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Abstract

Translating or rotating an input image should not affect the

results of many computer vision tasks. Convolutional neural net-

works (CNNs) are already translation equivariant: input image

translations produce proportionate feature map translations.

This is not the case for rotations. Global rotation equivariance

is typically sought through data augmentation, but patch-wise

equivariance is more difficult. We present Harmonic Networks

or H-Nets, a CNN exhibiting equivariance to patch-wise trans-

lation and 360-rotation. We achieve this by replacing regular

CNN filters with circular harmonics, returning a maximal

response and orientation for every receptive field patch.

H-Nets use a rich, parameter-efficient and fixed computa-

tional complexity representation, and we show that deep feature

maps within the network encode complicated rotational invari-

ants. We demonstrate that our layers are general enough to be

used in conjunction with the latest architectures and techniques,

such as deep supervision and batch normalization. We also

achieve state-of-the-art classification on rotated-MNIST, and

competitive results on other benchmark challenges.

1. Introduction

We tackle the challenge of representing 360◦-rotations

in convolutional neural networks (CNNs) [19]. Currently,

convolutional layers are constrained by design to map an image

to a feature vector, and translated versions of the image map

to proportionally-translated versions of the same feature vector

[21] (ignoring edge effects)—see Figure 1. However, until now,

if one rotates the CNN input, then the feature vectors do not

necessarily rotate in a meaningful or easy to predict manner.

The sought-after property, directly relating input transformations

to feature vector transformations, is called equivariance.

A special case of equivariance is invariance, where feature

vectors remain constant under all transformations of the input.

This can be a desirable property globally for a model, such as a

classifier, but we should be careful not to restrict all intermediate

levels of processing to be transformation invariant. For example,

∗http://visual.cs.ucl.ac.uk/pubs/harmonicNets/

Figure 1. Patch-wise translation equivariance in CNNs arises from

translational weight tying, so that a translation π of the input image I,

leads to a corresponding translation ψ of the feature maps f(I), where

π 6=ψ in general, due to pooling effects. However, for rotations, CNNs

do not yet have a feature space transformation ψ ‘hard-baked’ into

their structure, and it is complicated to discover what ψ may be, if it

exists at all. Harmonic Networks have a hard-baked representation,

which allows for easier interpretation of feature maps—see Figure 3.

consider detecting a deformable object, such as a butterfly. The

pose of the wings is limited in range, and so there are only certain

poses our detector should normally see. A transformation invari-

ant detector, good at detecting wings, would detect them whether

they were bigger, further apart, rotated, etc., and it would encode

all these cases with the same representation. It would fail to

notice nonsense situations, however, such as a butterfly with

wings rotated past the usual range, because it has thrown that

extra pose information away. An equivariant detector, on the

other hand, does not dispose of local pose information, and so it

hands on a richer and more useful representation to downstream

processes. Equivariance conveys more information about an

input to downstream processes, it also constrains the space of

possible learned models to those that are valid under the rules of

natural image formation [30]. This makes learning more reliable

and helps with generalization. For instance, consider CNNs.

The key insight is that the statistics of natural images, embodied

in the correlations between pixels, are a) invariant to translation,

and b) highly localized. Thus features at every layer in a CNN

are computed on local receptive fields, where weights are shared
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across translated receptive fields. This weight-tying serves both

as a constraint on the translational structure of image statistics,

and as an effective technique to reduce the number of learnable

parameters—see Figure 1. In essence, translational equivariance

has been ‘baked’ into the architecture of existing CNN models.

We do the same for rotation and refer to it as hard-baking.

The current widely accepted practice to cope with rotation is

to train with aggressive data augmentation [16]. This certainly

improves generalization, but is not exact, fails to capture

local equivariances, and does not ensure equivariance at every

layer within a network. How to maintain the richness of

local rotation information, is what we present in this paper.

Another disadvantage of data augmentation is that it leads to the

so-called black-box problem, where there is a lack of feature

map interpretability. Indeed, close inspection of first-layer

weights in a CNN reveals that many of them are rotated,

scaled, and translated copies of one another [34]. Why waste

computation learning all of these redundant weights?

In this paper, we present Harmonic Networks, or H-Nets.

