This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

A Compact DNN: Approaching GoogLeNet-Level Accuracy of
Classification and Domain Adaptation

Chunpeng Wu'? Wei Wen!, Tariq Afzal?, Yongmei Zhang?, Yiran Chen®, and Hai (Helen) Li?
"Electrical and Computer Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260
2LLG San Jose Lab, Santa Clara, CA 95054
3Electrical and Computer Engineering Department, Duke University, Durham, NC 27708

{chunpeng.wu, wei.wen}@pitt.edu, {tarig.afzal, jenny.zhang}@lge.com

{yiran.chen,hai.li}@duke.edu

Abstract

Recently, DNN model compression based on network ar-
chitecture design, e.g., SqueezeNet, attracted a lot of at-
tention. Compared to well-known models, these extremely
compact networks don’t show any accuracy drop on image
classification. An emerging question, however, is whether
these compression techniques hurt DNN'’s learning ability
other than classifying images on a single dataset. Our pre-
liminary experiment shows that these compression methods
could degrade domain adaptation (DA) ability, though the
classification performance is preserved. In this work, we
propose a new compact network architecture and unsuper-
vised DA method. The DNN is built on a new basic module
Conv-M that provides more diverse feature extractors with-
out significantly increasing parameters. The unified frame-
work of our DA method will simultaneously learn invari-
ance across domains, reduce divergence of feature repre-
sentations and adapt label prediction. Our DNN has 4.1M
parameters—only 6.7% of AlexNet or 59% of GoogLeNet.
Experiments show that our DNN obtains GoogLeNet-level
accuracy both on classification and DA, and our DA method
slightly outperforms previous competitive ones. Put all to-
gether, our DA strategy based on our DNN achieves state-
of-the-art on sixteen of total eighteen DA tasks on popular

Office-31 and Office-Caltech datasets.

1. Introduction and Motivation

The success of deep neural networks (DNNs) encour-
ages extensive applications on various types of platforms,
e.g., self-driving cars and VR headsets. To overcome the
hardware constraints, DNN model compression techniques,
from learning based [1, 2, 3] to network architecture de-

*Part of this work was done while C. Wu was an intern at LG San Jose
Lab.

sign [4, 5, 6], recently attracted a lot of attention. Inter-
estingly, most of these extremely compact DNN models do
not show accuracy drop on image classification. A critical
question emerges, however, other than classifying images
on a single dataset, whether the compression methods hurt
DNN’s learning ability.

In this work, we attempt to bridge the gap between com-
pressed DNN architecture and its domain adaptation (DA)
ability. The DA ability is to evaluate whether a machine
learning model can capture the covariate shift [7] between
source and target domains, and adapt itself to remove the
divergence. A model with outstanding semi-supervised or
unsupervised DA ability can greatly reduce the requirement
of manually labeled examples for real-world applications.

We observe DA accuracy degradation from model com-
pression methods based on architecture design, e.g., a DNN
with GoogLeNet-level [9] classification accuracy only ob-
tains AlexNet-level [8] DA accuracy. Table 1 shows our
experimental results. SqueezeNet [4] and FaConvNet [5]
are used to compare with AlexNet as they are respec-
tively the smallest DNN model achieving AlexNet-level and
GoogLeNet-level accuracy on image classification, to our
best knowledge. The popular dataset ImageNet 12 [10] is
adopted as image classification benchmark. Three standard
DA tasks on Office-31 [11] dataset are adopted, and the
unsupervised DA method used for all DNNs in Table 1 is
GRL [12]. The DNNs are pre-trained on ImageNet’12, and
then fine-tuned for all DA tasks. There is a big DA accu-
racy difference between AlexNet and SqueezeNet though
the two networks have almost the same classification accu-
racy. FaConvNet, which outperforms AlexNet by 12.9% on
classification, also slightly lags behind AlexNet on DA.

Intuitively, increasing parameters will lead to better ac-
curacy. Our following experiment shows that the DA accu-
racy of SqueezeNet and FaConvNet can be improved, but
can not reach the same level as their classification by solely

5668

Table 1: Image classification and unsupervised DA accuracy of DNN models on Office-31 dataset.

Task1 Task2 Task3
#Parameter | Classification | AMAZON DSLR WEBCAM

WEBCAM WEBCAM DSLR
AlexNet [8] 61 M 572 73.0 96.4 99.2
FaConvNet [5] 2.8 M 70.1 71.8 94.3 98.1
SqueezeNet [4] 1.2M 57.5 64.4 92.8 96.4
Rev-FaConvNet 48 M 70.3 74.1 96.5 99.2
Rev-SqueezeNet 22M 57.9 66.9 93.9 98.8

Previous layer
conv Ix1

Figure 1: Basic modules adopted in FaConvNet [5] (left)
and SqueezeNet [4] (right). Both modules use the “bottle-
neck” layer as shown in bold.

