
A Compact DNN: Approaching GoogLeNet-Level Accuracy of

Classification and Domain Adaptation

Chunpeng Wu1∗, Wei Wen1, Tariq Afzal2, Yongmei Zhang2, Yiran Chen3, and Hai (Helen) Li3

1Electrical and Computer Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260
2LG San Jose Lab, Santa Clara, CA 95054

3Electrical and Computer Engineering Department, Duke University, Durham, NC 27708

{chunpeng.wu,wei.wen}@pitt.edu, {tariq.afzal,jenny.zhang}@lge.com

{yiran.chen,hai.li}@duke.edu

Abstract

Recently, DNN model compression based on network ar-

chitecture design, e.g., SqueezeNet, attracted a lot of at-

tention. Compared to well-known models, these extremely

compact networks don’t show any accuracy drop on image

classification. An emerging question, however, is whether

these compression techniques hurt DNN’s learning ability

other than classifying images on a single dataset. Our pre-

liminary experiment shows that these compression methods

could degrade domain adaptation (DA) ability, though the

classification performance is preserved. In this work, we

propose a new compact network architecture and unsuper-

vised DA method. The DNN is built on a new basic module

Conv-M that provides more diverse feature extractors with-

out significantly increasing parameters. The unified frame-

work of our DA method will simultaneously learn invari-

ance across domains, reduce divergence of feature repre-

sentations and adapt label prediction. Our DNN has 4.1M

parameters—only 6.7% of AlexNet or 59% of GoogLeNet.

Experiments show that our DNN obtains GoogLeNet-level

accuracy both on classification and DA, and our DA method

slightly outperforms previous competitive ones. Put all to-

gether, our DA strategy based on our DNN achieves state-

of-the-art on sixteen of total eighteen DA tasks on popular

Office-31 and Office-Caltech datasets.

1. Introduction and Motivation

The success of deep neural networks (DNNs) encour-

ages extensive applications on various types of platforms,

e.g., self-driving cars and VR headsets. To overcome the

hardware constraints, DNN model compression techniques,

from learning based [1, 2, 3] to network architecture de-

∗Part of this work was done while C. Wu was an intern at LG San Jose

Lab.

sign [4, 5, 6], recently attracted a lot of attention. Inter-

estingly, most of these extremely compact DNN models do

not show accuracy drop on image classification. A critical

question emerges, however, other than classifying images

on a single dataset, whether the compression methods hurt

DNN’s learning ability.

In this work, we attempt to bridge the gap between com-

pressed DNN architecture and its domain adaptation (DA)

ability. The DA ability is to evaluate whether a machine

learning model can capture the covariate shift [7] between

source and target domains, and adapt itself to remove the

divergence. A model with outstanding semi-supervised or

unsupervised DA ability can greatly reduce the requirement

of manually labeled examples for real-world applications.

We observe DA accuracy degradation from model com-

pression methods based on architecture design, e.g., a DNN

with GoogLeNet-level [9] classification accuracy only ob-

tains AlexNet-level [8] DA accuracy. Table 1 shows our

experimental results. SqueezeNet [4] and FaConvNet [5]

are used to compare with AlexNet as they are respec-

tively the smallest DNN model achieving AlexNet-level and

GoogLeNet-level accuracy on image classification, to our

best knowledge. The popular dataset ImageNet’12 [10] is

adopted as image classification benchmark. Three standard

DA tasks on Office-31 [11] dataset are adopted, and the

unsupervised DA method used for all DNNs in Table 1 is

GRL [12]. The DNNs are pre-trained on ImageNet’12, and

then fine-tuned for all DA tasks. There is a big DA accu-

racy difference between AlexNet and SqueezeNet though

the two networks have almost the same classification accu-

racy. FaConvNet, which outperforms AlexNet by 12.9% on

classification, also slightly lags behind AlexNet on DA.

Intuitively, increasing parameters will lead to better ac-

curacy. Our following experiment shows that the DA accu-

racy of SqueezeNet and FaConvNet can be improved, but

can not reach the same level as their classification by solely

5668



Table 1: Image classification and unsupervised DA accuracy of DNN models on Office-31 dataset.

#Parameter Classification

Task1 Task2 Task3

AMAZON DSLR WEBCAM

WEBCAM WEBCAM DSLR

AlexNet [8] 61 M 57.2 73.0 96.4 99.2

FaConvNet [5] 2.8 M 70.1 71.8 94.3 98.1

SqueezeNet [4] 1.2 M 57.5 64.4 92.8 96.4

Rev-FaConvNet 4.8 M 70.3 74.1 96.5 99.2

Rev-SqueezeNet 2.2 M 57.9 66.9 93.9 98.8

Figure 1: Basic modules adopted in FaConvNet [5] (left)

and SqueezeNet [4] (right). Both modules use the “bottle-

neck” layer as shown in bold.

boosting parameter numbers. Specifically, without chang-

ing the structure of the two models, we increase the pa-

rameters of FaConvNet and SqueezeNet. The basic mod-

ules respectively adopted in FaConvNet and SqueezeNet are

first compared, as shown in Figure 1. The shared feature of

these two modules is the “bottleneck” layer conv 1×1 as de-

noted in bold. We hence gradually increase parameters of

all “bottleneck” layers in FaConvNet and SqueezeNet until

no DA accuracy benefit could be obtained. The parameters

in other layers (e.g., the first convolutional layer in FaCon-

vNet and SqueezeNet) are then increased until no accuracy

gain. The final DA accuracy of the adapted models Rev-

FaConvNet and Rev-SqueezeNet are respectively shown in

Table 1. Our expectation is that Rev-FaConvNet’s accuracy

can be much higher than AlexNet. Rev-FaConvNet, how-

ever, only slightly outperforms AlexNet, with almost 70%

more parameters.

