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Abstract

We introduce an unsupervised semantic scene labeling

approach that continuously learns and adapts semantic

models discovered within a data stream. While closely re-

lated to unsupervised video segmentation, our algorithm

is not designed to be an early video processing strategy

that produces coherent over-segmentations, but instead,

to directly learn higher-level semantic concepts. This is

achieved with an ensemble-based approach, where each

learner clusters data from a local window in the data

stream. Overlapping local windows are processed and en-

coded in a graph structure to create a label mapping across

windows and reconcile the labelings to reduce unsupervised

learning noise. Additionally, we iteratively learn a merging

threshold criteria from observed data similarities to auto-

matically determine the number of learned labels without

human provided parameters. Experiments show that our

approach semantically labels video streams with a high de-

gree of accuracy, and achieves a better balance of under

and over-segmentation entropy than existing video segmen-

tation algorithms given similar numbers of label outputs.

1. Introduction

Visual perception is critical in many applications that use

scene semantics to help successfully perform tasks. Moti-

vating examples include planning routes that avoid undesir-

able terrain and identifying goal landmarks in autonomous

driving. Deep learning has helped push the state-of-the-art

in visual classification [17, 30, 37] and semantic scene la-

beling [4, 7, 19] in recent years. These advances, in part,

have been due to large sets of labeled data that required a

tremendous amount of human annotation effort [5, 37].

However, the generalization of supervised learners

across domains is still an open area of research. Even

with millions of training images, the data distribution of

a training set is unable to adequately represent all do-

mains. Adapting requires additional training data, param-

eter tuning and/or re-training of at least part of the super-

vised learning system. This batch style training process in-

Figure 1. Comparison of segmentation output for our technique

which directly models semantics without regard to locality, and

hierarchical graph-based (GBH) segmentation which emphasizes

segmentation coherency using strict locality rules. Our approach

labels all four traffic cones consistently (column two), whereas

GBH assigns unique labels to each cone (column three).

hibits on-line learning and discovery of novel concepts. In

some real-world applications, the time latency introduced

while humans label data to adapt visual classifiers has been

addressed with semi-supervised [33] and self-supervised

learning techniques [26, 27], but still require hours of la-

beling effort or are limited to binary classification tasks.

To further address the needs of these real-world applica-

tions, we introduce an unsupervised semantic scene labeling

(USSL) technique. Similar to video segmentation, USSL

localizes semantic concepts from a data stream without hu-

man intervention. However, most existing segmentation al-

gorithms are used as an early pre-processing step to gener-

ate coherent, over-segmented regions in video [1, 18, 34].

In other words, the segmented output adheres to strict pixel

connectivity in localized regions. Since our motivating ap-

plications seek semantic models for visual classification,

USSL directly models the semantics in a scene without re-

gard to locality. Figure 1 illustrates this difference, where

the four traffic cones are assigned the same label by our

USSL technique (second column), but assigned unique la-

bels with a similar number of segments from the hierarchi-

cal graph-based segmentation [11] (column three).

Unsupervised learning can be error prone because of

the lack of explicit guidance on which feature patterns to

learn. Variations in illumination, perspective and occlusion

are only some of the many challenges that impact feature

patterns in data. To minimize variance of visual properties

seen during processing, USSL learns on a local level, i.e.,

a small window of sequential frames from the data stream.
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Learning is performed using agglomerative clustering with

a merging threshold criteria unique to each window. Lo-

cal models are learned for overlapping sliding windows to

yield an ensemble of learners. The ensemble is encoded in a

graph structure and used to reconcile unsupervised learning

errors, and create a label mapping between the local win-

dows to generate a global label set for the data stream.

We compare USSL with existing video segmentation al-

gorithms to illustrate the uniqueness of directly modeling

semantic concepts within the data stream, instead of sim-

ply outputting coherent connected pixels. Results show that

USSL produces good label accuracy and better balances un-

der and over-segmentation entropy. Further, our technique

automatically determines the number of semantic labels to

model since it iteratively learns a merging threshold from

data similarities observed in previous frames of the stream.