They design patch-wise 360◦-rotational equivariance into deep

image representations, by constraining the filters to the family of

circular harmonics. The circular harmonics are steerable filters

[7], which means that we can represent all rotated versions of

a filter, using just a finite, linear combination of steering bases.

This overcomes the issue of learning multiple filter copies in

CNNs, guarantees rotational equivariance, and produces feature

maps that transform predictably under input rotation.

2. Related Work

Multiple existing approaches seek to encode rotational

equivariance into CNNs. Many of these follow a broad

approach of introducing filter or feature map copies at different

rotations. None has dominated as standard practice.

Steerable filters At the root of H-Nets lies the property

of filter steerability [7]. Filters exhibiting steerability can be

constructed at any rotation as a finite, linear combination of base

filters. This removes the need to learn multiple filters at different

rotations, and has the bonus of constant memory requirements.

As such, H-Nets could be thought of as using an infinite bank

of rotated filter copies. A work, which combines steerable

filters with learning is [23]. They build shallow features from

steerable filters, which are fed into a kernel SVM for object

detection and rigid pose regression. H-Nets use the same filters

with an added rotation offset term, so that filters in different

layers can have orientation-selectivity relative to one another.

Hard-baked transformations in CNNs While H-Nets

hard-bake patch-wise 360◦-rotation into the feature represen-

tation, numerous related works have encoded equivariance to

discrete rotations. The following works can be grouped into

those, which encode global equivariance versus patch-wise

equivariance, and those which rotate filters versus feature maps.

[3] introduce equivariance to 90◦-rotations and dihedral

flips in CNNs by copying the transformed filters at different

rotation–flip combinations. More recently they generalized this

theory to all group-structured transformations in [4], but they

only demonstrated applications on finite groups—an extension

to continuous transformations would require a treatment on

anti-aliasing and bandlimiting. [24] use a larger number of

rotations for texture classification and [26] also use many

rotated handcrafted filter copies, opting not to learn the filters.

To achieve equivariance to a greater number of rotations, these

methods would need an infinite amount of computation. H-Nets

achieve equivariance to all rotations, but with finite computation.

[6] feed in multiple rotated copies of the CNN input and

fuse the output predictions. [17] do the same for a broader

class of global image transformations, and propose a novel

per-pixel pooling technique for output fusion. As discussed,

these techniques lead to global equivariances only and do not

produce interpretable feature maps. [5] go one step further and

copy each feature map at four 90◦-rotations. They propose 4

different equivariance preserving feature map transformations.

Their CNN is similar to [3] in terms of what is being computed,

but rotating feature maps instead of filters. A downside of this

is that all inputs and feature maps have to be square; whereas,

we can use any sized input.

Learning generalized transformations Others have tried

to learn the transformations directly from the data. While this is

an appealing idea, as we have said, for certain transformations it

makes more sense to hard-bake these in for interpretability and

reliability. [25] construct a higher-order Boltzmann machine,

which learns tuples of transformed linear filters in input–output

pairs. Although powerful, they have only shown this to work on

shallow architectures. [9] introduced capsules, units of neurons

designed to mimic the action of cortical columns. Capsules are

designed to be invariant to complicated transformations of the

input. Their outputs are merged at the deepest layer, and so are

only invariant to global transformation. [22] present a method to

regress equivariant feature detectors using an objective, which

penalizes representations, which lie far from the equivariant

manifold. Again, this only encourages global equivariance;

although, this work could be adapted to encourage equivariance

at every layer of a deep pipeline.

3. Problem analysis

Many computer vision systems strive to be view indepen-

dent, such as object recognition, which is invariant to affine

transformations, or boundary detection, which is equivariant

to non-rigid deformations. H-Nets hard-bake 360◦-rotation

equivariance into their feature representation, by constraining

the convolutional filters of a CNN to be from the family of

circular harmonics. Below, we outline the formal definition of

equivariance (Section 3.1), how the circular harmonics exhibit

rotational equivariance (Section 3.2) and some properties of

the circular harmonics, which we must heed for successful

integration into the CNN framework (Section 3.2).

