a collected set of

human ear images.

5.1.1 Comparison using Photoface

Photoface [29] is a photometric stereo dataset containing

single-view images of people taken under 4 different illu-

Figure 4: Comparison of our proposed method with person-

specific photometric stereo in general lighting of [2]. The

error has been calculated against the estimated normals

from photometric stereo [27].

mination conditions. We annotated 68 facial landmarks on

273 people from the dataset. The landmarks are used for the

warping of the images into/from the mean reference shape.

In the absence of ground truth depth or normal data, we use

normals recovered from Photometric Stereo (PS) [27] as our

ground truth. However, the normals from PS may be biased

by outliers so these normals serve as a weak ground truth.

We wish to show that our decomposition works even in

the case of an incomplete tensor. To this end, we apply

our algorithm to a subset of the dataset: for each person

we randomly choose 2 out of the 4 images. The data is

incomplete as we do not have the same set of images for

each person. For this experiment we set k = 40.

We compare our results against the person-specific re-

sults of [2] which utilises all 4 lighting conditions and ap-

plied the method per person. Figure 3 shows the sample
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HELEN Result HELEN Result Ear Result Ear Result

Figure 5: Face and ear reconstructions. Images from the HELEN [17] and Ear datasets.

Method Mean angular error against [27]

[2] 38.35◦± 15.63◦

Ours 33.37◦± 3.29◦

Table 1: Comparison of estimated normals

reconstructions from this experiment. We also plotted the

mean angular error between our results and the “ground

truth” ones from PS [27] in Figure 4 and compare against

[2]. We can see that even with missing light information

and across multiple identities, our model achieves competi-

tive results, see quantitative results in Table 1. We obtain a

mean angular error of 33.27◦ across all 273 people against

38.35◦ using [2]. In addition our method is more robust

with ±3.29◦ of standard deviation compared with ±15.63◦
from [2]. These results are the only quantitative results we

can obtain as the other datasets do not provide the necessary

light information to compute “ground truth” normals from

PS.

5.1.2 Comparison using “in-the-wild” Datasets

In this experiment, we show that our method is able to re-

construct a large number of “in-the-wild” images. In the

first experiment, we use the HELEN [17] dataset contain-

ing 2000 identities with 1 image per person. We used the

68 facial landmarks from [21] for the warping to/from the

mean reference shape. Figure 5 shows the results on a num-

ber of challenging images for k = 40. [2] cannot be run on

this dataset as it would require at least 4 different lightings

per identity.

In the second experiment, we show that our method

works on other objects apart from faces. We apply the same

methodology to “in-the-wild” images of ears. We used the

605 images of ears annotated with 55 landmarks of [30].

Setting k = 75, we apply our decomposition and show the

results in Figure 5.

Figure 6: Sample data of the synthetic 3D dataset. Images

1 to 3 from the left show different identities and images 4 to

6 different expressions.

5.2. Expression and Identity Decomposition

In this set of experiments we synthetically generate a

dataset of 3D faces where the only variations are identity

and expression. The dataset has been created using the

Large Scale 3D Morphable Model [3] and put in correspon-

dence with the blendshapes of the FaceWarehouse [5] so

that we can allow for expressions. We used 200 compo-

nents to describe identity and 9 components for expression.

The dataset with 2000 3D facial meshes consists of 10 fa-

cial expressions and 200 identities. We wanted to examine

whether our decomposition is able to find a space of identity

variation that did not contain expressions. To this end we

ensured that the facial expressions included in the data did

not contain the neutral expression. A sample of the dataset

is shown in Figure 6.

The decomposition becomes:

X = B(1)(E &C), (15)

where E 2 R
e⇥n is the matrix of expression coefficients.

e should be set to the approximate number of differing ex-

pressions in the data. C 2 R
k⇥n is assumed to be a matrix

of identity coefficients.