2. Related Work

Semantic scene labeling has largely been addressed as

a supervised learning problem. Semantic scene labeling of

outdoor environments has been performed with CNNs [4, 7,

19], a forest of regression trees [23] and through combined

learning of semantic classes and geometric classes [31]. He

and Upcroft extend semantic scene labeling for 3-D envi-

ronments [13], and techniques have been adapted for pars-

ing and labeling cluttered indoor environments [4, 14]. The

success of these supervised approaches comes at the high

cost of collecting labeled training data for learning.

In many real-world applications, the ability to discover

novel concepts on the fly or change domains with minimal

visual perception interrupt is important. The autonomous

robotics domain, in particular, has sought ways to learn se-

mantic concepts with minimal human supervision. Tech-

niques include evaluating structural change given environ-

mental models [26], and pairing visual data with secondary

data types such as contact sensor readings [15, 16], Li-

DAR [12, 27] or radar [21], which supply labels related to

traversability automatically. However, these classifiers tend

to only learn binary label models, e.g., traversable. These

real-world applications and the need of multi-concept label

sets are the primary motivation of our work.

Most similar to our approach is work done in label propa-

gation and video segmentation. Label propagation is semi-

supervised, where existing labels from a small set of im-

ages or video frames are propagated to other similar data.

Jain and Grauman [6] introduced an active label propaga-

tion approach to obtain foreground/background masks for

large image sets. Chen and Corso [3] learned weightings

for motion and appearance models to propagate pixels la-

bels throughout videos. Video segmentation assumes no

a priori label information and techniques have used mo-

tion [2, 22], visual appearance features [9, 11] or a com-

bination of both [29, 32] to partition out distinct concepts

in the scene. There are two major drawbacks of these ap-

proaches. First, relying only on motion cues groups static

background objects into a single class and does not cap-

ture complete scene context. Second, these techniques re-

quire the entire video to be loaded into memory for process-

ing, which is incompatible with applications that provide

a continuous stream of visual data. Stream-based alterna-

tives to existing video segmentation models [11, 25] have

been introduced, but show a significant degrade in perfor-

mance relative to full video segmentation techniques [34].

Xu et al. [36] introduce a hierarchical streaming video seg-

mentation approach, which processes non-overlapping slid-

ing windows, and maintain label coherency throughout the

stream by using segmentations and features from the previ-

ous sliding window when processing the current window.

The biggest difference between existing video segmen-

tation approaches and our work in this paper is the desired

output, and the process of determining the parameters to

achieve this output. Existing video segmentation output is

often highly over-segmented and not necessarily designed

for applications seeking semantic models. Even techniques

producing hierarchical output leave the hierarchical level

selection to the user. Our work focuses on directly learning

and modeling semantics without any human supervision.

3. Unsupervised Semantic Scene Labeling

We use unsupervised principles common to many seg-

mentation algorithms, but seek a concise, i.e., minimally

over-segmented, semantically labeled output similar to the

goal of supervised semantic scene labelers. At a high level,

our unsupervised semantic scene labeling (USSL) approach

uses agglomerative clustering to iteratively create and adapt

a set of semantic models as data flows in from the stream.

Unlike many top performing segmentation algorithms and

supervised semantic labelers, USSL learns the number of

semantic labels without a priori specified parameters or

knowledge of classes. This parameterless, bottom-up dis-

covery allows our approach to easily model novel objects,

terrain or other concepts throughout the stream.

While unsupervised learning has the advantage of not re-

quiring labeled data, the lack of explicit direction regard-

ing which feature patterns map to which semantics often

results in noisy output. We use an ensemble-like approach

and cluster over local windows to reduce visual variations

seen over longer periods of time, which helps reduce some

of the noise unsupervised learning may introduce. Like

other streaming segmentation algorithms, local processing

also avoids memory consumption issues. The ensemble re-

sults are encoded in a graph structure to generate a mapping

to a global label set. Figure 2 illustrates the high level al-

gorithm flow of USSL, and details of the approach are pro-

vided throughout the remainder of this section.
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Figure 2. Overview of the unsupervised semantic scene labeling algorithm. The next image from the data stream is over-segmented, and

segments are agglomeratively merged with existing models from previous frames in the stream. Overlapping local models are created for

a window in the stream and these local label sets are mapped and reconciled using a graph encoding to generate a global label set.