The objective of this work is to develop a compact DNN

architecture which can achieve the same level accuracy on

classification and DA. Our solution offers four important

features. First, our DNN has 4.1M parameters, which is

only 6.7% of AlexNet or 59% of GoogLeNet. The com-

pactness of our network can be attributed to the use of a new

module Conv-M which is a parameter-saving module, while

extract more details based on multi-scale convolution and

deconvolution, inspired by GoogLeNet’s Inception. Sec-

ond, our DA method consists of three components: Learn-

ing invariance across domains, reducing discrepancy of fea-

ture representations, and predicting labels. Third, experi-

ments show that our DNN obtains GoogLeNet-level accu-

racy both on classification and DA. The DA accuracy gap

between GoogLeNet and other compact DNNs (FaConvNet

and Rev-FaConvNet) is much larger. Fourth, the unified

framework of our DA method slightly outperforms previ-

ous competitive methods, and our DA method based on

our DNN network achieves state-of-the-art on sixteen of to-

tal eighteen DA tasks on the popular Office-31 and Office-

Caltech [13] datasets.

2. Related Work

DNN model compression with little accuracy drop on

image classification traditionally are learning based. Liu

et al. [1] zero out more than 90% of AlexNet’s parameters

using a sparse decomposition, while Wen et al. [3] regular-

ize a DNN model with structured sparsity based on group

Lasso. Han et al. [2] prune the small-weight connections

and retrain the DNN with the remaining connections. More

recent research began to shrink a model directly based on

network architecture design. SqueezeNet [4] is built on the

fire module which feeds “squeeze” layer (1×1 convoluton)

into “expand” layer (a combination of 1×1 and 3×3 con-

voluton). The basic structure of FaConvNet [5] is Convo-

lutional Layer as Stacked Single Basis Layer. A popular

design methodology of compact architectures extensively

uses small convolutional kernels (1×1 and 3×3), especially

the linear projection as the conv 1×1 layer shown in bold

in Figure 1. Based on the preliminary experimental result

in Table 1, we argue that it is necessary to redesign the ba-

sic module of these extremely shrunk DNNs, e.g., FaCon-

vNet and SqueezeNet, by introducing more diverse opera-

tions of feature extraction, in order to achieve high accuracy

on both classification and DA. The challenge lies in that

more complex feature extraction methods, e.g., multi-scale

convolution, often result in the steep increase of parameters,

as the basic module will be used reapeatedly. The shortcut

connection used in ResNet [14], for instance, can be under-

5669



stood as a parameter-saving solution of multi-scale feature

integration. We will adopt methods other than this bypass

structure.

Unsupervised DA. Following the early attempt of re-

weighting samples from source domain [15], Shekhar et

al. [16] learn dictionary based representations by minimiz-

ing the divergence between the source and target domains.

The subspace based methods, on the other hand, evaluate

the distance between domains in a low-dimensional mani-

fold [13] or in terms of Frobenius norm [17]. DNN based

methods have been proposed recently. Glorot et al. [18]

and Chopra et al. [19] learn cross-domain features using

auto-encoders, followed by the label prediction. A more

popular strategy is to combine feature adaptation with la-

bel prediction as s unified framework. DDC [20] introduces

adaptation layers and domain confusion metric into a CNN

architecture, while GRL [12] combines classifiers of label

and domain using a gradient reverse layer. DAN [21] and

RTN [22] focus on effectively measuring feature represen-

tations in kernel spaces. TRANSDUCTION [23] jointly op-

timizes the target label and domain transformation param-

eters. Our DA method adopts a unified framework, which

can simultaneously learn invariance across domains, reduce

divergence of feature representations and adapt label pre-

diction.

DNN based image segmentation. The DNNs of seg-

mentation and classification mainly differ in the use of up-

sampling layers to recover resolution. Various up-scaling

methods have been proposed and adopted, such as straight-

forward bicubic interpolation [24], learning based deconvo-

lution [25], and unpooling [26, 27]. We improve the de-

convolution [25] to remove artifacts that will be described

in Section 3.1, and use it as a type of shape feature ex-

tractor in the basic module of our DNN. With the consid-

eration of training convergence speed, the unpooling with

fewer parameters is a better choice, compared to deconvo-

lution, especially for small-scale and medium-scale prob-

lems. So we adopt unpooling for sample reconstruction

in our DA method. In addition, different strategies have

been presented to train segmentation networks. SegNet-

Basic [27] is directly trained as a whole. Long et al. [28], on

the other hand, adapt a popular classification network into

a fully convolutional network (FCN), and fine-tune it for

segmentation tasks. Yu et al. [29] show that accuracy can

be further improved by plugging their context module into

existing segmentation model. Our decoder design for sam-

ple reconstruction is inspired by FCN, while our structure is

simpler than the multi-stream structure in FCN.