Setting e = 10 and k = 50, we apply the decomposition

to discover that B 2 R
d⇥e⇥k becomes a basis of expression

and identity. We note that ±B:i: are bases corresponding

to expressions in the dataset. The first 10 components of

the first 2 bases are plotted in Figure 7. We also discover

that the first basis ±B:0:, visualised in Figure 7a, is a ba-

sis of neutral expressions. This is impressive as the neutral

expression did not exist in the original dataset.
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(a) Basis of first expression ±B:0:

(b) Basis of second expression ±B:1:

Figure 7: The 2 first expression bases from the decomposition of the synthetic 3D data

Person

Neutral

Expression Person

Neutral

Expression

Figure 8: Neutralising expressions

Thus we can use the neutral expression basis to cre-

ate synthetic neutral faces of people using the following

method. Let B0 denote the neutral expression basis B:0::

x0
i = B0(B

T
0 B0)

−1BT
0 xi, (16)

where x0
i denotes the resulting neutral face of the person in

xi. The results are visualised in Figure 8.

By decoupling E, the matrix of expression coefficients

and C, the matrix representing identities, the decomposi-

tion allows us to transfer expressions across identities. Fa-

cial expression transfer results are in Figure 9.

Comparing EET obtained using our unsupervised

method to the Uexp obtained by the supervised Tensor-

Faces [26], we find that components of EET can achieve

correlations of 0.66 with Uexp.

Person Expression

Transferred

Expression

Ground

Truth

Figure 9: Expression transfer

5.3. Illumination, Expression and Identity Decom-
position

In this experiment, we test our decomposition on data

that simultaneously contains lighting, facial expression

variations as well as multiple identities such as the Multi-

PIE [10] dataset. We select 147 identities, 5 expressions and

5 illuminations from the overall dataset. Our subset consists

of 3675 images. We rigidly align the data to a mean shape

in order to conserve the facial expression variations.

The decomposition can be adapted in this manner:
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X = B(1)(L&E &C), (17)

where L 2 R
4⇥n, E 2 R

e⇥n and C 2 R
k⇥n represent

lighting, expression and identity coefficients respectively.

Setting e = 5 and k = 40, we obtain a resulting ten-

sor B 2 R
d⇥4⇥e⇥k. Our experiments show that lighting

remains the first mode of variation and we are still able to

reconstruct 3D shape from this information, see Figure 10.

Figure 10: 3D Reconstruction on Multi-PIE [10] dataset

As the decomposition also decouples expression and

identity variations into E and C, we can use this to trans-

fer facial expressions from one person to another person.

Adapting the equation (2) to this decomposition (17), we

specify for images xi and xj where the two images are of

different people and expressions:

xi = B⇥2 li⇥3ei⇥4 ci, xj = B⇥2 lj⇥3ej⇥4 cj (18)

By swapping ci with cj , the identity coefficients, we can

create a synthetic image xij containing the expression of

person i and identity of person j.

xij = B ⇥2 li ⇥3 ei ⇥4 cj . (19)

In this way, a synthetic dataset of people with new expres-

sions are created. Sample results of the expression transfer

experiment are shown in Figure 11. Some of the exam-

ples are challenging ones such as transferring expressions

across gender. The Multi-PIE [10] dataset contains a num-

ber of people wearing glasses which lead to artefacts in the

area around the eyes in the synthetic images. As our de-

composition reduces the dimensionality of the images in the

dataset, we show the images with the transferred expression

next to the reconstructed image of the ground truth from the

dataset. Given the decomposition, the reconstruction repre-

sents the result of a plausible expression transfer.

We test this synthetic data via an expression classifica-

tion experiment to verify that the new synthetic expressions

are recognisable. Specifically, we trained a linear SVM

model with the original dataset and respective expression

labels and used the synthetic dataset as test data. The pre-

diction results are listed in Table 2. The high accuracy of

85.1% shows that the synthetic data manages to model the

expressions contained in the original data.

Person Expression

Transferred

Expression

Reconstruc-

tion

Ground

Truth

Figure 11: Expression transfer on Multi-PIE

Data Prediction accuracy

Synthetic expressions data 0.851

Table 2: Prediction accuracy on synthetic dataset

6. Conclusion

We have proposed a unsupervised method able to dis-

cover the multilinear structure in visual data. To this end

an alternating least squares algorithm has been developed.

Our experiments show that the method is able to discover

the multilinear structure of “in-the-wild” visual data with-

out the presence of labels or well-organised input data.
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