Continuous domain feature maps In deep learning we use
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Figure 2. Real and imaginary parts of the complex Gaussian filter

Wm(r,φ′;e−r2 ,0)=e−r2eimφ, for some rotation orders. As a simple

example, we have setR(r)=e−r2 and β=0, but in general we learn

these quantities. Cross-correlation, of a feature map of rotation order

n with one of these filters of rotation orderm, results in a feature map

of rotation order m+n. Note the negative rotation order filters have

flipped imaginary parts compared to the positive orders.

feature maps, which live in a discrete domain. We shall instead

use continuous spaces, because the analysis is easier. Later on

in Section 4.2 we shall demonstrate how to convert back to the

discrete domain for practical implementation, but for now we

work entirely in continuous Euclidean space.

3.1. Equivariance

Equivariance is a useful property to have because transforma-

tions π of the input produce predictable transformationsψ of the

features, which are interpretable and can make learning easier.

Formally, we say that feature mapping f :X→Y is equivariant

to a group of transformations if we can associate every

transformation π∈Π of the input x∈X with a transformation

ψ∈Ψ of the features; that is,

ψ[f(x)]=f(π[x]). (1)

This means that the order, in which we apply the feature

mapping and the transformation is unimportant—they commute.

An example is depicted in Figure 1, which shows that in CNNs

the order of application of integer pixel-translations and the

feature map are interchangeable. An important point of note

is that π 6=ψ in general, so if we seek for Π to be rotations in

the image domain, we do not require to find the set of f , such

that Ψ “looks like” a rotation in feature space, rather we are

searching for the set of f , such that there exists an equivalent

class of transformations Ψ in feature space. A special case of

equivariance is invariance, when Ψ={I}, the identity.

3.2. The Complex Circular Harmonics

With data augmentation CNNs may learn some rotation

equivariance, but this is difficult to quantify [21]. H-Nets take

the simpler approach of hard-baking this structure in. If f is

the feature mapping of a standard convolutional layer, then

360◦-rotational equivariance can be hard-baked in by restricting

the filters to be of the from the circular harmonic family (proof

in Supplementary Material)

Wm(r,φ;R,β)=R(r)ei(mφ+β). (2)

K K

Figure 3. DOWN: Cross-correlation of the input patch with Wm yields

a scalar complex-valued response. ACROSS-THEN-DOWN: Cross-

correlation with the θ-rotated image yields another complex-valued

response. BOTTOM: We transform from the unrotated response to the

rotated response, through multiplication by eimθ.

Here r,φ are the spatial coordinates of image/feature maps, ex-

pressed in polar form, m∈Z is known as the rotation order,

R :R+→R is a function, called the radial profile, which con-

trols the overall shape of the filter, and β ∈ [0,2π) is a phase

offset term, which gives the filter orientation-selectivity. During

training, we learn the radial profile and phase offset terms. Ex-

amples of the real component of Wm for a ‘Gaussian envelope’

and different rotation orders are shown in Figure 2. Since we

are dealing with complex-valued filters, all filter responses are

complex-valued, and we assume from now on that the reader un-

derstands that all feature maps are complex-valued, unless other-

wise specified. Note that there are other works (e.g., [32]), which

use complex filters, but our treatment differs in that the complex

phase of the response is explicitly tied to rotation angle.

Rotational Equivariance of the Circular Harmonics

Some deep learning libraries implement cross-correlation

⋆ rather than convolution ∗, and since the understanding is

slightly easier to follow, we consider correlation. Strictly,

cross-correlation with complex functions requires that one

of the arguments is conjugated, but we do not do this in our

model/implementation, so

[W⋆F](p′,q′)=

∫

W(p−p′,q−q′)F(p,q)dpdq (3)

[W∗F](p′,q′)=

∫

W(p′−p,q′−q)F(p,q)dpdq. (4)

Consider correlating a circular harmonic of order m with a

rotated image patch. We assume that the image patch is only

able to rotate locally about the origin of the filter. This means

that the cross-correlation response is a scalar function of input

image patch rotation θ. Using the notation from Equation 1,

and recalling that we are working in polar coordinates (r,φ),
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counter-clockwise rotation of an image F(r,φ) about the origin

by an angle θ is F(r,πθ[φ])=F(r,φ−θ). As a shorthand we

denote Fθ :=F(r,πθ[φ]). It is a well-known result [23, 7] (proof

in Supplementary Material) that

[Wm⋆Fθ]=eimθ[Wm⋆F0], (5)

where we have written Wm in place of Wm(r,φ;R,β) for

brevity. We see that the response to a θ-rotated image Fθ

with a circular harmonic of order m is equivalent to the

cross-correlation of the unrotated image F0 with the harmonic,

followed by multiplication by eimθ. While the rotation is done in

input space, multiplication by eimθ is performed in feature space,

and so, using the notation from Equation 1, ψθ
m[•] = eimθ ·•.