3. Proposed Method

Motivated by the observation described in Section 1, we

propose a compact DNN architecture with a new basic mod-

ule Conv-M. Our DA method gradually tunes the feature

Figure 2: Module Conv-M used in our DNN. The output of

deconv is cropped to its input size. The ReLU is adopted for

all types of convolution, which is not shown in the figure for

simplicity.

Figure 3: Visualization of activations in the same Conv-M

module in our network: Convolution (middle) and decon-

volution (right).

adaptation and label prediction.

3.1. DNN Architecture with Conv­M

Figure 2 shows a Conv-M module used in our DNN. Ac-

cording to the preliminary experiment and our analysis in

Section 1, the design idea is to capture more diverse details

at different levels, while using fewer parameters. To achieve

this goal, the dilated convolution [29] for multi-resolution

and deconvolution [25] are introduced. The dilated convo-

lution can extract features with a larger receptive field with-

out increasing the kernel size, e.g., extracting features from

a 5×5 window with a 3×3 kernel. The deconvolution is to

reconstruct shapes of the input, providing distinct features

from regular convolution. In addition, to decrease redun-

dant parameters, we implement the separable convolution

5670



Table 2: Our DNN architecture (Basic parameter settings of the module Conv-M are shown in Figure 2).

Layer Type/Module Output size
Filter size/Stride #Feature maps (Conv-M)

#Parameters
(If not Conv-M) C1 C2 C3 C4 DiC1 DiC2 C5 DeC1 DeC2

1 input 224×224×3

2 convolution 224×224×64 7×7/1 (x64) 9,408

3 max-pooling 112×112×64 3×3/2

4 Conv-M 112×112×160 64 64 64 64 64 64 32 32 32 51,712

5 max-pooling 56×56×160 3×3/2

6 Conv-M 56×56×320 128 128 128 128 128 128 64 64 64 217,088

7 Conv-M 56×56×320 128 128 128 128 128 128 64 64 64 268,288

8 max-pooling 28×28×320 3×3/2

9 Conv-M 28×28×576 144 256 256 144 256 256 64 64 64 591,872

10 Conv-M 28×28×576 144 256 256 144 256 256 64 64 64 681,984

11 max-pooling 14×14×576 3×3/2

12 Conv-M 14×14×688 160 256 280 160 256 280 64 128 128 783,360

13 Conv-M 14×14×688 160 256 280 160 256 280 64 128 128 826,368

14 avg-pooling 1×1×688 14×14/1

15 linear 1×1×1000 1×1/1 (x1000) 688,000

4.1 M

Figure 4: The unified framework of our DA method. The DNN simultaneously adapts feature representations (red and blue)

and source label prediction (orange). The sampling ratio of target domain will be gradually increased during training.

inspired by separable wavelet filters [30] for all types of

convolution, including deconvolution, in Conv-M.

We visualize activations of convolution (middle) and de-

convolution (right) in the same Conv-M module in our net-

work in Figure 3. Appearance details are extracted by con-

volution, while deconvolution tends to describe the com-

pleted shapes. Therefore, the features extracted by convo-

lution and deconvolution are complementary so as to ben-

efit DA. In addition, the shapes captured by deconvolution

are more generic for a class of object compared to the ap-

pearance details extracted by convolution, which facilitates

our DA strategy to explore divergence between classes for

knowledge transfer.

The detailed design of Conv-M in Figure 2 shows that

the input feature maps from the previous layer are respec-
tively processed by regular convolution (conv), dilated con-
volution (dilated conv) and deconvolution (deconv) in three
branches. Their outputs will be concatenated together. The
pipelines of these three branches are: C1-C2-C3-dropout,
C4-DiC1-DiC2-dropout, and C5-DeC1-DeC2-dropout. All
of the three branches start with a 1×1 convolution as lin-
ear projection. The parameters k and s are kernel size and
stride. The dilation factor d indicates that the receptive field
is (2d+1 − 1) × (2d+1 − 1). The group number g for sep-
arable convolution indicates that feature maps between two
adjacent layers are separated into g groups. The dropout ra-
tio r is fixed to 0.2. The output of deconvolution is cropped
to its input size. ReLU is adopted for all nine convolutions,
which is not shown in Figure 2. The parameter number of

5671



Conv-M is computed as follows. Let NP , NC1, NC2, NC3,
NC4, NDiC1, NDiC2, NC5, NDeC1 and NDeC2 denote the
feature map numbers of C1, C2, C3, C4, DiC1, DiC2, C5,
DeC1 and DeC2. The parameter number of the first branch
in Conv-M is:

NP ·NC1 +
NC1 ·NC2 · k

2

C2

gC2

+
NC2 ·NC3 · k

2

C3

gC3

. (1)

The parameter number of the second branch is:

NP ·NC4 +
NC4 ·NDiC1 · k

2

DiC1

gDiC1

+
NDiC1 ·NDiC2 · k

2

DiC2

gDiC2

.