Previous layer
conv 1x1

| conv Ix1 | | conv 3x3 ‘

Concatenation

boosting parameter numbers. Specifically, without chang-
ing the structure of the two models, we increase the pa-
rameters of FaConvNet and SqueezeNet. The basic mod-
ules respectively adopted in FaConvNet and SqueezeNet are
first compared, as shown in Figure 1. The shared feature of
these two modules is the “bottleneck’ layer conv I x I as de-
noted in bold. We hence gradually increase parameters of
all “bottleneck” layers in FaConvNet and SqueezeNet until
no DA accuracy benefit could be obtained. The parameters
in other layers (e.g., the first convolutional layer in FaCon-
vNet and SqueezeNet) are then increased until no accuracy
gain. The final DA accuracy of the adapted models Rev-
FaConvNet and Rev-SqueezeNet are respectively shown in
Table 1. Our expectation is that Rev-FaConvNet’s accuracy
can be much higher than AlexNet. Rev-FaConvNet, how-
ever, only slightly outperforms AlexNet, with almost 70%
more parameters.

The objective of this work is to develop a compact DNN
architecture which can achieve the same level accuracy on
classification and DA. Our solution offers four important
features. First, our DNN has 4.1M parameters, which is
only 6.7% of AlexNet or 59% of GoogLeNet. The com-
pactness of our network can be attributed to the use of a new
module Conv-M which is a parameter-saving module, while
extract more details based on multi-scale convolution and
deconvolution, inspired by GoogLeNet’s Inception. Sec-

ond, our DA method consists of three components: Learn-
ing invariance across domains, reducing discrepancy of fea-
ture representations, and predicting labels. Third, experi-
ments show that our DNN obtains GoogleNet-level accu-
racy both on classification and DA. The DA accuracy gap
between GoogLeNet and other compact DNNs (FaConvNet
and Rev-FaConvNet) is much larger. Fourth, the unified
framework of our DA method slightly outperforms previ-
ous competitive methods, and our DA method based on
our DNN network achieves state-of-the-art on sixteen of to-
tal eighteen DA tasks on the popular Office-31 and Office-
Caltech [13] datasets.

2. Related Work

DNN model compression with little accuracy drop on
image classification traditionally are learning based. Liu
et al. [1] zero out more than 90% of AlexNet’s parameters
using a sparse decomposition, while Wen et al. [3] regular-
ize a DNN model with structured sparsity based on group
Lasso. Han et al. [2] prune the small-weight connections
and retrain the DNN with the remaining connections. More
recent research began to shrink a model directly based on
network architecture design. SqueezeNet [4] is built on the
fire module which feeds “squeeze” layer (1x 1 convoluton)
into “expand” layer (a combination of 1x1 and 3x3 con-
voluton). The basic structure of FaConvNet [5] is Convo-
lutional Layer as Stacked Single Basis Layer. A popular
design methodology of compact architectures extensively
uses small convolutional kernels (1x 1 and 3 x3), especially
the linear projection as the conv 1x1 layer shown in bold
in Figure 1. Based on the preliminary experimental result
in Table 1, we argue that it is necessary to redesign the ba-
sic module of these extremely shrunk DNNs, e.g., FaCon-
vNet and SqueezeNet, by introducing more diverse opera-
tions of feature extraction, in order to achieve high accuracy
on both classification and DA. The challenge lies in that
more complex feature extraction methods, e.g., multi-scale
convolution, often result in the steep increase of parameters,
as the basic module will be used reapeatedly. The shortcut
connection used in ResNet [14], for instance, can be under-

5669

stood as a parameter-saving solution of multi-scale feature
integration. We will adopt methods other than this bypass
structure.

Unsupervised DA. Following the early attempt of re-
weighting samples from source domain [15], Shekhar et
al. [16] learn dictionary based representations by minimiz-
ing the divergence between the source and target domains.
The subspace based methods, on the other hand, evaluate
the distance between domains in a low-dimensional mani-
fold [13] or in terms of Frobenius norm [17]. DNN based
methods have been proposed recently. Glorot et al. [18]
and Chopra et al. [19] learn cross-domain features using
auto-encoders, followed by the label prediction. A more
popular strategy is to combine feature adaptation with la-
bel prediction as s unified framework. DDC [20] introduces
adaptation layers and domain confusion metric into a CNN
architecture, while GRL [12] combines classifiers of label
and domain using a gradient reverse layer. DAN [21] and
RTN [22] focus on effectively measuring feature represen-
tations in kernel spaces. TRANSDUCTION [23] jointly op-
timizes the target label and domain transformation param-
eters. Our DA method adopts a unified framework, which
can simultaneously learn invariance across domains, reduce
divergence of feature representations and adapt label pre-
diction.

DNN based image segmentation. The DNNs of seg-
mentation and classification mainly differ in the use of up-
sampling layers to recover resolution. Various up-scaling
methods have been proposed and adopted, such as straight-
forward bicubic interpolation [24], learning based deconvo-
lution [25], and unpooling [26, 27]. We improve the de-
convolution [25] to remove artifacts that will be described
in Section 3.1, and use it as a type of shape feature ex-
tractor in the basic module of our DNN. With the consid-
eration of training convergence speed, the unpooling with
fewer parameters is a better choice, compared to deconvo-
lution, especially for small-scale and medium-scale prob-
lems. So we adopt unpooling for sample reconstruction
in our DA method. In addition, different strategies have
been presented to train segmentation networks. SegNet-
Basic [27] is directly trained as a whole. Long et al. [28], on
the other hand, adapt a popular classification network into
a fully convolutional network (FCN), and fine-tune it for
segmentation tasks. Yu et al. [29] show that accuracy can
be further improved by plugging their context module into
existing segmentation model. Our decoder design for sam-
ple reconstruction is inspired by FCN, while our structure is
simpler than the multi-stream structure in FCN.

