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Abstract

Motivated by previous success of using non-parametric

methods to recognize objects, e.g., NBNN [2], we ex-

tend it to recognize actions using skeletons. Each 3D

action is presented by a sequence of 3D poses. Simi-

lar to NBNN, our proposed Spatio-Temporal-NBNN applies

stage-to-class distance to classify actions. However, ST-

NBNN takes the spatio-temporal structure of 3D actions

into consideration and relaxes the Naive Bayes assump-

tion of NBNN. Specifically, ST-NBNN adopts bilinear clas-

sifiers [19] to identify both key temporal stages as well as

spatial joints for action classification. Although only using

a linear classifier, experiments on three benchmark datasets

show that by combining the strength of both non-parametric

and parametric models, ST-NBNN can achieve competitive

performance compared with state-of-the-art results using

sophisticated models such as deep learning. Moreover, by

identifying key skeleton joints and temporal stages for each

action class, our ST-NBNN can capture the essential spatio-

temporal patterns that play key roles of recognizing actions,

which is not always achievable by using end-to-end models.

1. Introduction

Thanks to the development of commodity depth cam-

eras, skeleton-based action recognition has drawn consider-

able attention in the computer vision community recently.

To date, the leading 3D action classifiers are learning-

based classifiers, in particular deep learning based methods

(e.g., [5, 24, 35, 21, 14, 13]), which have shown promising

results in benchmark datasets.

Despite the great progress of using learning-based meth-

ods for 3D action recognition, on the other hand, non-

parametric classifiers, which make classification decision

directly on the data and require no learning/training of pa-

rameters, are not well explored for 3D action recognition.

Key Joint Key MotionKey Stage

Figure 1. An Illustration of Key Stage, Joints, and Motion for the

action of waving right hand action.

Interestingly, for image recognition, non-parametric meth-

ods, e.g., Naive-Bayes Nearest-Neighbor (NBNN) [2], have

shown an impressive performance of classifying images

of local visual primitives by using image-to-class distance.

Motivated by the previous success of NBNN, in this work,

we extend it to recognize actions.

Two observations motivate our exploration of using

NBNN for skeleton-based action recognition: (1) similar

to images that are composed by local visual primitives, ac-

tions are composed by spatio-temporal primitives too, e.g.,

each action instance is a collection of skeleton poses and

each pose is further a collection of spatial joints. We can

easily apply primitive-to-class distance to perform action

recognition, which can generalize according to NBNN. (2)

Compared with images and videos which are composed of

millions or billions of pixels, the skeleton is composed by

only tens of joints which is thus of much less complexity

than images and videos. We argue that instead of relying on

a sophisticated end-to-end model, a simple non-parametric

model may still obtain promising results for such a light-

weight problem.

In this work, we propose Spatio-Temporal Naive-Bayes

Nearest-Neighbor (ST-NBNN), a new variation of NBNN,

to classify 3D actions. Each 3D action instance is repre-

sented by a collection of temporal stages composed by 3D
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poses, and each pose in stages is presented by a collection

of spatial joints. Following NBNN, our ST-NBNN applies

stage-to-class distance to classify actions. It can well han-

dle the length variations of 3D actions and also the large

intra-class variations. However, not every temporal stage

and spatial joints are of equal importance to the recognition

of the action. Thus it is of great importance to identify the

key stages and skeleton joints that matter for the recogni-

tion. To extend NBNN for 3D action classification, our ST-

NBNN considers the spatio-temporal structure of actions.

Instead of simply summing up all stage-to-class distances

with a Naive-Bayes assumption, we present these distances

as a spatio-temporal matrix of NN distances which repre-

sents the action instance. ST-NBNN further adopts a bi-

linear classifier [19] to identify key joints and stages and

classify the spatio-temporal matrix of NN distances. Our

proposed formulation can be iteratively optimized to learn

the linear classification weight for both spatial joints and

temporal stages.

We use Fig. 1 to illustrate the idea of using key spatial

joints and temporal stages for action recognition. When

performing right hand waving action, only the right hand

and arm (key joints) are activated. And when observing the

timing (key stage) at which the right hand and arm raise up

and move horizontally towards left, we can claim that wav-

ing right hand action is performing. Such a spatio-temporal

pattern described by key temporal stages and spatial joints

is critical to identify action classes. The discovery of such

patterns not only can improve recognition accuracy but also

answer what composes such an action instance and why we

make a recognition of it.