This process is shown in Figure 3. Note that we have included a

subscriptm on the feature space transformation. This is impor-

tant, because the kind of feature space transformation we apply

is dependent on the rotation order of the harmonic. Because

the phase of the response rotates with the input at frequency

m, we say that the response is an m-equivariant feature map.

By thinking of an input image as a complex-valued feature map

with zero imaginary part, we could think of it as 0-equivariant.

The rotation order of a filter defines its response properties to

input rotation. In particular, rotation orderm=0 defines invari-

ance andm=1 defines linear equivariance. Form=0 this is be-

cause, denoting fm :=[Wm⋆F0], thenψθ
0[fm]=ei·0θ ·fm=fm,

which is independent of θ. For m=1, ψθ
1[fm]=ei·1θfm—as

the input rotates, eiθfm is a complex-valued number of constant

magnitude fm, spinning round with a phase equal to θ. Natu-

rally, we are not constrained to using rotation orders 0 or 1 only,

and we make use of higher and negative orders in our work.

Arithmetic and the Equivariance Condition Further

important properties of the circular harmonics, which are

proven in the Supplementary Material, are: 1) Chained cross-

correlation of rotation ordersm1 andm2 lead to a new response

with rotation order m1 + m2. 2) Point-wise nonlinearities

h :C→C, acting solely on the magnitudes maintain rotational

equivariance, so we can interleave cross-correlations with

typical CNN nonlinearities adapted to the complex domain. 3)

The summation of two responses of the same orderm remains

of order m. Thus to construct a CNN where the output is

M-equivariant to the input rotation, we require that the sum

of rotation orders along any path equalsM , so

N∑

i=1

mi=M. (6)

This is the fundamental condition underpinning the equivariance

properties of H-Net, so we call it the equivariance condition.

We note here that for our purposes, our filter W−m=Wm

(the complex conjugate), which saves on parameters, but this

does not necessarily imply conjugacy of the responses unless

F is real, which is only true at the input.

Figure 4. An example of a 2 hidden layer H-Net with m=0 output,

input–output left-to-right. Each horizontal stream represents a series of

feature maps (circles) of constant rotation order. The edges represent

cross-correlations and are numbered with the rotation order of the

corresponding filter. The sum of rotation orders along any path of

consecutive edges through the network must equalM=0, to maintain

disentanglement of rotation orders.

4. Method

We have considered the 360◦-rotational equivariance of

feature maps arising from cross-correlation with the circular

harmonics, and we determined that the rotation orders of

chained cross-correlations sum. Next, we use these results

to construct a deep architecture, which can leverage the

equivariance properties of circular harmonics.

4.1. Harmonic Networks

The rotation order of feature maps and filters sum upon cross-

correlation, so to achieve a given output rotation order, we must

obey the equivariance condition. In fact, at every feature map,

the equivariance condition must be met, otherwise, it should be

possible to arrive at the same feature map along two different

paths, with different summed rotation orders. The problem is

that combining complex features, with phases, which rotate at

different frequencies, leads to entanglement of the responses.

The resultant feature map is no longer equivariant to a single

rotation order, making it difficult to work with. We resolve this

by enforcing the equivariance condition at every feature map.

Our solution is to create separate streams of constant rota-

tion order responses running through the network—see Figure 4.

These streams contain multiple layers of feature maps, separated

by rotation order zero cross-correlations and nonlinearities. Mov-

ing between streams, we use cross-correlations of rotation order

equal to the difference between those two streams. It is very easy

to check that the equivariance condition holds in these networks.

When multiple responses converge at a feature map, we

have multiple choices of how to combine them. We could stack

them, we could pool across them, or we could sum them [5].