(2)

The parameter number of the third branch is:

NP ·NC5+
NC5 ·NDeC1 · k

2

DeC1

gDeC1

+
NDeC1 ·NDeC2 · k

2

DeC2

gDeC2

.

(3)

Our DNN architecture is shown in Table 2, which gen-

erally consists of convolution, alternating max-pooling and

Conv-M, avg-pooling and linear, as listed in the second col-

umn Types/Module. Note that the last linear layer is for im-

age classification only and will be removed when conduct-

ing DA tasks. To fairly compare with other DA methods in

Section 4, we include this layer into the estimation of total

parameters as shown in the table. The Output size in the

third column is multiplication of height, width and num-

ber of feature maps at each layer. Specific parameters of

a non Conv-M layer are listed in the fourth column Filter

size/Stride, while those of Conv-M are in the fifth column

#Feature maps (Conv-M). As the basic settings of Conv-M

are represented in Figure 2, the fifth column only shows the

feature map number of all nine convolutions: C1, C2, C3,

C4, DiC1, DiC2, C5, DeC1 and DeC2. For each of these

nine convolutions, the feature map numbers between two

max-pooling layers are same, and generally increased with

the model depth. The raw pixels of input images are pro-

cessed by a regular convolution with a kernel size of 7×7

which is much larger than the 1×1 and 3×3 kernels used in

Conv-M. Our preliminary experiment shows that for input

image data, convolution with a smaller kernel (e.g., 3×3)

will degrade the classification accuracy by 1.5%∼2.5%. For

Conv-M, on the other hand, using larger kernels (e.g., 5×5)

can only improve the performance by slightly 0.3%∼0.8%.

The final column #Parameters in Table 2 lists the parameter

numbers at each layer. Dominant parameter consumers are

the two Conv-M modules (39%) between the fourth max-

pooling and the avg-pooling. The total number of parame-

ters of our DNN is 4.1M.

3.2. Unsupervised Domain Alignment

Our DA method simultaneously adapts feature represen-

tations and source label prediction as shown in Figure 4,

given input data sampled from both source and target do-

mains. The sampling ratio of target domain will be grad-

ually increased during training. Formally, three terms are

minimized in the unified framework: The reconstruction er-

ror of source and target samples (blue) for invariance learn-

ing, the discrepancy of hidden representations on layers be-

tween domains (red), and the prediction error of source la-

bels (orange). For our DNN shown in Table 2, the last linear

layer with 1000 neurons will be removed in DA tasks. Extra

layers, as shown in orange and blue in Figure 4, are added

during domain alignment training, while only the layers re-

lated to label prediction (orange) will be kept for testing.

Invariance learning. The error minimization of recon-

structing input source and target samples is to force the

DNN to learn more cross-domain features. The asymmetri-

cal encoder-decoder architecture is adopted for sample re-

construction, as shown in Figure 4. The encoder is our pre-

trained DNN without the avg-pooling and last linear layers,

while the decoder (blue) with fewer layers (compared to the

encoder) consists of alternating un-pooling and regular con-

volution. The un-pooling in the decoder is to up-sample

input feature maps using indexes obtained from the corre-

sponding max-pooling layer in the encoder. The encoder

is responsible for feature extraction, while the decoder is

for restoring resolution. Our preliminary experiment shows

that the asymmetrical structure only slightly decreases the

final accuracy (averagely 0.4%) but significantly accelerates

the training speed, compared to symmetrical design. In ad-

dition, two decoders on different scales are introduced.

Representation discrepancy reduction. Instead of us-

ing parametric criteria such as Kullback-Leibler divergence

to further reduce the cross-domain divergence, we adopt

a non-parametric method to estimate the feature distribu-

tion distance between domains. Specifically, we minimize

the maximum mean discrepancies (MMD) by Gretton et

al. [31]. The MMD is defined as:

LM =

∥

∥

∥

∥

1

Ns

Ns
∑

1

ψ(xs)−
1

Nt

Nt
∑

1

ψ(xt)

∥

∥

∥

∥

2

H

, (4)

where xs and xt are respectively input source and target,

and Ns and Nt denote corresponding sample numbers. The

function ψ(·) is a non-linear feature mapping. H is a uni-

versal reproducing kernel Hilbert space. The MMD criteria

is denoted as G-MMD in our method, as we adopt the Gaus-

sian kernel. As shown in Figure 4, the G-MMD loss (red) is

added to the last three Conv-M layers in our DNN.

Source label prediction. As shown in Figure 4, we add

two linear layers (orange), and the neuron numbers of the

second one is specified for the dataset. No significant accu-

racy benefit is observed by adding linear layers more than

two in our preliminary experiment.

5672



Table 3: The comparison of our network and popular

DNNs on ImageNet’12 classification accuracy and parame-

ter numbers.

Method #Parameters Top-1 Top-5

AlexNet [8] 61 M 57.2 80.3

GoogLeNet [9] 7 M 68.7 88.9

VGG16 [32] 134 M 71.9 90.6

Our network 4.1 M 68.9 89.0

4. Experiments

Our DNN is trained on the benchmark dataset Ima-

geNet’12 [10] and compared with well-known models on

total parameter numbers and classification accuracy. Fol-

lowing the standard pipeline, we then fine-tune our trained

model for unsupervised DA tasks on two popular datasets

according to our DA method. The DA accuracy is com-

pared with competitive methods.