By using both stage-to-class distance and bilinear clas-

sifier [19], our proposed ST-NBNN combines the strengths

of non-parametric model and parametric model. Although

only using a linear classifier, experiments on three bench-

mark datasets show that ST-NBNN using raw skeleton fea-

tures can already obtain very competitive performance com-

pared with state-of-the-art end-to-end models which opti-

mize for feature representations. Moreover, by identify-

ing key temporal stages and spatial joints which play key

roles of recognizing the action, our ST-NBNN can capture

the essential spatio-temporal patterns for each action class,

and provide a physical interpretation of the action behavior.

Such a spatio-temporal pattern discovery and explicit inter-

pretation, however, is not always available via end-to-end

models, which mainly focus on achieving higher recogni-

tion accuracy instead of better interpreting patterns.

2. Related Work

Skeleton-Based Action Recognition

In recent years, skeleton-based action recognition problem

attracts a lot of attention, and many learning-based meth-

ods [5, 24, 35, 21, 14, 13, 15] have been proposed. Due to

the tremendous amount of these works, we only limit our

review to the spatio-temporal modeling of skeleton-based

action recognition.

The modeling in the spatial domain is mainly driven

by the fact that an action is usually only characterized by

the interactions or combinations of a subset of skeleton

joints [35]. Two categories of approaches are often used

to model the spatial pattern of actions: part-based model

and sub-pose model. In the part-based model, a skeleton

is partitioned into several groups, and the joints in each

group are skeletal neighbors of each other. In HBRNN [5],

skeletons are decomposed into five parts, two arms, two

legs, and one torso, and a hierarchical recurrent neural

network is build to model the relationship among these

parts. Similarly, in [21] a part-aware LSTM is proposed to

construct the relationship between body parts. In sub-pose

model, the focus is mainly on the informative joints or

their interactions. In SMIJ [18], the most informative

joints are selected simply based on measures such as mean

or variance of joint angle trajectories. The sequence of

these informative joints is then used as the representation

of actions. In Orderlet [33], interactions between joints

are modeled by a few comparisons of joints’ primitive

feature, and in action recognition only a subset of joints

is involved. On the temporal domain, graphical mod-

els [11, 30], temporal pyramid matching [28, 32], and

dynamic time warping [20] are the common methods

for temporal modeling. While in [27], sequential pattern

mining method is used to model temporal structures of a

set of key poses. Besides spatial modeling or temporal

modeling, we also see efforts on spatio-temporal modeling.

In [14], LSTM model is extended to spatio-temporal do-

main to analyze skeletons. Compared with these methods,

our proposed ST-NBNN is able to discover key factors

of an action on spatial and temporal domain simultaneously.

Naive-Bayes Nearest-Neighbor

NBNN [2] is first proposed for image classification. Two

key factors help NBNN achieve remarkably good results.

First, it avoids using vector quantization to code primitive

features so that rare but discriminative descriptors count in

classification. Second, it chooses ‘image-to-class’ distance

rather than ‘image-to-image’ distance to make a decision

so that it bears a good generalization ability. Due to its

success, there are a few variations of the original NBNN

algorithm. In [1] Behmo et al. parameterize NBNN to

relax its restrictive assumption that all classes have similar

densities in feature space. In the kernelized version of

NBNN [22], the independent assumption is criticized by in-

troducing kernel between image representations. Compared

with NBNN kernel [22], we also break the independent

assumption by incorporating the spatio-temporal structure

of the action data. Following NBNN, we also see its
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Figure 2. Overview of the Proposed Method. 1) An action video is uniformly divided into a fixed number of stages, and is represented by a

set of stage-descriptors (orange query points); 2) Distances of stage-descriptors to action class sets (blue, green and red) are calculated by

NN search; 3) Distances of stage-descriptors are gathered in temporal order to generate class-related squared distance matrices (marked by

class-related dashed rectangular boxes); 4) Weights on the spatial (left side of the matrix) and the temporal (top of the matrix) domain are

learnt to discover key factors of actions and predict action labels

application in video analysis. Yang et al. [31] use NBNN to

classify 3D actions represented by dimension-reduced ac-

tion descriptors, EigenJoint. In [34], NBNN is re-designed

as Naive-Bayes based Mutual Information Maximization

(NBMIM) to solve action detection problem. Negative

samples are involved in nearest neighbor matching to

improve the discriminative ability of descriptors. Recently,

the combination of NBNN and CNN [10], as well as the

effort to speeding up NN search [9], revive the possibility

of NBNN’s return in computer vision.