To save on memory, we chose to sum responses of the same

rotation order

Yp=
∑

m,n:m+n=p

Wm⋆Fn. (7)
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Figure 5. H-Nets operate in a continuous spatial domain, but we can

implement them on pixel-domain data because sampling and cross-

correlation commute. The schematic shows an example of a layer of an

H-Net (magnitudes only). The solid arrows follow the path of the im-

plementation, while the dashed arrows follow the possible alternative,

which is easier to analyze, but computationally infeasible. The intro-

duction of the sampling defines centers of equivariance at pixel centers

(yellow dots), about which a feature map is rotationally equivariant.

Yp is then fed into the next layer. Usually in our experiments,

we use streams of orders 0 and 1, which we found to work well

and is justified by the fact that CNN filters tend to contain very

little high frequency information [12].

Above, we see that the structure of the Harmonic Network

is very simple. We replaced regular CNN filters with radially

reweighted and phase shifted circular harmonics. This causes

each filter response to be equivariant to input rotations with

orderm. To prevent responses of different rotation order from

entangling upon summation, we separated filter responses into

streams of equal rotation order.

Complex nonlinearities Between cross-correlations, we

use complex nonlinearities, which act on the magnitudes of the

complex feature maps only, to preserve rotational equivariance.

An example is a complex version of the ReLU

C-ReLUb(Xe
iφ)=ReLU(X+b)eiφ. (8)

We can provide similar analogues for other nonlinearities and

for Batch Normalization [11], which we use in our experiments.

We have thus far presented the Harmonic Network. Each

layer is a collection of feature maps of different rotation orders,

which transform predictably under rotation of the input to the net-

work and the 360◦-rotation equivariance is achieved with finite

computation. Next we show how to implement this in practice.

4.2. Implementation: Discrete cross­correlations

Until now, we have operated on a domain with continuous

spatial dimensions Ω=R×R×{1,kℓ}. However, the H-Net

needs to operate on real-world images, which are sampled on a

2D-grid, thus we need to anti-alias the input to each discretized

layer. We do this with a simple Gaussian blur. We can then

use a regular CNN architecture without any problems. This

works on the fact that the order of bandlimited sampling and

Pixel filter Polar filter

Bandlimit and resample signal

Figure 6. Images are sampled on a rectangular grid but our filters are

defined in the polar domain, so we bandlimit and resample the data

before cross-correlation via Gaussian resampling.

cross-correlation is interchangeable [7]; so either we correlate

in continuous space, then downsample, or downsample then

correlate in the discrete space. Since point-wise nonlinearities

and sampling also commute, the entire H-Net, seen as a deep

feature-mapping, commutes with sampling. This could allow

us to implement the H-Net on non-regular grids; although, we

did not explore this.

Viewing cross-correlation on discrete domains sheds some

insight into how the equivariance properties behave. In Figure

5, we see that the sampling strategy introduces multiple

origins, one for each feature map patch. We call these, centers

of equivariance, because a feature map will exhibit local

rotation equivariance about each of these points. If we move

to using more exotic sampling strategies, such as strided cross-

correlation or average pooling, then the centers of equivariance

are ablated or shifted. If we were to use max-pooling, then

the center of equivariance would be a complicated nonlinear

function of the input image and harmonic weights. For this

reason we have not used max-pooling in our experiments.

Complex cross-correlations On a practical note, it is worth

mentioning, that complex cross-correlation can be implemented

efficiently using 4 real cross-correlations

WRe
m⋆FRe−WIm

m⋆FIm

︸ ︷︷ ︸

real response

+iWRe
m⋆FIm+WIm

m⋆FRe)
︸ ︷︷ ︸

imaginary response

. (9)

So circular harmonics can be implemented in current deep

learning frameworks, with minor engineering. We implement a

grid-resampled version of the filtersW(xi)=
∑

jgi(rj)W(rj),

with gi(xj) ∝ e−‖ri−xj‖
2

2
/(2σ2) (see Figure 6). The polar

representation (rj,φj) can be mapped from the components

rj by rj =[rjcosφj,rjsinφj]
⊤. If we stack all the polar filter

samples into a matrix we can write each point as the outer

product of a radial tensor Rj and trigonometric angular tensor

[cosmΦrj ,isinmΦrj ]
⊤. The phase offset β can be separated

out by noting that

Wm(rj)=

I∑

i=1

R(rj)

[
Icosβ −Isinβ
Isinβ Icosβ

][
cosmΦrj

isinmΦrj

]

(10)

where the complex exponential and trigonometric terms are

element-wise, and I is the identity matrix. This is just a reweight-

ing of the ring elements. In full generality, we could also use

a per-radius phase βri , which would allow for spiral-like left-

and right-handed features, but we did not investigate this.
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Figure 7. Networks used in our experiments. LEFT: MNIST networks,

as per [3]. RIGHT deeply-supervised networks (DSN) [20] for

boundary segmentation, as per [33]. Red boxes denote feature maps.