4.1. ImageNet Classification

We train our DNN on ImageNet’12 dataset, and set

the parameters of our training solver according to the

quick solver.prototxt in Caffe [33]. The batch size is 64.

Table 3 compares the classification accuracy (Top-1, Top-

5) and parameter numbers (#Parameters) of our DNN

and AlexNet [8], GoogLeNet [9], and VGG16 [32]. For

AlexNet and GoogLeNet, we directly use the trained mod-

els provided by Caffe. The VGG16’s result is obtained from

the original paper [32]. Our DNN achieves GoogLeNet-

level accuracy, while the total parameter numbers (4.1M) is

only 59% of GoogLeNet.

4.2. Unsupervised DA

Office-31. This standard benchmark consists of 4,652

images of 31 categories collected from three distinct do-

mains [11]: AMAZON (A), WEBCAM (W) and DSLR (D).

The samples of these three domains are respectively down-

loaded from amazon.com, taken by web camera and taken

by digital SLR camera in an office environment with dif-

ferent photographic settings. All six DA tasks between the

three domains will be adopted for completeness: A→W,

D→W, W→D, W→A, A→D and D→A.

Office-Caltech. It is a popular dataset [13] composed of

10 overlapping categories from the Office-31 and Caltech-

256 (C) [36] datasets. All twelve DA tasks are used:

A→W, D→W, W→D, A→D, D→A, W→A, A→C, W→C,

D→C, C→A, C→W and C→D. The Office-31 dataset

is more challenging as it has more categories of images,

while Office-Caltech provides more DA tasks to observe the

dataset bias [37].

Methods. We compare our method with the nine pre-

vious competitive DA methods: TCA [35], GFK [34],

SA [17], DLID [19], DDC [20], DAN [21], GRL [12],

TRANSDUCTION [23] and RTN [22]. TCA and GFK are

conventional methods, while the others are DNN based.

Networks. Five DNNs are used in our experiments:

AlexNet (61M), Rev-FaConvNet (4.8M), our DNN (4.1M),

GoogLeNet (7M) and FaConvNet (2.8M). DA methods

DAN, GRL, TRANSDUCTION and RTN originally use

pre-trained AlexNet, according to their papers. Rev-

FaConvNet achieves much better DA accuracy compared to

SqueezeNet, Rev-SqueezeNet and FaConvNet as shown in

our preliminary experiments in Table 1. FaConvNet, Rev-

FaConvNet and our DNN all reach GoogLeNet-level clas-

sification accuracy. In this work, we use GoogLeNet and

FaConvNet as baselines for comparison.

Experiments. Besides running previous DA methods on

AlexNet, we also run the following eight experiments to

quantize the contribution of our DNN and our DA method:

(1) GRL (Rev-FaConvNet): Running GRL on Rev-

FaConvNet;

(2) GRL (Our net): Running GRL on our DNN;

(3) DAN (Rev-FaConvNet): Running DAN on Rev-

FaConvNet;

(4) DAN (Our net): Running DAN on our DNN;

(5) Our DA (Rev-FaConvNet): Running our DA method on

Rev-FaConvNet;

(6) Our DA (FaConvNet): Running our DA method on Fa-

ConvNet, and the result is used as a baseline;

(7) Our DA (GoogLeNet): Running our DA method on

GoogLeNet, and the result is used as a baseline;

(8) Our DA (Our net): Running our DA method on our

DNN, and this is our final result.

Parameter settings. We follow the specific description

of all previous DA methods in their papers. The hyper-

parameter of SA is selected based on cross-validation,

which is consistent with other papers [12, 23]. For our DA

method that is based on our pre-trained network on Ima-

geNet’12, the convolution and the first three Conv-M shown

in Table 2 are frozen, as the Office-31 and Office-Caltech

datasets are rather small-scale. For all newly added layers as

shown in orange and blue in Figure 4 which are trained from

scratch, their learning rate is ten times higher. The learning

rate policy we adopt is poly as described in Caffe, and the

initial value is 0.0009 with the power fixed to 0.5. The batch

size is 64, and the sampling ratio of target domains is uni-

formly increased from 30% to 70% during training. In the

testing stage, the new layers for sample reconstruction are

removed, as aforementioned in Section 3.2. For the remain-

ing new layers for label prediction (orange) in Figure 4, the

neuron numbers of the first linear layer is 256, while those

of the second one is 31 for Office-31 dataset and 10 for

Office-Caltech dataset. The G-MMD loss is added to the

last three Conv-M layers of our DNN. The regularization

5673



Table 4: Unsupervised DA accuracy of our method and previous algorithms on Office-31 dataset.