3. Proposed Method

In this section, we introduce how the proposed method

predicts actions and discovers key joints and stages as well.

The overview of our method is illustrated in Fig. 2. We

first introduce a set of stage-descriptors to represent a 3D

sequence (Sec. 3.1). Then NBNN [2] is used as a basic

framework to classify actions (Sec. 3.2). Finally, the learn-

ing of spatial and temporal weights is introduced to discover

key poses and spatial joints for action recognition (Sec. 3.3).

3.1. 3D Action Representation

In skeleton-based action recognition, each 3D action is

a sequence of 3D poses, but different actions may have dif-

ferent temporal lengths. To provide a unified presentation,

we partition each action into N temporal windows of equal

length as shown in Fig. 2. Each one of the temporal win-

dows is called a temporal stage, which is characterized by

the 3D poses in its corresponding window. Assuming each

3D pose has J joints for its skeleton, for a temporal stage

descriptor x, the 3D pose in its jth frame is denoted as

pj ∈ R
3J , and the related velocity of that pose is denoted

as vj ∈ R
3J . Then the pose part xp and the velocity part

xv of x is defined as below,

xp = [(p1)
⊺
, ... , (pl)

⊺
]
⊺

xv = [(v1)
⊺
, ... , (vl)

⊺
]
⊺

(1)

Similar to [26], we also normalize xp and xv to have

l2 norm equals to one. In our experiment, it shows such

a normalization can perform slightly better than using the

original features. As we use both original 3D pose and its

velocity to represent 3D actions, a temporal stage descriptor

x of l frames is presented as:

x = [(xp)
⊺
, (xv)

⊺
]
⊺

(2)

Finally, a 3D action video is described by its N stage-

descriptors V = {xi}Ni=1
.

3.2. NBNN

Given a query action video Vq = {xi}Ni=1
, the goal is

to find which class c ∈ {1, 2, ..., C} the video Vq belongs
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to. NBNN follows maximum a posteriori (MAP) rule for

classification. When assuming equal prior p(c) = 1

C
, the

predicted class is:

c∗ = argmax
c

p(c|Vq) = argmax
c

p(Vq|c) (3)

With the Naive-Bayes assumption (data samples are in-

dependent with each other), Eq. 3 can be written as,

c∗ = argmax
c

p(Vq|c)

= argmax
c

p(x1, ...,xN |c)

= argmax
c

N
∏

i=1

p(xi|c) (4)

Based on the analysis of [2], the probability density of

each primitive x in a class c, namely p(x|c), can be esti-

mated according to the distance between x and the nearest

neighbor of x in class c, and Eq. 4 is then re-written as

c∗ = argmin
c

N
∑

i=1

‖xi −NNc(x
i)‖2 (5)

where NNc(x
i) is the nearest neighbor of xi in class c.

As a non-parametric model, NBNN has no training

phase. For a query 3D action Vq = {xi}Ni=1
, each of its

temporal stages will match against C classes separately by

finding the best matched temporal stage, i.e., nearest neigh-

bor, in that class. The better the match, i.e., the smaller the

NN distance, the stronger this temporal stage will vote for

that class c. Otherwise, if a temporal stage cannot find a

good match in that class, it will not provide a strong vote to

that class. As Vq has in total N temporal stages, the final

decision is the summation over all of the N votes towards

to C classes, as explained in Eq. 5.

3.3. SpatioTemporal NBNN

For a specific action, usually only a subset of joints are

activated for action performing, and for different actions,

their activated joints are different. Hence in action classi-

fication, we can only focus on the activated spatial joints,

and at the same time suppress those that are not discrimina-

tive or easily affected due to occlusions or capturing noises.

Meanwhile, for a set of temporal stages, not every stage is

of equal importance neither. Depending on action class, a

certain temporal stage can be more discriminative than oth-

ers for classification. As illustrated in Fig. 2, the descriptor

(shadowed orange query square) of stage i is more discrim-

inative than the beginning one and the ending one.