3. Proposed Method

Motivated by the observation described in Section 1, we
propose a compact DNN architecture with a new basic mod-
ule Conv-M. Our DA method gradually tunes the feature

conv (CI) conv (C4) conv (C5)
(k: Ix1s: 1) (k: 1xls: 1) (k: Ix1s: 1)
l l l
conv (C2) dilated conv (DiC1) deconv (DeCl)

(k:3x3s:1g:4) | | (k:3x3s:1d:2g:4)

]

(k:3x3s:1g:4)

conv (C3) dilated conv (DiC2) deconv (DeC2)
(k:3x3s:1g:4) || (k:3x3s:1d:2g:4)| | (k:3x3s:1g:4)
! l l
dropout dropout dropout
(r: 0.2) (r: 0.2) (r: 0.2)

Figure 2: Module Conv-M used in our DNN. The output of
deconv is cropped to its input size. The ReL.U is adopted for
all types of convolution, which is not shown in the figure for
simplicity.

Figure 3: Visualization of activations in the same Conv-M
module in our network: Convolution (middle) and decon-
volution (right).

adaptation and label prediction.

3.1. DNN Architecture with Conv-M

Figure 2 shows a Conv-M module used in our DNN. Ac-
cording to the preliminary experiment and our analysis in
Section 1, the design idea is to capture more diverse details
at different levels, while using fewer parameters. To achieve
this goal, the dilated convolution [29] for multi-resolution
and deconvolution [25] are introduced. The dilated convo-
lution can extract features with a larger receptive field with-
out increasing the kernel size, e.g., extracting features from
a 5x5 window with a 3x3 kernel. The deconvolution is to
reconstruct shapes of the input, providing distinct features
from regular convolution. In addition, to decrease redun-
dant parameters, we implement the separable convolution

5670

Table 2: Our DNN architecture (Basic parameter settings of the module Conv-M are shown in Figure 2).

. Filter size/Stride #Feature maps (Conv-M)
Layer | Type/Module | - Outputsize | ¢ o Cony-M) [CT]C2[C3 [C4 | DiClp[DiC2 [C5 [DeCl [DeCa | Farameters
1 input 224 %224 %3
2 convolution | 224 x224x64 Tx7/1 (x64) 9,408
3 | max-pooling | 112x112x64 3x3/2
4 Conv-M 112x112x160 64 | 64| 64| 64| 64 64 |32| 32 32 51,712
5 | max-pooling | 56x56x160 3x3/2
6 Conv-M 56x56x%320 128|128 128 | 128 | 128 | 128 | 64| 64 64 217,088
7 Conv-M 56x56x320 128|128 128 | 128 | 128 | 128 | 64| 64 64 268,288
8 | max-pooling | 28x28x320 3x3/2
9 Conv-M 28x28x576 144256 | 256 | 144 | 256 | 256 | 64| 64 64 591,872
10 Conv-M 28x28x576 144256 | 256 | 144 | 256 | 256 | 64| 64 64 681,984
11 | max-pooling | 14x14x576 3x3/2
12 Conv-M 14x 14 x688 160|256 280 |160| 256 | 280 | 64| 128 | 128 783,360
13 Conv-M 14x 14 x688 160|256 280 |160| 256 | 280 | 64| 128 | 128 826,368
14 | avg-pooling 1x1x688 14x14/1
15 linear 1x1x1000 1x1/1 (x1000) 688,000
4.1 M
O 5
o|f [0
Our network without the last linear layer E = 5 =
P oo oosoooosoosoooosoosoossossosoosoooooy (@) @)
() (A)E (A & ©)
o| |of (o]
ol 192122 i (@4 [0 (OF (@)
Source inputg (:) i ? i ? U_’"._’ / (:) ;:' ? ;:’ ? % % Reconstructed source
Target input } | ° ° ° ° hd ° Reconstructed target
O @) (@) (@) @) o
° o o ©e) W W
e| |o |@
T 0 O A @)% (@)% (05
? % Q % Q % Reconstructed source
é] é O 5 Reconstructed target
© O W

Figure 4: The unified framework of our DA method. The DNN simultaneously adapts feature representations (red and blue)
and source label prediction (orange). The sampling ratio of target domain will be gradually increased during training.

inspired by separable wavelet filters [30] for all types of
convolution, including deconvolution, in Conv-M.

We visualize activations of convolution (middle) and de-
convolution (right) in the same Conv-M module in our net-
work in Figure 3. Appearance details are extracted by con-
volution, while deconvolution tends to describe the com-
pleted shapes. Therefore, the features extracted by convo-
lution and deconvolution are complementary so as to ben-
efit DA. In addition, the shapes captured by deconvolution
are more generic for a class of object compared to the ap-
pearance details extracted by convolution, which facilitates
our DA strategy to explore divergence between classes for
knowledge transfer.