Method #Parameters1 A→W D→W W→D W→A A→D D→A

GFK [34] - 39.8 79.1 74.6 37.1 37.9 37.9

SA [17] - 45.0 64.8 69.9 39.3 38.8 42.0

DLID [19] - 51.9 78.2 89.9 - - -

DDC [20] - 61.8 95.0 98.5 52.2 64.4 52.1

DAN [21] 61 M 68.5 96.0 99.0 53.1 67.0 54.0

GRL [12] 61 M 73.0 96.4 99.2 53.6 72.8 54.4

TRANSDUCTION [23] 61 M 80.4 96.2 98.9 62.5 83.9 56.7

GRL (Rev-FaConvNet) 4.8 M 74.1 96.5 99.2 54.3 73.4 55.3

Our DA (Rev-FaConvNet) 4.8 M 77.0 96.5 99.2 58.4 75.9 58.1

GRL (Our net) 4.1 M 80.1 96.7 99.2 64.1 78.0 65.4

Our DA (Our net) 4.1 M 82.6 97.0 99.4 67.4 80.1 67.3

Baseline: Our DA (GoogLeNet) 7 M 83.0 96.9 99.5 67.7 80.5 67.5

Baseline: Our DA (FaConvNet) 2.8 M 73.9 96.3 99.1 54.1 73.2 55.2

1 Most of methods will remove the last linear layer of a pre-trained network, and add extra layers for DA. According to Section 4.2,

our DNN will be smaller after the change. The size of other models will also be slightly different, but the actual size is not reported

in [21, 23]. We hence directly report the total parameter numbers of the pre-trained network for fair comparison.

Table 5: Unsupervised DA accuracy of our method and previous algorithms on Office-Caltech dataset.

Method #Param.1 A→W D→W W→D A→D D→A W→A A→C W→C D→C C→A C→W C→D

TCA [35] - 84.4 96.9 99.4 82.8 90.4 85.6 81.2 75.5 79.6 92.1 88.1 87.9

GFK [34] - 89.5 97.0 98.1 86.0 89.8 88.5 76.2 77.1 77.9 90.7 78.0 77.1

DDC [20] - 86.1 98.2 100.0 89.0 89.5 84.9 85.0 78.0 81.1 91.9 85.4 88.8

DAN [21] 61 M 93.8 99.0 100.0 92.4 92.0 92.1 85.1 84.3 82.4 92.0 90.6 90.5

RTN [22] 61 M 97.0 98.8 100.0 94.6 95.5 93.1 88.5 88.4 84.3 94.4 96.6 92.9

DAN (Rev-FaConvNet) 4.8 M 94.0 99.1 100.0 92.7 92.3 92.2 85.5 84.6 82.6 92.3 90.9 90.8

Our DA (Rev-FaConvNet) 4.8 M 94.9 99.2 100.0 93.3 93.3 92.5 86.5 85.9 83.1 93.0 93.0 91.5

DAN (Our net) 4.1 M 95.0 99.2 100.0 96.0 94.8 95.2 91.6 90.4 90.7 94.4 95.0 94.3

Our DA (Our net) 4.1 M 95.6 99.7 100.0 96.8 96.0 95.6 92.5 91.6 91.4 95.3 97.2 95.3

Baseline: Our DA (GoogLeNet) 7 M 95.9 99.7 100.0 97.1 96.2 95.9 92.9 92.0 91.5 95.6 97.4 95.7

Baseline: Our DA (FaConvNet) 2.8 M 94.5 99.1 99.8 92.0 91.8 91.0 83.7 83.4 80.1 92.8 91.1 89.8

1 Please see the footnote of Table 4 for the explanation of parameter numbers.

hyper-parameter of G-MMD loss is fixed to 0.3 across all

datasets, and the bandwidth of the Gaussian kernel is the

median pairwise distance [38] on training set.

Based on NVIDIA GTX TITAN X, the inference speed

of SqueezeNet and Rev-SqueezeNet is faster than that

of FaConvNet, Rev-FaConvNet and our network, though

they cannot obtain GoogLeNet-level classification and DA.

Specifically, Rev-SqueezeNet is 22% slower than that of

SqueezeNet, and Rev-FaConvNet decreases the speed of

FaConvNet by 12%. Our network consumes 11% less time

compared to FaConvNet.

Table 4 and Table 5 respectively summarize the DA ac-

curacy on Office-31 and Office-Caltech datasets. Both ta-

bles are separated into four groups by rows. The first group

is the previous DA methods based on AlexNet. The sec-

ond group compares previous and our DA methods on Rev-

FaConvNet, while the third group compares DA methods

on our DNN. The fourth group provides result of our DA

method on GoogLeNet and FaConvNet as baselines. The

results in the two tables are analyzed from the following

three aspects:

First, our DNN approaches GoogLeNet’s DA accu-

racy on the same DA method, while the gap between

GoogLeNet and previous compact DNNs (FaConvNet and

Rev-FaConvNet) is much larger, according to the four ob-

servations: Our DA (Our net), Our DA (GoogLeNet), Our

DA (FaConvNet) and Our DA (Rev-FaConvNet) in Table 4

and Table 5. Though FaConvNet, Rev-FaConvNet and our

DNN all obtain GoogLeNet-Level classification accuracy,

only our DNN has matched accuracy on both classification

and DA. Moreover, our DNN (4.1M) is smaller than Rev-

FaConvNet (4.8M). Our DNN also outperforms AlexNet

using the same DA method, as the comparison of GRL and

GRL (Our net) in Table 4 shows.

Second, our DA method outperforms GRL and DAN,

based on the same DNN, according to the four comparisons:

5674



Table 6: Contribution of non-regular convolution in our Conv-M module on Office-31 dataset.