3.1. Image Representation

Frames from the data stream enter the USSL system se-

quentially for processing. USSL performs scene segmenta-

tion starting with superpixels from incoming frames instead

of individual pixels as superpixels provide more area to ex-

tract features important for semantic modeling. We use the

graph based (GB) image segmentation [8] to generate the

initial over-segmented superpixels that USSL cluster. The

segmentation is run with parameters σ = 0.5, K = 25 and

min = 100. The set of segments from an incoming frame

is denoted as S = {s1, s2, . . . }.

Most image segmentation techniques rely on color and

location features to identify coherent groupings of pixels.

USSL uses additional features to help encode semantic in-

formation just as in many supervised approaches [23, 28].

Each si is represented by a LAB colorspace histogram com-

prised of 23 bins per channel, a 150 term codebook of SIFT

descriptors [20], and Local Binary Patterns (LBP) [24] his-

tograms created using 8 surrounding neighbors for neigh-

borhoods of radii 1, 2 and 4. The three LAB channels, three

LBP radii and the SIFT histograms are L1 normalized in-

dependently. These frame segments are then passed to the

current instantiated local windows for processing.

3.2. Local Model Learning

USSL learns semantic models by agglomeratively clus-

tering data from local windows in the stream. We refer to

the set of groups output by the clustering algorithm for a

local window as local label models, M = {m1,m2, . . . }.

Each local window, W , consists of p consecutive frames

and M is constructed and adapted iteratively for each in-

coming frame. The Local Model Learning box in Figure 2

illustrates this iterative clustering flow. Segments in S from

a new frame (shown as red circles) enter the system and are

agglomeratively clustered with existing local models in M

(learned from previous frames in W ). Existing local models

are shown as blue circles in the figure, whose different sizes

denote that local models represent varying volumes of W .

Much of the novelty and contribution of USSL’s local

learning technique comes from how similarity is evaluated

to define merge and halting criteria during agglomerative

clustering. Specifically, USSL evaluates similarity between

two models, mi and mj , with respect to each of the his-

togram feature types described in Section 3.1. We denote

feature type r of model m as fr
m. Formally, similarity with

respect to feature r is

ρ(mi,mj , r) =
1.0

1.0 +
√

(fr
mi

− fr
mj

)2
, (1)

which yields values on the range of [0.0, 1.0]. Feature types

are evaluated individually with the idea that models with

high similarity across all appearance feature types are most

likely to represent the same semantic concept. Thus, re-

stricting merging to these models will reduce the noise in-

troduced by unsupervised learning. However, not all fea-

tures are relevant for all semantic classes so USSL also eval-

uates the overall linear combination of feature similarities:

φ(mi,mj) =
∑

∀r∈R

ρ(mi,mj , r). (2)

Overall scores are on the range of [0, |R|], where R is the

set of feature types.

A merging threshold is learned for each feature similar-

ity score, which are used to define the agglomerative clus-

tering halting criteria. The halting criteria allows USSL to

automatically determine the number of local label models

in W without user defined parameters. USSL maintains a

distribution of similarity history, H , that includes similarity

scores computed between segments in S and their nearest
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neighbors (NN). Since S is composed of over-segmented

superpixels, most NNs should share the same label. Thus,

H models the expected similarities observed between mod-

els that USSL would want to merge.

The similarity history distributions are updated at each

new frame by finding the NN of each si with respect to both

S and M . The NN of si from S and M are defined as:

NS = argmax
mj∈S,mj 6=si

φ(si,mj) (3)

NM =argmax
mj∈M

φ(si,mj). (4)

The set of neighboring pairs for all of S is

Nt = {NS , NM | ∀si ∈ S}, (5)

and the observed similarities to be added to H is

Hr = [ρ(mi,mj , r) | ∀(mi,mj) ∈ Ni] (6)

Ho = [φ(mi,mj) | ∀(mi,mj) ∈ Ni], (7)

where similarity history is maintained per feature r and the

overall combination of similarities. For all experiments in

this paper, we compute the 3-NN with respect to S and M ,

when constructing H for USSL.