The detailed design of Conv-M in Figure 2 shows that

the input feature maps from the previous layer are respec-
tively processed by regular convolution (conv), dilated con-
volution (dilated conv) and deconvolution (deconv) in three
branches. Their outputs will be concatenated together. The
pipelines of these three branches are: CI-C2-C3-dropout,
C4-DiCl1-DiC2-dropout, and C5-DeC1-DeC2-dropout. All
of the three branches start with a 1x 1 convolution as lin-
ear projection. The parameters k and s are kernel size and
stride. The dilation factor d indicates that the receptive field
is (291 — 1) x (2¢+1 — 1). The group number g for sep-
arable convolution indicates that feature maps between two
adjacent layers are separated into g groups. The dropout ra-
tio r is fixed to 0.2. The output of deconvolution is cropped
to its input size. ReLU is adopted for all nine convolutions,
which is not shown in Figure 2. The parameter number of

5671

Conv-M is computed as follows. Let Np, N¢1, Noao, Nes,
Nca, Npict, Npic2, Nos, Npec1 and Np.c2 denote the
feature map numbers of CI, C2, C3, C4, DiCl, DiC2, C5,
DeC1 and DeC2. The parameter number of the first branch
in Conv-M is:

Nci - Neo - kg + Nca - Nes - k&g
gc2 gcs '

Np - Nc1 +

ey
The parameter number of the second branch is:

2
NC4 . NDiCl - kDiCl

Npic1 - Npica - kb,
NP . NC’4 + + DiC1 D:iC2 D ()2'
gpici gpic2

2
The parameter number of the third branch is:

2 2
Ncs - Npect - kbecn " Npect - Npec2 - kpeca

Np-Ncs +

dDeC1 gDeC?2

(3)

Our DNN architecture is shown in Table 2, which gen-
erally consists of convolution, alternating max-pooling and
Conv-M, avg-pooling and linear, as listed in the second col-
umn Types/Module. Note that the last linear layer is for im-
age classification only and will be removed when conduct-
ing DA tasks. To fairly compare with other DA methods in
Section 4, we include this layer into the estimation of total
parameters as shown in the table. The Output size in the
third column is multiplication of height, width and num-
ber of feature maps at each layer. Specific parameters of
a non Conv-M layer are listed in the fourth column Filter
size/Stride, while those of Conv-M are in the fifth column
#Feature maps (Conv-M). As the basic settings of Conv-M
are represented in Figure 2, the fifth column only shows the
feature map number of all nine convolutions: C1, C2, C3,
C4, DiCl, DiC2, C5, DeC1 and DeC2. For each of these
nine convolutions, the feature map numbers between two
max-pooling layers are same, and generally increased with
the model depth. The raw pixels of input images are pro-
cessed by a regular convolution with a kernel size of 7x7
which is much larger than the 1x 1 and 3 x3 kernels used in
Conv-M. Our preliminary experiment shows that for input
image data, convolution with a smaller kernel (e.g., 3x3)
will degrade the classification accuracy by 1.5%~2.5%. For
Conv-M, on the other hand, using larger kernels (e.g., 5x5)
can only improve the performance by slightly 0.3%~0.8%.
The final column #Parameters in Table 2 lists the parameter
numbers at each layer. Dominant parameter consumers are
the two Conv-M modules (39%) between the fourth max-
pooling and the avg-pooling. The total number of parame-
ters of our DNN is 4.1M.

3.2. Unsupervised Domain Alignment

Our DA method simultaneously adapts feature represen-
tations and source label prediction as shown in Figure 4,

given input data sampled from both source and target do-
mains. The sampling ratio of target domain will be grad-
ually increased during training. Formally, three terms are
minimized in the unified framework: The reconstruction er-
ror of source and target samples (blue) for invariance learn-
ing, the discrepancy of hidden representations on layers be-
tween domains (red), and the prediction error of source la-
bels (orange). For our DNN shown in Table 2, the last linear
layer with 1000 neurons will be removed in DA tasks. Extra
layers, as shown in orange and blue in Figure 4, are added
during domain alignment training, while only the layers re-
lated to label prediction (orange) will be kept for testing.

Invariance learning. The error minimization of recon-
structing input source and target samples is to force the
DNN to learn more cross-domain features. The asymmetri-
cal encoder-decoder architecture is adopted for sample re-
construction, as shown in Figure 4. The encoder is our pre-
trained DNN without the avg-pooling and last linear layers,
while the decoder (blue) with fewer layers (compared to the
encoder) consists of alternating un-pooling and regular con-
volution. The un-pooling in the decoder is to up-sample
input feature maps using indexes obtained from the corre-
sponding max-pooling layer in the encoder. The encoder
is responsible for feature extraction, while the decoder is
for restoring resolution. Our preliminary experiment shows
that the asymmetrical structure only slightly decreases the
final accuracy (averagely 0.4%) but significantly accelerates
the training speed, compared to symmetrical design. In ad-
dition, two decoders on different scales are introduced.

Representation discrepancy reduction. Instead of us-
ing parametric criteria such as Kullback-Leibler divergence
to further reduce the cross-domain divergence, we adopt
a non-parametric method to estimate the feature distribu-
tion distance between domains. Specifically, we minimize
the maximum mean discrepancies (MMD) by Gretton et
al. [31]. The MMD is defined as:

Ny

Ns
Ly = H]é Zd’(%) - Ni Z¢(It)
s t

1

2

N C))

H

where =4 and z; are respectively input source and target,
and N, and NV, denote corresponding sample numbers. The
function %) (-) is a non-linear feature mapping. # is a uni-
versal reproducing kernel Hilbert space. The MMD criteria
is denoted as G-MMD in our method, as we adopt the Gaus-
sian kernel. As shown in Figure 4, the G-MMD loss (red) is
added to the last three Conv-M layers in our DNN.