To identify important spatial joints and temporal

stages simultaneously, we propose to leverage a bilinear

classifier [19] to learn spatio-temporal weights for both

of them in the framework of NBNN. Although previous

works have studied how to pick important spatial joints or

temporal poses, not many works can address both of them

simultaneously.

Spatio-temporal Matrix

Though we assume that stage descriptors are independent

in NBNN, they actually depend on each other in a cer-

tain spatio-temporal structure. Therefore, to capture the

spatio-temporal structure of 3D actions representation, we

represent a 3D action from a set V = {xi}Ni=1
to a matrix,

as illustrated in Weights Learning block of Fig. 2. For

a given video sample with N stages, its spatio-temporal

matrix is defined as

X = [x1, ... ,xN ] (6)

Stage-descriptors of an action are re-organized column

by column following the temporal order. We further de-

fine the nearest neighbor matrix of X in c as XNN
c =

[NNc(x
1), ... , NNc(x

N )], and the squared distance ma-

trix to class c is defined as

Xc = (X −XNN
c )⊙ (X −XNN

c ) (7)

where ⊙ is an element-wise product. Xc is regarded as

a representation of X for class c, and it is a combination

of element-wise stage-to-class distances of the testing sam-

ple. Summation of all the elements in Xc is equivalent to
∑N

i=1
‖xi −NNc(x

i)‖2 in Eq. 5.

Considering elements of Xc bear different contributions

to classification, NBNN should be parameterized to empha-

size those discriminative ones. We can simply vectorize Xc

as χc, and the NBNN decision function Eq. 5 is then re-

defined as c∗ = argmin
c

w⊺χc, where the weight w can

be learnt by linear SVM. However, as Xc is a large matrix,

the number of weights to be determined is too many. This

strategy is not only time consuming but also has the risk of

over-fitting. Hence, a bilinear classifier is adopted in our

formulation.

Based on the squared distance matrix in Eq. 7, the clas-

sification score of a query matrix X to class c is then deter-

mined by a bilinear function fc(·), which is defined as

fc(Xc) = (us
c)

⊺ Xc u
t
c (8)

where us
c ∈ R

M and ut
c ∈ R

N are the spatial and tempo-

ral weights of action class c. As a result, the classification

becomes

c∗ = argmin
c

fc(Xc) (9)

As can be seen from Eq. 8, the proposed method provides

weights for both temporal stages and spatial joints. After a

rearrangement, Eq. 9 can be represented as,

c∗ = argmin
c

N
∑

i=1

ut
c(i) ‖(xi −NNc(x

i))
⊺√

us
c‖

2

(10)
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where
√· is an element-wise square-root of a vector. It is

worth noting that, NBNN is a special case of ST-NBNN.

When us
c and ut

c are assigned to 1, Eq. 10 becomes NBNN

in Eq. 5. ST-NBNN generalizes NBNN by breaking the

Naive-Bayes rule. Instead of assuming each stage is

independent, we introduce the spatio-temporal structure of

3D action into our framework.

Spatial and Temporal Weights Learning

Our objective function is similar to tensor SVM. Following

the learning strategy of [3], we adopt the one-vs.-all strat-

egy to classify actions. With empirical loss, the objective

function of spatio-temporal weight learning is defined as

min
u

s

t
,ut

c

1

2
‖us

c(u
t
c)

⊺‖2 + λ
K
∑

i=1

ξi

s.t
∑N

i=1

ut
c(i) = N, ut

c � 0

ξi > max(0, 1− cifc(X
i
c))

2

ξi > 0, i = 1, ...,K

(11)

in which K is the number of training video samples, and

ci ∈ {−1, 1} is the action label of the corresponding sam-

ple. Xi
c is the ith training sample in class c. λ is a parameter

for classification error penalty.

The reason why we set linear constraints to temporal

weights but not to spatial weights is as following. For the

spatial domain we do not know how many key joints will be

involved (some joints do not have any contribution in recog-

nition), and how important those activated joints compared

with others, while on the temporal domain, each stage of

an action counts in classification. Experiment results also

show that linear constraints on the spatial domain do not

bear any contribution to performance, but the temporal con-

straints do.

The optimization of Eq. 11 is regarded as an iterative

process. There are two steps in each iterative round, 1)

fix ut
c and update us

c, 2) fix us
c then update ut

c. ut
c is

initialized to 1.