Blue boxes are pooling (max for CNNs and average for H-Nets). Green

boxes are side feature maps as per [33]; these are connected to the

DSN with dashed lines for ease of viewing. All main cross-correlations

are 3×3, unless otherwise stated in the experiments section.

4.3. Computational cost

We have increased the computational cost of cross-

correlation, in return for continuous rotational equivariance.

Here we analyze the computational cost in terms of number of

multiplications. In the standard cross-correlation, for an input of

size h·w·iZ, (height, width, input channels) and filters of size

k ·k ·oZ (height, width, output channels), the number of mul-

tiplications to form a feature map of the same size as the input

isM(Z)=hwk2iZoZ. In the H-Net, we have f rotation orders

on the input and r rotation orders on the output, so perform fr
complex cross-correlations. Each complex cross-correlation

can be formed from 4 real cross-correlations, so the number of

multiplications is 4M(H)fr, where iH and oH are the number

of input and output channels, respectively. Thus for similar com-

putational cost we equate the two to yieldM(Z)=4M(H)fr.
Rearranging; setting iH=oH, iZ=oZ and f=r; and taking the

square root of both sides, we arrive at a simple rule of thumb for

network design, iZ=2fiH. For example, if we want to build an

H-Net with similar computational cost to a regular CNN with 64

channels per layer, then if we use 2 rotation ordersm∈{0,1},

then the number of H-Net channels is 64/(2·2)=16.

5. Experiments

We validate our rotation equivariant formulation below,

performing some introspective investigations, and measuring

against relevant baselines for classification on the rotated-

MNIST dataset [18] and boundary detection on the Berkeley

Segmentation Dataset [1]. We selected our baselines as

representative examples of the current state-of-the-art and to

demonstrate that H-Nets can be used on different architectures

for different tasks. The networks we used are in Figure 7.

Method Test error (%) # params

SVM [18] 11.11 -

Transformation RBM [31] 4.2 -

Conv-RBM [27] 3.98 -

CNN [3] 5.03 22k

CNN [3] + data aug* 3.50 22k

P4CNN rotation pooling [3] 3.21 25k

P4CNN [3] 2.28 25k

H-Net (Ours) 1.69 33k

Table 1. Results. Our model sets a new state-of-the-art on the

rotated MNIST dataset, reducing the test error by 26%. * Our

reimplementation

5.1. Benchmarks

Here we compare H-Nets for classification and boundary

detection. Classification is a typical rotation invariant task, and

should suit H-Nets very well. In contrast, boundary detection is

a rotation equivariant task. The key to the success of the H-Net

is that it can achieve global equivariance, without sacrificing

local equivariance of features.

MNIST Of course, this is a small dataset, with simple visual

structures, but it is a good indication of how introducing the

right equivariances into CNNs can aid inference. We investigate

classification on the rotated MNIST dataset (new version) [18]

as a baseline. This has 10000 training images, 2000 validation

images, and 50000 test images. The 360◦-rotations and small

training set size make this a difficult task for classical CNNs.

We compare against a collection of previous state-of-the-art

papers and [3], who build a deep CNN with filter copies at

90◦-rotations. We try to mimic their network architecture for

H-Nets as best as we can, using 2 rotation order streams with

m∈ {0,1} through to the deepest layer, and complex-valued

versions of ReLU nonlinearities and Batch Normalization (see

Method). We also replace max-pooling with mean-pooling

layers, as shown in Figure 7. We perform stochastic gradient

descent on a cross-entropy loss using Adam [13] and an adap-

tive learning rate, which we divide by 10 if there has been no

improvement in validation accuracy in the last 10 epochs. We

train multiple models with randomly chosen hyperparameters,

and report the test error of the model that performed best on the

validation set, training on a combined training and validation set

Table 1 lists our results. This model actually has 33k parameters,

which is about 50% larger than the standard CNN and [3], which

have 22k. This is because it uses 5×5 convolutions instead of

3×3. Interestingly, it does not overfit on such a small dataset

and it still outperforms the standard CNN trained with rotation

augmentations, which we do not use. We set the new state-of-

the-art, with a 26% improvement on the previous best model.