H is used to model the expected similarity between mod-

els that represent the same semantic concept. To account for

noise in the unsupervised NN modeling, per-feature merg-

ing thresholds are defined by the mean and standard devia-

tion of the Hr distribution,

αr = µr − σr. (8)

This definition of αr models the observed similarities as a

Gaussian distribution and assumes that the left tail repre-

senting one standard deviation below the mean are outlier

values. While ideally models representing the same se-

mantic concept would have high similarity across all fea-

ture types, USSL also accounts for feature irrelevance with

a secondary merging threshold defined as the mean of dis-

tribution Ho, i.e., αo = µo. This threshold is set higher

with respect to the distribution statistics to ensure that most

feature types are significantly strong to compensate for a

feature similarity that falls below the αr threshold.

Using these thresholds, a sign weighting β is defined for

the similarity between models mi and mj , such that

β =







−1 φ(mi,mj) < αo

−1 ρ(mi,mj , r) < αr

1 otherwise.

(9)

The β weight is applied to the overall similarity scores be-

tween models and indicates which model pairs meet the

merging threshold criteria. When no pairs obtain a positive

similarity score, agglomerative clustering algorithm halts.

Existing unsupervised segmentation algorithms use ad-

jacency context to select which pixels to merge, which en-

forces pixel connectivity in the segmentation output. Adja-

cency is valuable information for USSL as well since any

si ∈ S in the same relative location are likely to be over-

segmented regions of the same semantic label. An adja-

cency matrix, A, is maintained for models in M , where

models mi and mj are adjacent, i.e., A[mi][mj ] = 1, if

they have adjacent pixels in the same frame or pixels with

the same coordinates in adjacent frames (i.e., adjacent in

time). Since our goal is to model semantic concepts directly,

without regard to locality, a set of randomly selected non-

adjacent models, T , are also evaluated as potential merging

options. This allows the semantic models to grow fast lo-

cally since all adjacencies are evaluated, but also expand

when a good non-adjacent merge is found. The model pair

resulting in the greatest similarity score,

l∗ = max
∀mi∈M,mj∈A[mi]∪T

β ∗ φ(mi,mj), (10)

is selected as the next merge. If l∗ is negative, no model

pairs met the merging threshold criteria and the agglomera-

tive clustering halts. The system then begins to process the

next frame. Experiments in this paper choose two random

non-adjacent models for each mi comparison.

3.3. Global Mapping and Label Reconciliation

We leverage an ensemble-like approach to create a global

semantic labeling of the data stream from the local labeled

windows. Specifically, a new local window Wi is created

every p
2 frames so each local modeling processes a set of

overlapping frames as its neighboring windows, Wi−1 and

Wi+1. The right half of Figure 2 illustrates the local win-

dow overlap. Three local windows outlined in red, green

and blue can be seen above or below their p frames in the

data stream. Region colors in the images represent a mod-

eled semantic concept for that local window. Notice that

concepts are over-learned at the local level, i.e., many col-

ors map to the same ground truth concept. USSL uses the

frame overlap between adjacent windows to map across lo-

cal labelings, reconcile labeling errors and minimize over-

learning to generate a global label set.

The idea behind this ensemble is as follows. Let M1 and

M2 be sets of over-learned label models for the same win-

dow W . Assume that all mi ∈ M1,mj ∈ M2 represent

models consisting of pixels from exactly one ground truth

class, and that M1 and M2 do not have any identical label

models, i.e., mi 6= mj ∀mi,mj ∈ M1,M2. Label mod-

els from M1 and M2 can be easily mapped with a graph-

based encoding to generate labeled output with less over-

segmentation. Let the graph, G = (V,E), be constructed

such that each mi,mj ∈ V , and e(mi,mj) ∈ E if mi and

mj have at least one common pixel in their modeled data.
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Figure 3. Illustration of mapping from a local model ensemble to a global semantic set. Local models that assign a label to the same pixels,

e.g., mi ∈ M1 and mj ∈ M2, are encoded as edge connected vertices in a graph. Encoding all pixels overlaps in the ensemble generates

connected components in the graph that represent models for the global label set.