Source label prediction. As shown in Figure 4, we add
two linear layers (orange), and the neuron numbers of the
second one is specified for the dataset. No significant accu-
racy benefit is observed by adding linear layers more than
two in our preliminary experiment.

5672

Table 3: The comparison of our network and popular
DNNs on ImageNet’ 12 classification accuracy and parame-
ter numbers.

Method #Parameters Top-1 Top-5
AlexNet [8] 61 M 57.2 80.3
GoogLeNet [9] 7™M 68.7 88.9
VGGI6 [32] 134 M 71.9 90.6
Our network 41 M 68.9 89.0

4. Experiments

Our DNN is trained on the benchmark dataset Ima-
geNet’12 [10] and compared with well-known models on
total parameter numbers and classification accuracy. Fol-
lowing the standard pipeline, we then fine-tune our trained
model for unsupervised DA tasks on two popular datasets
according to our DA method. The DA accuracy is com-
pared with competitive methods.

4.1. ImageNet Classification

We train our DNN on ImageNet’12 dataset, and set
the parameters of our training solver according to the
quick_solver.prototxt in Caffe [33]. The batch size is 64.
Table 3 compares the classification accuracy (Top-1, Top-
5) and parameter numbers (#Parameters) of our DNN
and AlexNet [8], GoogLeNet [9], and VGG16 [32]. For
AlexNet and GoogLeNet, we directly use the trained mod-
els provided by Caffe. The VGG16’s result is obtained from
the original paper [32]. Our DNN achieves GoogleNet-
level accuracy, while the total parameter numbers (4.1M) is
only 59% of GoogLeNet.

4.2. Unsupervised DA

Office-31. This standard benchmark consists of 4,652
images of 31 categories collected from three distinct do-
mains [11]: AMAZON (A), WEBCAM (W) and DSLR (D).
The samples of these three domains are respectively down-
loaded from amazon.com, taken by web camera and taken
by digital SLR camera in an office environment with dif-
ferent photographic settings. All six DA tasks between the
three domains will be adopted for completeness: A—W,
D—W, W—D, W—A, A—D and D—A.

Office-Caltech. It is a popular dataset [13] composed of
10 overlapping categories from the Office-31 and Caltech-
256 (C) [36] datasets. All twelve DA tasks are used:
A—W,D—-W,W—D, A—D, DA, WA, A—C, W—C,
D—C, C—A, C—=W and C—D. The Office-31 dataset
is more challenging as it has more categories of images,
while Office-Caltech provides more DA tasks to observe the
dataset bias [37].

Methods. We compare our method with the nine pre-

vious competitive DA methods: TCA [35], GFK [34],
SA [17], DLID [19], DDC [20], DAN [21], GRL [12],
TRANSDUCTION [23] and RTN [22]. TCA and GFK are
conventional methods, while the others are DNN based.

Networks. Five DNNs are used in our experiments:
AlexNet (61M), Rev-FaConvNet (4.8M), our DNN (4.1M),
GoogLeNet (7M) and FaConvNet (2.8M). DA methods
DAN, GRL, TRANSDUCTION and RTN originally use
pre-trained AlexNet, according to their papers. Rev-
FaConvNet achieves much better DA accuracy compared to
SqueezeNet, Rev-SqueezeNet and FaConvNet as shown in
our preliminary experiments in Table 1. FaConvNet, Rev-
FaConvNet and our DNN all reach GoogLeNet-level clas-
sification accuracy. In this work, we use GooglLeNet and
FaConvNet as baselines for comparison.

Experiments. Besides running previous DA methods on
AlexNet, we also run the following eight experiments to
quantize the contribution of our DNN and our DA method:
(1) GRL (Rev-FaConvNet): Running GRL on Rev-
FaConvNet;

(2) GRL (Our net): Running GRL on our DNN;

(3) DAN (Rev-FaConvNet): Running DAN on Rev-
FaConvNet;

(4) DAN (Our net): Running DAN on our DNN;

(5) Our DA (Rev-FaConvNet): Running our DA method on
Rev-FaConvNet;

(6) Our DA (FaConvNet): Running our DA method on Fa-
ConvNet, and the result is used as a baseline;

(7) Our DA (GoogLeNet): Running our DA method on
GoogLeNet, and the result is used as a baseline;

(8) Our DA (Our net): Running our DA method on our
DNN, and this is our final result.