Fix ut
c and Update us

c : With ut
c fixed, Eq. 11 is

treated as a l2-regularized l2 loss SVM problem shown

below

min
u

s

c

1

2
β1‖us

c‖2 + λ

K
∑

i=1

max(0, 1− cifc(X
i
c))

2

(12)

where β1 = ‖ut
c‖

2
.

Fix us
c and Update ut

c : With updated us
c, Eq. 11 is

regarded as a convex optimization problem with linear

Method AS1 AS2 AS3 Ave.

NBNN-∞ 85.8 92.0 96.4 91.4

NBNN-15 86.8 92.0 96.4 91.7

NBNN+SVM 90.6 90.3 96.4 92.4

Lie Group [25] 95.4 83.9 98.2 92.5

SCK+DCK [8] – – – 94.0

HBRNN [5] 93.3 94.6 95.5 94.5

ST-LSTM [14] – – – 94.8

Graph-Based [29] 93.6 95.5 95.1 94.8

Ours 91.5 95.6 97.3 94.8

Table 1. Comparison of Results on MSR-Action3D (%)

constraints shown below

min
u

t

c

1

2
β2‖ut

c‖
2
+ λ

K
∑

i=1

max(0, 1− cifc(X
i
c))

2

s.t
∑N

i=1

ut
c(i) = N, ut

c � 0

(13)

where β2 = ‖us
c‖

2
.

This optimization process is operated iteratively until the

objective function Eq. 11 converges.

4. Experiment

In this section, we experiment the proposed method

on three 3D action datasets and compare its performance

to existing methods. Implementation details are provided

in Sec. 4.1. Comparison results on the MSR-Action3D

dataset [12], the UTKinect dataset [30], and the Berkeley

MHAD dataset [17] are provided and discussed in Sec. 4.2.

Experiment results show that though ST-NBNN is simple, it

is able to achieve state-of-the-arts performance of 3D action

recognition and effectively discover key factors of actions.

4.1. Implementations

3D Action Representation. The one-vs.-all strategy is used

in this method. To ensure the responses of linear functions

fc(·) are comparable with each other, each sample Xi
c is

mean-centralized by µi =
∑C

c=1
sum(Xi

c)/(C×M ×N),
where sum(·) sums up entries of the input matrix.

The setting of stage number is indicated in the Sec. 4.2.

Considering the variation of action sequences’ duration,

stages defined in Sec. 3.1 may have overlaps with each other

stages when given sequences are not too long.

To ensure that the representation introduced in Sec. 3.1

is location-invariant, each joint of the skeleton is centralized

by subtracting coordinates of the hip joint.

Nearest Neighbor Search. To boost the nearest neighbor

searching process, KD-tree implementation [16] is used in

our method.
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Figure 3. Parameter Sensitivity Analysis on MSR-Action Dataset.

The x-axis indicates the chosen number of local poses. The sub-

title indicates the chosen number of temporal stages.

Spatio-Temporal Weights Learning. The training

matrices Xc are generated by a leave-one-video-out

strategy, which means all the stage-descriptors of query

training video are excluded in searching region when query

stage-descriptors search for nearest neighbors.

In our optimization, us
c and ut

c are learnt iteratively. To

solve the SVM problem of Eq. 12, we use a SVM tool-

box [4] implemented by Chang et al., and to update ut
c,

a convex optimization toolbox [6] is used.

4.2. Results and Analysis

MSR-Action3D

Here we use the evaluation protocol described in [12]. 20

actions are grouped into three subsets AS1, AS2 and AS3.

Each of the action set contains eight actions. In this exper-

iment, the number of local pose l is 10 and the number of

stage N is 15. We compare ST-NBNN with three baseline

methods and five state-of-the-art skeleton-based methods.

The results are shown in Table. 1.