Given this encoding, connected components in G represent

label models from the ensemble of M1 and M2, and pro-

duce a label set with no worse over-segmentation than any

of the two local models given our assumptions.

In practice, the ensemble of models produce connected

components that can drastically reduce over-segmentation

seen locally. Figure 3 illustrates a graph-based encoding

and global label output produced from two overlapping win-

dows using USSL on the xiph.org container video [3]. Lo-

cal windows M1 and M2 are outlined in red and green, re-

spectively. In this illustration, p = 4 and we only show the

two frames where M1 and M2 overlap. We focus on local

models mi ∈ M1 and mj ∈ M2, which both include pixels

representing water in the video. Notice that with respect to

pixel overlap, mi∩mj > 0, which is encoded by e(mi,mj)
in G and shown in the illustration with the thickest graph

edge. However, mi ∩ mj 6= mi ∪ mj meaning mi and

mj also overlap with other m ∈ M1,M2. These edges are

also encoded in G, and a connected component represent-

ing the union of pixels from these overlapping models is

formed. This aggregation of slightly different learned mod-

els in M1 and M2 results in a global labeling with less over-

segmentation as indicated in the global output with larger

areas of the water assigned the same “yellow” label.

G is constructed on-line, where vertices and edges are

added after each Wi is processed. Unsupervised local mod-

els undoubtedly are noisy, so the raw connected component

output includes any of this noise encoded in G. To rec-

oncile some of the label noise from the ensemble of unsu-

pervised learners, edges that provide minimal pixel overlap

evidence are cut. An edge weight, we, is set to the number

of intersecting pixels between its vertices. Each edge con-

tributes a fraction of the total edge weight associated with

one of its vertices. This fraction of weight is used to repre-

sent the label correspondence evidence. Let edge e(vi, vj)
link vi ∈ Mi and vj ∈ Mj , then the evidence score relative

to vi is computed as

ǫvi(e(vi, vj)) =
we(vi,vj)

∑

∀ei∈EWj

wei

, (11)

where EWj
is the set of edges connecting vi and a label

model from Wj (one of its adjacent, overlapping sliding

windows). If ǫ(e, vi) < τ or ǫ(e, vj) < τ then the edge

is cut. For our experiments, τ = 0.5. Any connected com-

ponent remaining in G believed to contain enough pixel in-

formation to adequately model a semantic concept (cover-

ing at least .05% of the video volume) is used to represent

a global label model. Connected components that are too

small are merged into their NN global model so every pixel

in the stream has a global label in the final output.

4. Evaluation

We compare USSL to two segmentation algorithms

implemented in the LIBSVX library [35]. The hierar-

chical graph-based (GBH) segmentation algorithm [11]

was shown by Xu and Corso to be the most successful

super-voxel segmentation in their comparison of five algo-

rithms [34]. GBH is a hierarchical extension of GB segmen-

tation [8]. The output is a set of hierarchical levels, where

levels closer to the root contain fewer and coarser-grained

segments. GBH was not originally designed to work on

streaming data, and requires every frame to be loaded into

memory simultaneously for processing. Stream GBH [36]
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Table 1. Number of labels in the ground truth, and those found

by USSL, GBH and S-GBH. GBH and S-GBH output is from the

hierarchy level with a similar number of labels as USSL.
|T | # Segments : |S| Hierarchy Level

Video GT USSL GBH S-GBH GBH S-GBH

bus 10 17 19 25 20 12

container 7 24 24 31 19 12

garden 4 17 17 18 21 14

ice 4 11 15 11 19 14

soccer 6 19 20 24 18 13

stefan 5 13 15 12 19 15

(S-GBH) was introduced as an extension to GBH to process

data streams of infinite length. Only a subset of frames from

the stream are loaded into memory at any given time. In this

respect, S-GBH is very similar to USSL. S-GBH also out-

puts a hierarchical set of segmentations. During evaluation,

some metrics are computed across the entire hierarchical

output of GBH and S-GBH, but we focus on comparisons

using the hierarchical segmentation level that produces a

similar number of labels as USSL.