Parameter settings. We follow the specific description
of all previous DA methods in their papers. The hyper-
parameter of SA is selected based on cross-validation,
which is consistent with other papers [12, 23]. For our DA
method that is based on our pre-trained network on Ima-
geNet’ 12, the convolution and the first three Conv-M shown
in Table 2 are frozen, as the Office-31 and Office-Caltech
datasets are rather small-scale. For all newly added layers as
shown in orange and blue in Figure 4 which are trained from
scratch, their learning rate is ten times higher. The learning
rate policy we adopt is poly as described in Caffe, and the
initial value is 0.0009 with the power fixed to 0.5. The batch
size is 64, and the sampling ratio of target domains is uni-
formly increased from 30% to 70% during training. In the
testing stage, the new layers for sample reconstruction are
removed, as aforementioned in Section 3.2. For the remain-
ing new layers for label prediction (orange) in Figure 4, the
neuron numbers of the first linear layer is 256, while those
of the second one is 31 for Office-31 dataset and 10 for
Office-Caltech dataset. The G-MMD loss is added to the
last three Conv-M layers of our DNN. The regularization

5673

Table 4: Unsupervised DA accuracy of our method and previous algorithms on Office-31 dataset.

Method | #Parameters' | AW D—W WD W—oA AD DA
GFK [34] - 39.8 79.1 74.6 37.1 37.9 37.9
SA [17] - 45.0 64.8 69.9 39.3 38.8 42.0
DLID [19] - 51.9 78.2 89.9 - - -
DDC [20] - 61.8 95.0 98.5 52.2 64.4 52.1
DAN [21] 61 M 68.5 96.0 99.0 53.1 67.0 54.0
GRL [12] 61 M 73.0 96.4 99.2 53.6 72.8 544
TRANSDUCTION [23] 61 M 80.4 96.2 98.9 62.5 83.9 56.7
GRL (Rev-FaConvNet) 48 M 74.1 96.5 99.2 54.3 73.4 55.3
Our DA (Rev-FaConvNet) 48 M 77.0 96.5 99.2 584 75.9 58.1
GRL (Our net) 41 M 80.1 96.7 99.2 64.1 78.0 65.4
Our DA (Our net) 41 M 82.6 97.0 99.4 67.4 80.1 67.3
Baseline: Our DA (GoogLeNet) ™ 83.0 96.9 99.5 67.7 80.5 67.5
Baseline: Our DA (FaConvNet) 2.8 M 73.9 96.3 99.1 54.1 73.2 55.2

I Most of methods will remove the last linear layer of a pre-trained network, and add extra layers for DA. According to Section 4.2,
our DNN will be smaller after the change. The size of other models will also be slightly different, but the actual size is not reported
in [21, 23]. We hence directly report the total parameter numbers of the pre-trained network for fair comparison.

Table 5: Unsupervised DA accuracy of our method and previous algorithms on Office-Caltech dataset.

Method | #Param.| AW D—W W—D A—D D—A W—A A—C W—C D—C C—A C—»W C—D
TCA [35] - 844 969 994 828 904 856 812 755 796 921 831 879
GFK [34] - 89.5 970 981 860 898 885 762 77.1 779 907 780 77.1
DDC [20] - 86.1 982 100.0 890 895 849 850 780 8L1 919 854 888
DAN [21] 61M | 938 99.0 1000 924 920 921 851 843 824 920 906 905
RTN [22] 61M | 970 988 100.0 946 955 93.1 885 884 843 944 966 929
DAN (Rev-FaConvNet) 48M | 940 99.1 1000 927 923 922 855 846 826 923 909 9038
Our DA (Rev-FaConvNet) 48M | 949 992 100.0 933 933 925 865 859 831 930 930 915
DAN (Our net) 41M | 950 992 100.0 960 948 952 916 904 907 944 950 943
Our DA (Our net) 41M | 956 997 1000 968 960 956 925 916 914 953 972 953
Baseline: Our DA (GoogLeNet)| 7M [959 997 1000 97. 962 959 929 920 915 0956 974 957
Baseline: Our DA (FaConvNet) | 28M | 945 99.1 998 920 918 910 837 834 801 928 911 898

I Please see the footnote of Table 4 for the explanation of parameter numbers.

hyper-parameter of G-MMD loss is fixed to 0.3 across all
datasets, and the bandwidth of the Gaussian kernel is the
median pairwise distance [38] on training set.

Based on NVIDIA GTX TITAN X, the inference speed
of SqueezeNet and Rev-SqueezeNet is faster than that
of FaConvNet, Rev-FaConvNet and our network, though
they cannot obtain GoogLeNet-level classification and DA.
Specifically, Rev-SqueezeNet is 22% slower than that of
SqueezeNet, and Rev-FaConvNet decreases the speed of
FaConvNet by 12%. Our network consumes 11% less time
compared to FaConvNet.

Table 4 and Table 5 respectively summarize the DA ac-
curacy on Office-31 and Office-Caltech datasets. Both ta-
bles are separated into four groups by rows. The first group
is the previous DA methods based on AlexNet. The sec-
ond group compares previous and our DA methods on Rev-
FaConvNet, while the third group compares DA methods
on our DNN. The fourth group provides result of our DA

method on GoogleNet and FaConvNet as baselines. The
results in the two tables are analyzed from the following
three aspects:

First, our DNN approaches GoogLeNet’'s DA accu-
racy on the same DA method, while the gap between
GoogLeNet and previous compact DNNs (FaConvNet and
Rev-FaConvNet) is much larger, according to the four ob-
servations: Qur DA (Our net), Our DA (GoogLeNet), Our
DA (FaConvNet) and Our DA (Rev-FaConvNet) in Table 4
and Table 5. Though FaConvNet, Rev-FaConvNet and our
DNN all obtain GoogLeNet-Level classification accuracy,
only our DNN has matched accuracy on both classification
and DA. Moreover, our DNN (4.1M) is smaller than Rev-
FaConvNet (4.8M). Our DNN also outperforms AlexNet
using the same DA method, as the comparison of GRL and
GRL (Our net) in Table 4 shows.