#Parameter Classification A→W D→W W→D W→A A→D D→A

Our DA (Our net1) 4.1 M 62.2 74.2 96.5 99.2 56.2 74.1 56.0

Our DA (Our net) 4.1 M 68.9 82.6 97.0 99.4 67.4 80.1 67.3

Table 7: DA accuracy of our method without including

specified component on Office-31 dataset.

Method A→W D→W W→D W→A A→D D→A

No G-MMD 76.7 96.5 99.2 62.0 77.5 64.7

No recons. 79.6 95.4 99.3 64.4 77.3 62.1

All 82.6 97.0 99.4 67.4 80.1 67.3

Table 8: DA accuracy of our method without including

specified component on Office-Caltech dataset.

Method A→W D→W A→D A→C W→C D→C

No G-MMD 91.1 99.6 93.4 90.9 87.1 87.8

No recons. 93.9 99.4 95.0 88.7 89.8 86.6

All 95.6 99.7 96.8 92.5 91.6 91.4

GRL (Rev-FaConvNet) and Our DA (Rev-FaConvNet) in Ta-

ble 4, GRL (Our net) and Our DA (Our net) in Table 4, DAN

(Rev-FaConvNet) and Our DA (Rev-FaConvNet) in Table 5,

and DAN (Our net) and Our DA (Our net) in Table 5.

Third, put all together, our DA method based on our

DNN achieves state-of-the-art on sixteen of total eighteen

DA tasks on two datasets, as shown on the last row of these

two tables (Our DA (Our net)). The other two is A→D in

Table 4 and A→W in Table 5. We boost the accuracy of

task D→A by 10.6% compared to TRANSDUCTION, as

shown in Table 4. On Office-31 dataset, the accuracy gap

between the tasks D→W and W→D is 2.4%, while the gap

between A→W and W→A greatly increases to 15.2%, indi-

cating larger appearance difference between domains A and

W. The domain difference between A and D is also larger

than that between D and W. In other words, on Office-31

dataset, transfer (in two directions) between D and W is rel-

atively easier for our DA method, while other two are more

difficult, which is consistent with the results from previous

DA methods. On Office-Caltech dataset, the bilateral trans-

fer between C and W gets the largest accuracy gap (5.6%)

in our DA method, as shown in Table 5.

4.3. Sensitivity Analysis

Convolution in Conv-M. To validate the contribution of

non-regular convolution (dilated convolution and improved

deconvolution) in our Conv-M module, we replace all non-

regular convolution with regular ones and keep the 3×3 ker-

nel size unchanged. The first row Our DA (Our net1) in

Table 6 shows the result, and the second row Our DA (Our

net) is our original solution. Significant accuracy drop can

be observed on classification and almost all DA tasks. The

comparison in Table 6 indicates the importance of features

extracted by dilated convolution and improved deconvolu-

tion in our Conv-M.

Reconstrution and G-MMD. Based on our DNN, Ta-

ble 7 and Table 8 respectively show the contribution of two

components of our DA methods (sample reconstruction and

G-MMD) on Office-31 and Office-Caltech datasets. The

row No G-MMD in two tables shows the result obtained by

removing G-MMD from our DA method, while the row No

recons. corresponds to our method without including sam-

ple reconstruction. For these two rows, lower accuracy in-

dicates more contribution of the component. The row All is

the regular result without removing any component, which

is the same as the respective row Our DA (Our net) in Ta-

ble 4 and Table 5. For Office-31 dataset shown in Table 7,

reconstruction is more important for the transfers D→W

and D→A, while A→W and W→A rely more on G-MMD.

Table 8 demonstrates that the contributions of reconstruc-

tion and G-MMD are almost the same.

5. Conclusion

In this paper, we present a compact DNN architecture

and unsupervised DA method, based on our observation

that current small DNNs (SqueezeNet and FaConvNet)

have unmatched accuracy on classification and DA, e.g., a

DNN with GoogLeNet-level classification accuracy only

obtains AlexNet-level DA accuracy. The basic module used

in our DNN, Conv-M, introduces multi-scale convolution

and deconvolution without using kernels larger than 3×3.

The unified framework of our DA method learns cross-

domain features by sample reconstruction and G-MMD,

and simultaneously tunes label prediction. The parameter

numbers of our DNN is only 59% of GoogLeNet, while

experiments show that our DNN obtains GoogLeNet-level

accuracy both on classification and DA. Our DA method

slightly outperforms previous competitive GRL and DA.

In addition, our method based on our DNN achieves

state-of-the-art on sixteen of total eighteen DA tasks on the

popular Office-31 and Office-Caltech datasets.

Acknowledgments. This work is in part supported by NSF

CCF-1615475 and DOE SC0017030. Any opinions, find-

ings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily re-

flect the views of grant agencies or their contractors.

5675



References

[1] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pen-

sky. Sparse Convolutional Neural Networks. International

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

[2] S. Han, H. Mao, and W. J. Dally. Deep Compression:

Compressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding. International Confer-

ence on Learning Representations (ICLR), 2016.

[3] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

Structured Sparsity in Deep Neural Networks. Advances in

Neural Information Processing Systems (NIPS), 2016.