In the remainder of this section we summarize the

videos and segment output of USSL, GBH and S-GBH.

We use three quantitative metrics to evaluate the segmen-

tation/labeling traits of the compared methods. For these

measures we define S as the set of segments or labels pro-

duced by an algorithm, where Sj indexes the jth label. T is

the set of ground truth segments and V is the entire video.

We denote the volume of a particular segment using the no-

tation |Sj | and the total video volume as |V |.

4.1. Dataset Overview

For quantitative evaluation of USSL, we use the dataset

from Chen et al. [3], which comprises a subset of the

xiph.org videos. Each video has been annotated with pixel-

wise labels from 24 semantic classes (the same classes de-

fined in the MSRC object dataset [28]). Although eight

videos have ground truth labels, we only use the six (bus,

container, garden, ice, soccer and stefan) that have a 50%

majority of their pixels labeled. The average video length

of this dataset is about 80 frames.

While GBH and S-GBH vary a set of parameters to pro-

duce a hierarchy of labeled output, USSL aims to directly

discover the number of semantic labels in the data stream

and produces a single labeled output. Table 1 summarizes

the number of labels in the ground truth (GT), and output

by USSL, GBH and S-GBH. We select labeled output of

GBH and S-GBH from the hierarchical level (also shown

in the table) that most closely matches the number of la-

bels discovered by USSL. Notice that the hierarchical level

selections for GBH and S-GBH are consistent across the

videos. This suggests that USSL has learned a segmenta-

tion that maps to a particular range of parameters used in

the hierarchical approaches.

Table 2. Comparison of average per-class and overall pixel-wise

labeling accuracy for USSL and GBH variants.

AVG-ACC OVERALL-ACC

Video USSL GBH S-GBH USSL GBH S-GBH

bus 0.294 0.314 0.137 0.401 0.647 0.370

container 0.613 0.491 0.641 0.907 0.786 0.855

garden 0.638 0.627 0.418 0.686 0.689 0.438

ice 0.628 0.524 0.534 0.941 0.898 0.870

soccer 0.446 0.426 0.438 0.910 0.876 0.892

stefan 0.544 0.571 0.541 0.841 0.878 0.837

Average 0.527 0.492 0.452 0.781 0.796 0.710

4.2. 3D Segmentation Accuracy

Xu and Corso [34] use 3D segmentation accuracy to

compare several supervoxel segmentation techniques. Seg-

mentation accuracy for Ti is defined as the fraction of pix-

els correctly classified by segments in S. Specifically, all

Sj ∈ S with a majority of pixels that overlap Ti make up

S̄. The total intersection of Sj ∈ S̄ with Ti makes up the

correctly classified fraction. Formally,

ACC(Ti) =

∑

S̄ |VTi
∩ VS̄j

|

|VTi
|

. (12)

For each experiment we present the average accuracy of all

Ti, which gives equal weight to all ground truth classes,

and the overall accuracy which depicts the total number of

correctly classified pixels:

AV G-ACC(V ) =
1

t

t
∑

i=0

ACC(Ti) (13)

OV ERALL-ACC(V ) =
|VTi

|ACC(Ti)
∑

|VTi
|

(14)

Table 2 shows the average per class and overall accuracy

achieved by the techniques with respect to the ground truth.

USSL outperforms S-GBH in all but one accuracy measure

(AVG-ACC for container), and most performance improve-

ments are significantly large. Further, USSL performs com-

parably to GBH in terms of accuracy, yielding better av-

erage per class and overall accuracy in half of the videos.

USSL’s worst performance is seen on the bus video, which

significantly drags down the dataset average. Omitting the

bus video, USSL overall accuracy is better than GBH, out-

performing it 0.857 to 0.825.

GBH does produce higher average and overall accuracy

than USSL on some videos, but this does not correspond

to being outperformed on every class in the video. Fig-

ure 4 shows the accuracy breakdown per class for these two

videos, bus and stefan. Classes are shown in decreasing or-

der of pixel frequency. The low accuracy achieved by USSL

on the car and tree classes in the bus video (Figure 4(a)) ac-

count for most of its poor overall performance. However,

USSL identifies the next four classes just as well or better
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(a) bus

(b) stefan

Figure 4. Breakdown of the per-class classification accuracy for

the bus and stefan video clips.

than GBH. Similarly, USSL achieves better segmentation

for the face and ground classes in the stefan video.