Second, our DA method outperforms GRL and DAN,
based on the same DNN, according to the four comparisons:

5674

Table 6: Contribution of non-regular convolution in our Conv-M module on Office-31 dataset.

| #Parameter | Classification | AW D—W WD W—A A—D D—A

Our DA (Our netl)
Our DA (Our net)

62.2

68.9

41M
4.1M

74.2
82.6

96.5
97.0

99.2
99.4

56.2
67.4

74.1
80.1

56.0
67.3

Table 7: DA accuracy of our method without including
specified component on Office-31 dataset.

Method |A—W D—W W—D W—A A—D D—A
NoG-MMD| 76.7 965 992 620 775 647
Norecons. | 79.6 954 993 644 773 62.1

All 826 970 994 674 801 673

Table 8: DA accuracy of our method without including
specified component on Office-Caltech dataset.

Method [A—>W D—-W A—D A—C W—C D—C
NoG-MMD| 91.1 996 934 909 87.1 87.8
Norecons. | 939 994 950 88.7 89.8 86.6
All 956 99.7 968 925 916 914

GRL (Rev-FaConvNet) and Our DA (Rev-FaConvNet) in Ta-
ble 4, GRL (Our net) and Our DA (Our net) in Table 4, DAN
(Rev-FaConvNet) and Our DA (Rev-FaConvNet) in Table 5,
and DAN (Our net) and Our DA (Our net) in Table 5.

Third, put all together, our DA method based on our
DNN achieves state-of-the-art on sixteen of total eighteen
DA tasks on two datasets, as shown on the last row of these
two tables (Our DA (Our net)). The other two is A—D in
Table 4 and A—W in Table 5. We boost the accuracy of
task D—A by 10.6% compared to TRANSDUCTION, as
shown in Table 4. On Office-31 dataset, the accuracy gap
between the tasks D—W and W—D is 2.4%, while the gap
between A—W and W—A greatly increases to 15.2%, indi-
cating larger appearance difference between domains A and
W. The domain difference between A and D is also larger
than that between D and W. In other words, on Office-31
dataset, transfer (in two directions) between D and W is rel-
atively easier for our DA method, while other two are more
difficult, which is consistent with the results from previous
DA methods. On Office-Caltech dataset, the bilateral trans-
fer between C and W gets the largest accuracy gap (5.6%)
in our DA method, as shown in Table 5.

4.3. Sensitivity Analysis

Convolution in Conv-M. To validate the contribution of
non-regular convolution (dilated convolution and improved
deconvolution) in our Conv-M module, we replace all non-
regular convolution with regular ones and keep the 3 x3 ker-
nel size unchanged. The first row Our DA (Our netl) in
Table 6 shows the result, and the second row Our DA (Our
net) is our original solution. Significant accuracy drop can

be observed on classification and almost all DA tasks. The
comparison in Table 6 indicates the importance of features
extracted by dilated convolution and improved deconvolu-
tion in our Conv-M.

Reconstrution and G-MMD. Based on our DNN, Ta-
ble 7 and Table 8 respectively show the contribution of two
components of our DA methods (sample reconstruction and
G-MMD) on Office-31 and Office-Caltech datasets. The
row No G-MMD in two tables shows the result obtained by
removing G-MMD from our DA method, while the row No
recons. corresponds to our method without including sam-
ple reconstruction. For these two rows, lower accuracy in-
dicates more contribution of the component. The row All is
the regular result without removing any component, which
is the same as the respective row Our DA (Our net) in Ta-
ble 4 and Table 5. For Office-31 dataset shown in Table 7,
reconstruction is more important for the transfers D—W
and D—A, while A—W and W—A rely more on G-MMD.
Table 8 demonstrates that the contributions of reconstruc-
tion and G-MMD are almost the same.

5. Conclusion

In this paper, we present a compact DNN architecture
and unsupervised DA method, based on our observation
that current small DNNs (SqueezeNet and FaConvNet)
have unmatched accuracy on classification and DA, e.g., a
DNN with GoogleNet-level classification accuracy only
obtains AlexNet-level DA accuracy. The basic module used
in our DNN, Conv-M, introduces multi-scale convolution
and deconvolution without using kernels larger than 3x3.
The unified framework of our DA method learns cross-
domain features by sample reconstruction and G-MMD,
and simultaneously tunes label prediction. The parameter
numbers of our DNN is only 59% of GooglLeNet, while
experiments show that our DNN obtains GoogleNet-level
accuracy both on classification and DA. Our DA method
slightly outperforms previous competitive GRL and DA.
In addition, our method based on our DNN achieves
state-of-the-art on sixteen of total eighteen DA tasks on the
popular Office-31 and Office-Caltech datasets.

Acknowledgments. This work is in part supported by NSF
CCF-1615475 and DOE SC0017030. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of grant agencies or their contractors.