Three baseline methods included in the comparison are

(1) NBNN without stage setting (NBNN-∞); (2) NBNN

with 15 stages (NBNN-15); and (3) NBNN with weights

learning by linear SVM (NBNN+SVM). In NBNN-∞, the

number of stage N is determined by N = P − l+1, where

P is the length of the action video. Table. 1 shows that

there is a slight improvement from NBNN-∞ to NBNN-

15, which indicates that the informative stages do exist to

help differentiate actions. In NBNN+SVM, we use linear

SVM to learn weights for every element of Xc. As we can

see, learnt weights do help improve the performance, es-

pecially in AS1. However, it also causes over-fitting. In

Method Accuracy

NBNN-∞ 95.5

NBNN-15 95.5

NBNN+SVM 94.0

Key-Motif [27] 93.5

Simplices [26] 96.5

ST-LSTM [14] 97.0

Lie Group [25] 97.1

Graph-Based [29] 97.4

SCK+DCK [8] 98.2

Ours 98.0

Table 2. Comparison of Results on UTKinect (%)

AS2, although the training accuracy has already achieved

100%, the testing accuracy drops. Besides, NBNN+SVM

takes much more time to learn as it has much more parame-

ters compared with the proposed method. The results in Ta-

ble. 1 show that ST-NBNN bears the ability to achieve even

better performance than NBNN+SVM. The comparisons

with five state-of-the-art methods show that the proposed

method achieves the current best performance. In addition,

our method is better than the non-linear models [29, 8, 25],

and the deep learning based methods [14, 5].

We also evaluate the two main parameters, N and l of

ST-NBNN on this dataset. We range l from 1 to 13 and set

N from 1 to 21. As Fig. 3 shows, ST-NBNN needs a suffi-

cient number of stages to learn the spatio-temporal weights

and obtain good performance. When the number of stages

is larger than 11, ST-NBNN can still help improve the per-

formance with only 3 poses in each stage. However, further

increasing N and l will not improve the performance.

The key stages, joints discovered from MSR-Action 3D

dataset are shown in Fig. 6. The results are quite interesting.

In this dataset, Hand Catch and Side Boxing are not easy to

be differentiated. However, ST-NBNN focuses on different

motions of these two actions to differentiate them. For the

Hand Catch, ST-NBNN mainly focuses on the x-direction

motion of the key joint (right hand). While for the Side

Boxing, ST-NBNN cares much about the y and z directions

though x is the main direction of this action. A similar

situation happens in Forward Kick. ST-NBNN does not

choose the foot joints to focus on, but put more weight to

the right hand since in Forward Kick performing, the right

hand always move upward (y direction) concomitantly.

Besides, as shown in Fig. 6 i) and j), the proposed method

can also indicate different phases of actions. The two peaks

of the temporal weight of Pick Up and Throw are related to

the Pick Up and Throw two phases respectively.

UTKinect

We use the leave-one-out validation protocol described
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 0  1  2  3  4

 5  6  7  8  9

0  Walk

1  Sit Down

2  Stand Up

3  Pick Up

4  Carry

5  Throw

6  Push

7  Pull

8  Wave Hands

9  Clap Hands

Figure 4. An Example of Spatio-Temporal Weight Matrix and

Squared Distance Matrix (One pose feature of Pull Action). ST-

Weight Matrix is on the top-left corner, and squared distance ma-

trices are on the right side. Each matrix is 60 by 15. The related

feature of discovered joints are marked by red box.

in [30] to evaluate our proposed method. Based on the

description, there are 20 rounds of testing in our experi-

ment. The parameters chosen for spatio-temporal weights

learning are the same in each round. The number of local

pose l is set to 3, and the number of stage N is 15.

Table. 2 shows that our method achieves 2.5% improve-

ment from baseline NBNN, and NBNN+SVM is again in-

ferior to ST-NBNN. With a large number of parameters,

NBNN+SVM leads to over-fitting. The comparison with

existing methods [27, 26, 25, 14, 29, 8] shows that ST-

NBNN can achieve competitive performance.

In Fig. 4, we provide an example of learnt spatio-

temporal weight matrix and squared distance matrices Xc

from Pull action in UTKinect dataset. Due to the limi-

tation of space, we only provide the first position feature

of each stage and their related weights. Elements aij of

the spatio-temporal weight matrix are determined by aij =
us
c(i)× ut

c(j), i = 1, ...,M, j = 1, ..., N . The brighter the

elements of matrix, the larger the value of the elements. The

red-square-marked region is related to the x, y, z coordinates

of right hand (joint 11 and 12). In this dataset, subjects are

required to perform Pull action by right hand, and the figure

shows that ST-NBNN can discover it. From the right side,

matrix 7 is the darkest one, which means that the testing

sample has the smallest distance from action 7 (Pull), and

Method Accuracy

NBNN-∞ 88.0

NBNN-20 88.0

NBNN+SVM 100.0

SMIJ [18] 95.4

Meta-cognitive RBF Network [23] 97.6

Kapsouras et al. [7] 98.2

HBRNN [5] 100.0

ST-LSTM [14] 100.0

Ours 100.0

Table 3. Comparison of Results on Berkeley MHAD (%)