4.3. Over-Segmentation and Under-Segmentation
Entropy

Gong and Shi [10] define two conditional entropy mea-

sures to evaluate general image segmentation. The over-

segmentation and under-segmentation conditional entropies

show the trade-off between fine and coarser-grained seg-

mentations, respectively. These measures are evaluated by

overlaying the ground truth and segmentation output on top

of one another. The set of probabilities used in the condi-

tional entropy measures can be found by determining the

volume of labels in T and S:

P (T = i) =
|VT,i|

|V |
(15)

P (S = j) =
|VS,j |

|V |
(16)

P (T = i, S = j) =
|VT,i ∩ VS,j |

|V |
(17)

Given these definitions, over-segmentation entropy

(OSE) is found by overlaying S onto T

H{S|T} = −
∑

S,T

P (T, S) logP (S|T ), (18)

where a more consistent mapping, i.e., there is one domi-

nant Sj overlaid on Ti, produces a lower entropy measure.

Similarly, under-segmentation entropy (USE) is found

by overlaying T onto S

H{T |S} = −
∑

S,T

P (T, S) logP (T |S). (19)

Figure 5 shows the balance between over-segmentation

and under-segmentation entropy of each technique. Curves

are drawn for each of the 30 hierarchical levels produced by

GBH and S-GBH, but the level from Table 1 for each tech-

nique is outlined in red. Overall, the subfigures show a sim-

ilar performance trend as was seen in the accuracy compar-

isons. USSL achieves lower conditional entropy measures

than S-GBH for all but one video, and performs similarly or

better than GBH in many of the videos.

4.4. Qualitative Comparison

Figure 6 shows label output on frame 40 of the

videos. This qualitative comparison shows a smoother la-

beling output by USSL. That is, USSL displays less over-

segmentation, yielding larger areas of correctly labeled re-

gions. These qualitative results also show many examples

of USSL assigning the same semantic concept to discon-

nected pixels in the video. In addition to the cone example

discussed earlier (seen in column four), disconnected seg-

ments are found for humans in the soccer and stefan videos

and areas of water (colored in blue) in the container video.

The qualitative images also reiterate that USSL had a

number of challenges with the bus video. We hypothesize

this is due to high occlusion of objects and the reflective

and transparent properties of windows in the scene. The

fence occludes the vehicles and creates noisy features for

these regions even though it in fact is not part of these ob-

jects. Similarly, features from other objects may be associ-

ated with the vehicles in the scene because they are visible

through the transparent window or can be seen in the reflec-

tion of the glass. Thus, USSL incorrectly assigns the same

label to most of the trees and vehicles.

5. Conclusion

We introduced a variation on video segmentation that fo-

cuses on directly learning higher-level semantic concepts

in streaming data without human annotation. Our unsuper-

vised semantic labeling approach analyzes underlying pat-

terns in local windows of a video stream, while avoiding

strict locality modeling to ensure disconnected regions of

the same semantic are modeled together. By over-learning

locally, noise introduced by unsupervised learning can be

minimized, and remaining errors can be reconciled using an

ensemble of local learners encoded in a graph-based struc-

ture. This approach balances under and over-segmentation

entropy better than existing video segmentation algorithms,

while automatically determining the number of semantic la-

bels without human provided parameters.
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(a) bus (b) container (c) garden

(d) ice (e) soccer (f) stefan

Figure 5. Comparison of the under-segmentation versus over-segmentation entropies for the six xiph.org videos. All 30 levels of the

hierarchical output for GBH and S-GBH are plotted to compare against the single output of USSL. The GBH and S-GBH hierarchical

levels that produce about the same number of semantic labels as USSL (also listed in Table 1) is outlined in red.

Figure 6. Qualitative comparison of output on the xiph.org dataset. The output is from frame 40 of each video, which roughly corresponds

to the middle frame of each video clip.
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