Deep Boundary Detection Boundary detection is equiv-

ariant to non-rigid transformations; although edge presence

is locally invariant to orientation. The current state-of-the-art
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Method ODS OIS # params

HED, [33]* 0.640 0.650 2346k

HED, low # params [33]* 0.697 0.709 115k

Kivinen et al. [14] 0.702 0.715 -

H-Net (Ours) 0.726 0.742 116k

CSCNN†, [10] 0.741 0.759

DeepEdge†, [2] 0.753 0.772

N4-Fields†, [8] 0.753 0.769

DeepContour†, [28] 0.756 0.773

HED†, [33] 0.782 0.804 2346k

DCNN + sPb†, [15] 0.813 0.831

Table 2. Our model beats the non-pretrained neural networks baselines

on BSD500 [1]. *Our implementation.†ImageNet pretrained

depends on fine-tuning ImageNet-pretrained networks to

regress boundary probabilities on a per-patch basis. To

demonstrate that hard-baked rotation equivariance serves as

a strong generalization tool, we compared against a previous

state-of-the-art architecture [33], without pretraining. We

tried to mimic [33] as closely as possible, as shown in Figure

7. The main difference is that we divide the number of all

feature maps by 2, for faster, more stable training. They use

a VGG network [29] extended with deeply supervised network

(DSN) [20] side-connections. These are 1× 1-convolutions,

which perform weighted averages across all relevant feature

maps, resized to match the input. A binary cross-entropy loss

is applied to each side connection, to stabilize learning. A final

‘fusion’ layer is created by taking a weighted linear combination

of the side-connections, this is the final output. We adapt

side-connections to H-Nets, by using the complex magnitude

of feature maps before taking a weighted average. This means

that the resultant boundary predictions are locally invariant

to rotation. We added a small sparsity regularizer to our cost

function, because we found it improved results slightly. We call

the Harmonic variant of the DSN, an H-DSN. We also compare

against [33] with the number of parameters matched to H-DSN

(the first layer has 7 features, instead of 16, and so on).

We also compared with [14], who use a mean-and-

covariance-RBM. Their technique has five main contributions:

1) zero-mean, unit variance normalization of inputs, 2) sparsity

regularization of hidden units, 3) averaged ground truth

edge annotations, 4) average outputs to 16 input rotations, 5)

non-maximum suppression of results by the Canny method. We

perform the first 2 methods, but leave the last 3 alone. In particu-

lar, they do not pretrain on ImageNet, and attempt some kind of

rotation averaging for global equivariance, so are a good baseline

to measure against. We tested on the Berkeley Segmentation

Dataset (BSD500) [1]. As shown in Table 2 for non-pretrained

models, H-Nets deliver superior performance over current

state-of-the-art architectures, including [14], who also encode

rotation equivariance. Most noticeable of all is that we only

use 5% of the parameters of [33], showing how by restricting

Figure 8. Stability of the response magnitude to input rotation angle.

Blackm=0, bluem=1, greenm=2.

the search space of learnable models through hard-baking local

rotation equivariance, we need not learn so many parameters.

5.2. Model Insight

Here we investigate some of the properties of the H-Net

implementation, making sure that the motivations behind H-Net

design are achieved by the implementation.

Rotational stability As a sanity check, we measured the

invariance of the magnitude response to rotation form∈{0,1,2}.

We show the result of rotating a random input to an H-Net

layer in Figure 8. The response is very flat, with periodic small

fluctuations due to the inexactness of anti-aliasing.

Filter Visualization The real parts of the filters, from the

first layer of the boundary-detection-trained H-Net, are shown

in Figure 9. They are aligned at zero phase (β = 0) for ease

of viewing. Since the network is trained on zero-mean, unit

variance, normalized color images, the weights do not have the

natural colors we would see in real-world images. Nonetheless,

there is useful information we can glean from inspecting these.