[4] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level Accuracy

with 50x Fewer Parameters and <0.5MB Model Size. arXiv

preprint arXiv:1602.07360, 2016.

[5] M. Wang, B. Liu, and H. Foroosh. Factorized Convolutional

Neural Networks. arXiv preprint arXiv:1508.04337, 2016.

[6] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:

A Deep Neural Network Architecture for Real-Time Seman-

tic Segmentation. arXiv preprint arXiv:1606.02147, 2016.

[7] H. Shimodaira. Improving Predictive Inference under Con-

vriate Shift by Weighting the Log-Likelihood Function.

Journal of Statistical Planning and Inference, 2000.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Network. Ad-

vances in Neural Information Processing Systems (NIPS),

2012.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Go-

ing Deeper with Convolutions. International Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and F. F. Li. ImageNet Large Scale Visual Recog-

nition Challenge. International Journal of Computer Vision

(IJCV), 2015.

[11] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Vi-

sual Category Models to New Domains. European Confer-

ence on Computer Vision (ECCV), 2010.

[12] Y. Ganin and V. Lempitsky. Unsupervised Domain Adapta-

tion by Backpropagation. International Conference on Ma-

chine Learning (ICML), 2015.

[13] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic Flow

Kernel for Unsupervised Domain Adaptation. International

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. arXiv preprint arXiv:1512.03385,

2015.

[15] J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and

B. Scholkopf. Correcting Sample Selection Bias by Unla-

beled Data. Advances in Neural Information Processing Sys-

tems (NIPS), 2006.

[16] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa.

Generalized Domain-Adaptive Dictionaries. International

Conference on Computer Vision and Pattern Recognition

(CVPR), 2013.

[17] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars.

Unsupervised Visual Domain Adaptation Using Subspace

Alignment. International Conference on Computer Vision

(ICCV), 2013.

[18] X. Glorot, A. Bordes, and Y. Bengio. Domain adapta-

tion for large-scale sentiment classification: A deep learning

approach. International Conference on Machine Learning

(ICML), 2011.

[19] S. Chopra, S. Balakrishnan, and R. Gopalan. DLID: Deep

Learning for Domain Adaptation by Interpolating between

Domains. International Conference on Machine Learning

Workshop (ICMLW), 2013.

[20] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.

Deep Domain Confusion: Maximizing for Domain Invari-

ance. arXiv preprint arXiv:1412.3474, 2014.

[21] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning Trans-

ferrable Features with Deep Adaptation Networks. Interna-

tional Conference on Machine Learning (ICML), 2015.

[22] M. Long, J. Wang, and M. I. Jordan. Unsupervised Domain

Adaptation with Residual Transfer Networks. Advances in

Neural Information Processing Systems (NIPS), 2016.

[23] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learn-

ing Transferrable Representations for Unsupervised Domain

Adaptation. Advances in Neural Information Processing Sys-

tems (NIPS), 2016.

[24] C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-

Resolution Using Deep Convolutional Networks. arXiv

preprint arXiv:1501.00092, 2015.

[25] H. Noh, S. Hong, and B. Han. Learning Deconvolution Net-

work for Semantic Segmentation. International Conference

on Computer Vision (ICCV), 2015.

[26] S. Hong, H. Noh, and B. Han. Decoupled Deep Network

for Semi-Supervised Semantic Segmentation. Advances in

Neural Information Processing Systems (NIPS), 2015.

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Im-

age Segmentation. arXiv preprint arXiv:1511.00561, 2015.

[28] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. International Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2015.

5676



[29] F. Yu and V. Koltun. Multi-scale Context Aggregation by

Dilated Convolutions. International Conference on Learning

Representations (ICLR), 2016.

[30] L. Sifre and S. Mallat. Rotation, Scaling and Deformation

Invariant Scattering for Texture Discrimination. Interna-

tional Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2013.

[31] A. Gretton, K. M. Borgwardt, M. Rasch, B. Scholkopf, and

A. J. Smola. A Kernel Method for the Two-Sample-Problem.

Advances in Neural Information Processing Systems (NIPS),

2006.

[32] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. International

Conference on Learning Representations (ICLR), 2015.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

Architecture for Fast Feature Embedding. ACM Interna-

tional Conference on Multimedia, 2014.

[34] B. Gong, K. Grauman, and F. Sha. Connecting the

DOTs with Landmarks: Discriminatively Learning Domain-

Invariant Features for Unsupervised Domain Adaptation. In-

ternational Conference on Machine Learning (ICML), 2013.

[35] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain

Adaptation via Transfer Component Analysis. IEEE Trans-

actions on Neural Networks and Learning Systems (TNNLS),

2011.

[36] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Cat-

egory Dataset. Technical Report, California Institute of Tech-

nology, 2007.

[37] A. Torralba and A. Efros. Unbiased look at dataset bias.

International Conference on Computer Vision and Pattern

Recognition (CVPR), 2011.

[38] A. Gretton, B. Sriperumbudur, D. Sejdinovic, H. Strathmann,

S. Balakrishnan, M. Pontil, and K. Fukumizu. Optimal Ker-

nel Choice for Large-Scale Two-Sample Tests. Advances in

Neural Information Processing Systems (NIPS), 2012.

5677