5675

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pen-
sky. Sparse Convolutional Neural Networks. International
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

S. Han, H. Mao, and W. J. Dally. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding. International Confer-
ence on Learning Representations (ICLR), 2016.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
Structured Sparsity in Deep Neural Networks. Advances in
Neural Information Processing Systems (NIPS), 2016.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. SqueezeNet: AlexNet-level Accuracy
with 50x Fewer Parameters and <0.SMB Model Size. arXiv
preprint arXiv:1602.07360, 2016.

M. Wang, B. Liu, and H. Foroosh. Factorized Convolutional
Neural Networks. arXiv preprint arXiv:1508.04337, 2016.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:
A Deep Neural Network Architecture for Real-Time Seman-
tic Segmentation. arXiv preprint arXiv:1606.02147,2016.

H. Shimodaira. Improving Predictive Inference under Con-
vriate Shift by Weighting the Log-Likelihood Function.
Journal of Statistical Planning and Inference, 2000.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Network. Ad-
vances in Neural Information Processing Systems (NIPS),
2012.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Go-
ing Deeper with Convolutions. International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A.C.Berg, and E F. Li. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision
(LJCV), 2015.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Vi-
sual Category Models to New Domains. European Confer-
ence on Computer Vision (ECCV), 2010.

Y. Ganin and V. Lempitsky. Unsupervised Domain Adapta-
tion by Backpropagation. International Conference on Ma-
chine Learning (ICML), 2015.

B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic Flow
Kernel for Unsupervised Domain Adaptation. International
Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. arXiv preprint arXiv:1512.03385,
2015.

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

5676

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and
B. Scholkopf. Correcting Sample Selection Bias by Unla-
beled Data. Advances in Neural Information Processing Sys-
tems (NIPS), 2006.

S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa.
Generalized Domain-Adaptive Dictionaries. International
Conference on Computer Vision and Pattern Recognition
(CVPR), 2013.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars.
Unsupervised Visual Domain Adaptation Using Subspace
Alignment. [International Conference on Computer Vision
(ICCV), 2013.

X. Glorot, A. Bordes, and Y. Bengio. Domain adapta-
tion for large-scale sentiment classification: A deep learning
approach. International Conference on Machine Learning
(ICML), 2011.

S. Chopra, S. Balakrishnan, and R. Gopalan. DLID: Deep
Learning for Domain Adaptation by Interpolating between
Domains. [International Conference on Machine Learning
Workshop (ICMLW), 2013.

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.
Deep Domain Confusion: Maximizing for Domain Invari-
ance. arXiv preprint arXiv:1412.3474, 2014.

M. Long, Y. Cao, J. Wang, and M. . Jordan. Learning Trans-
ferrable Features with Deep Adaptation Networks. Interna-
tional Conference on Machine Learning (ICML), 2015.

M. Long, J. Wang, and M. L. Jordan. Unsupervised Domain
Adaptation with Residual Transfer Networks. Advances in
Neural Information Processing Systems (NIPS), 2016.

O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learn-
ing Transferrable Representations for Unsupervised Domain
Adaptation. Advances in Neural Information Processing Sys-
tems (NIPS), 2016.

C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-
Resolution Using Deep Convolutional Networks. —arXiv
preprint arXiv:1501.00092, 2015.

H. Noh, S. Hong, and B. Han. Learning Deconvolution Net-
work for Semantic Segmentation. International Conference
on Computer Vision (ICCV), 2015.

S. Hong, H. Noh, and B. Han. Decoupled Deep Network
for Semi-Supervised Semantic Segmentation. Advances in
Neural Information Processing Systems (NIPS), 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Im-
age Segmentation. arXiv preprint arXiv:1511.00561, 2015.

J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. International Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015.

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

F. Yu and V. Koltun. Multi-scale Context Aggregation by
Dilated Convolutions. International Conference on Learning
Representations (ICLR), 2016.

L. Sifre and S. Mallat. Rotation, Scaling and Deformation
Invariant Scattering for Texture Discrimination. Interna-
tional Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2013.

A. Gretton, K. M. Borgwardt, M. Rasch, B. Scholkopf, and
A.J. Smola. A Kernel Method for the Two-Sample-Problem.
Advances in Neural Information Processing Systems (NIPS),
2006.

K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. International
Conference on Learning Representations (ICLR), 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. ACM Interna-
tional Conference on Multimedia, 2014.

B. Gong, K. Grauman, and F. Sha. Connecting the
DOTs with Landmarks: Discriminatively Learning Domain-
Invariant Features for Unsupervised Domain Adaptation. In-
ternational Conference on Machine Learning (ICML), 2013.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain
Adaptation via Transfer Component Analysis. /EEE Trans-
actions on Neural Networks and Learning Systems (TNNLS),
2011.

G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Cat-
egory Dataset. Technical Report, California Institute of Tech-
nology, 2007.

A. Torralba and A. Efros. Unbiased look at dataset bias.
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

A. Gretton, B. Sriperumbudur, D. Sejdinovic, H. Strathmann,
S. Balakrishnan, M. Pontil, and K. Fukumizu. Optimal Ker-
nel Choice for Large-Scale Two-Sample Tests. Advances in
Neural Information Processing Systems (NIPS), 2012.

5677