Most 1st layer filters detect color boundaries, there are no blank

filters as one usually sees in CNNs, and there are few reoriented

copies. We also see from the phase histograms that all phases

are utilized by filters throughout the network, indicating full use

0 2 4 6

m
=

0
m

=
1

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

layer 1 layer 3 layer 5 layer 7 layer 9

m
=

0
m

=
1

Figure 9. Randomly selected filters and phase histograms from the

BSDS500 trained H-DSN. Filter are aligned at β=0; and the oriented

circles represent phase. We see few filter copies and no blank filters, as

usually seen in CNNs. We also see a balanced distribution over phases,

indicating that boundaries, and their deep feature representations, are

uniformly distributed in orientation.
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of the phase information. This is interesting, because it means

that the model’s parameters are being used fully, with low

redundancy, which we surmise comes from easier optimization

on the equivariant manifold.

Data ablation Here we investigate H-nets data-efficiency.

CNNs are massively data-hungry. Krizhevsky’s landmark paper

[16] used 60 million parameters, trained on 1.2 million 256×
256 RGB images quantized to 256 bits and split between 1000

classes, for a total of 10 bits of information per weight. Even this

vast amount of data was insufficient for training, and data aug-

mentation was needed to improve results. We ran an experiment

on the rotated MNIST dataset to show that with hard-baked

rotation equivariance, we require less data than competing meth-

ods, which is indeed the case (see Figure 10). Interestingly, and

predictably, regular CNNs trained with data augmentation still

perform worse than H-Nets, because they only learn global in-

variance to rotation, rather than local equivariances at each layer.

Feature maps We visualize feature maps in the lower layers

of an MNIST trained H-Net (see Figure 11). For given input,

we see the feature maps encode very complicated structures.

Left to right, we see the H-Net learns to detect edges, corners,

object presence, negative space, and outlines of objects. We

perform this for the BSD500 trained H-DSN (see Figure 12). It

shows equivariance is preserved through to the deepest feature

maps. It also highlights the compact representation of feature

presence and pose, which regular CNNs cannot do.

6. Conclusions

We presented a convolutional neural network that is locally

equivariant to patch-wise translation and, for the first time, to

continuous 360◦-rotation. We achieved this by restricting the fil-

ters to circular harmonics, essentially hard-baking rotation into

the architecture. This can be implanted onto other architectures

too. The use of circular harmonics pays dividends in that we

receive full rotational equivariance using few parameters. This

leads to good generalization, even with less (or less augmented)

training data. The only disadvantage we’ve seen so far is

the higher per-filter computational cost, but our guidance for

network design balances that cost against the more expressive

CNN
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Figure 10. Data ablation study. On the rotated MNIST dataset, we

experiment with test accuracy for varying sizes of the training set. We

normalize the maximum test accuracy of each method to 1, for direct

comparison of the falloff with training size. Clearly H-Nets are more

data-efficient than regular CNNs, which need more data to discover

rotational equivariance unaided.

Figure 11. Feature maps from the MNIST network. The arrows display

phase, and the colors display magnitude information (jet color scheme).

There are diverse features encoding edges, corners, whole objects,

negative spaces, and outlines.

representation. The better interpretability of the feature maps

is a bonus, because we know how they transform under input

image rotations. We applied our network to the problem of

classifying rotated-MNIST, setting a new state-of-the-art. We

also applied our network to boundary detection, again achieving

state-of-the-art results, for non-pretrained networks. We have

shown that 360◦-rotational equivariance is both possible and

useful. Our TensorFlowTMimplementation is available on the

project website.

Future work Extension of this work could involve hard-

baking yet more transformations into the equivariance properties

of the Harmonic Network, possibly extending to 3D. This

will allow yet more expressibility in network representations,

extending the benefits we have seen afforded by rotation

equivariance to a larger class of models and applications.

Acknowledgements Support is from Fight for Sight UK,

a Microsoft Research PhD Scholarship, EPSRC Nature Smart

Cities EP/K503745/1 and ENGAGE EP/K015664/1.

Figure 12. View best in color. Orientated feature maps for the H-DSN.

The color wheel shows orientation coding. Note that between layers

boundary orientations are colored differently because each feature

has a different β. This visualization demonstrates the consistency

of orientation within a feature map and across multiple layers. The

images are taken from layers 2, 4, 6, 8, and 10 in a clockwise order

from largest to smallest.
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