Percentage of Noisy Joints
0 0.1 0.2 0.3 0.4 0.5

A
c
c
u

ra
c
y

0.75

0.8

0.85

0.9

0.95

1

NBNN-20
NBNN+SVM
ST-NBNN

Figure 5. Influence of Noisy Joints on Accuracy of Berkeley

MHAD Dataset

therefore the testing sample belongs to Pull. The weight

matrix selects the commonly most discriminative part of

matrices, and it proves that our proposed method is able to

discover key factors of actions.

Berkeley MHAD

We follow the experimental protocol described in [17] on

this dataset. The sequences performed by the first seven

subjects are for training while the ones performed by the

rest subjects are for testing. Due to the high sampling rate,

most of the data is redundant. We down-sample each se-

quence by picking one frame of each ten frames. Under this

setting, the number of local pose l is 20, and the number of

stage N is 20. We compare ST-NBNN with three baseline

methods and five state-of-the-art skeleton-based methods.

The results are shown in Table. 3.

Table. 3 shows that although the accuracy of NBNN is

only 88%, we can achieve 100% accuracy with the help

of weights learning. Besides, comparisons with previous

works [18, 23, 7, 5, 14] show that our spatio-temporal

weights learning method is able to effectively discover key

factors of actions and achieve the best performance.

Considering that the skeletal data captured by motion

capture system is more accurate than Kinect depth sensor,

we evaluate the tolerance and robustness of ST-NBNN to

random noise of skeleton data. We further add noise to
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a) High Arm Wave b) Hand Catch c) Draw Circle d) Side Boxing

g! Joggingf! Side Kicke) Forward Kick h! Golf Swing

i! Two Hands Wave j! Pick Up & Throw

x  

1st  motion  2nd  

y

z

x-y

x-z

y-z

Other Key Joints

Figure 6. Key Stages and Key Joints with their Key Motions from MSR-Action3D. Colored joints are with weights larger than average

weights. The most informative joints are marked by bright color, and the second most informative joints are marked by light color. The

global key motions are indicated by different colors. For example, the key motion directing in the x direction is colored by bright red for

the 1st most informative joint, and by light red for the 2nd most informative joint. Only the motion of 1st and 2nd key joints are marked.

The temporal weights for each action are shown as gray images. Each square in that image represents a temporal stage. The whiter the

square, the higher the temporal weight. The key stage is highlighted by a red box. We illustrate each key stage using its 4 representative

3D poses. The bottom two actions have two key stages each.

joints of skeletal data to see whether our method is robust to

joint noises and can meanwhile still pick out the informative

joints. We randomly choose 10%, 20%, 30%, 40% and 50%

joints of 35 joints of a pose, and for each selected joints we

add noise ranging from -5 to 5 to each dimension of coordi-

nates of joints. The involvement of noise will result in mis-

matches of related dimension of feature when searching for

nearest neighbors. The influence of noisy joint on accuracy

is shown in Fig. 5. The curve shows that with the increas-

ing of noisy joints percentage, the accuracy of NBNN drops

dramatically, while ST-NBNN can maintain high perfor-

mance on this dataset. Meanwhile, NBNN+SVM is again

inferior to ST-NBNN under the setting of noisy joints. ST-

NBNN can still pick up the informative joints and keep the

performance on high level.

5. Conclusion

In this work, we extend NBNN to ST-NBNN for

skeleton-based action recognition. Compared with NBNN,

ST-NBNN considers the spatio-temporal structure of 3D

actions and combines the strength of both non-parametric

model and also parametric model to achieve better per-

formance. Despite using only a linear classifier, the pro-

posed method works surprisingly well on three bench-

mark datasets and achieves competitive results compared

with state-of-the-arts using sophisticated end-to-end mod-

els. Moreover, our proposed method can discover criti-

cal spatial joints and temporal stages, which are essential

to capture the spatio-temporal patterns of 3D actions, and

which is not always achievable via using end-to-end models

such as deep learning. Our results demonstrate the potential

of using non-parametric method for skeleton-based action

recognition.
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