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Abstract

Facial landmark detection, head pose estimation, and fa-

cial deformation analysis are typical facial behavior anal-

ysis tasks in computer vision. The existing methods usually

perform each task independently and sequentially, ignor-

ing their interactions. To tackle this problem, we propose a

unified framework for simultaneous facial landmark detec-

tion, head pose estimation, and facial deformation analysis,

and the proposed model is robust to facial occlusion. Fol-

lowing a cascade procedure augmented with model-based

head pose estimation, we iteratively update the facial land-

mark locations, facial occlusion, head pose and facial de-

formation until convergence. The experimental results on

benchmark databases demonstrate the effectiveness of the

proposed method for simultaneous facial landmark detec-

tion, head pose and facial deformation estimation, even if

the images are under facial occlusion.

1. Introduction

Typical facial behavior analysis tasks include facial land-

mark detection, head pose estimation, and facial deforma-

tion analysis. Facial landmark detection aims to detect the

key points around facial components and facial contour.

The goal of head pose estimation is to predict the orien-

tation and translation of the head with respect to the camera

coordinate frame. Facial deformation refers to the non-rigid

facial motion induced by facial expression change. Current

research usually tackles these tasks independently and se-

quentially. In reality, rigid head movements and non-rigid

facial expressions often happen together and they both af-

fect the 2D facial landmarks (see Figure 1). Head pose and

non-rigid facial deformation can lead to different 2D facial

shapes, and the 2D facial landmark locations can reflect the

head pose and non-rigid facial deformation. Therefore, due

to the coupled interactions, facial landmark, head pose, and

facial deformation should be estimated jointly utilizing their

Head 
pose deformation

Facial 
deformation

2d facial 
landmark

2d facial 
landmark

Figure 1. The coupling of facial landmark locations, head pose and

facial deformation

joint relationships.

Facial occlusion brings significant challenges for facial

behavior analysis. As shown in Figure 2, facial occlusion

can be induced by objects or it may be self-occlusion due to

significant head poses (e.g. > 60 degree). Facial appearance

information is noisy on images with occlusion, and facial

shape on the occluded facial parts is difficult to estimate.

The facial occlusion causes problems for all facial analysis

tasks, including facial landmark detection, head pose esti-

mation, and facial deformation analysis.

Based on the intuitions above, we propose to simultane-

ously estimate the facial landmark locations, head pose and

facial deformation in a unified framework using a method

that is robust to facial occlusion. There are a few major

contributions of the proposed method:

• We propose an iterative cascade method to simulta-

neously perform facial landmark detection, pose and

deformation estimation. The unified framework can

leverage the joint relationships among landmarks, pose

and deformation to boost the performances of all the

tasks. This is in contrast to most of the existing works,

which treat them sequentially or independently. It

is also different from some joint methods performing

one-shot estimation [18][2].

• The proposed method allows us to systematically inte-

grate the learning-based facial landmark detection with

model-based head pose and facial deformation estima-
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(a) (b)
Figure 2. Facial occlusion induced by (a) object occlusion (COFW

database [3]) or (b) self-occlusion due to extreme head poses (Mul-

tiPIE database [10]).

tion without the need for 3D annotation. This is in con-

trast to the existing data-driven learning-based meth-

ods that rely on 3D annotations [30][14][22][29].

• Unlike most of the existing works [22][29][18][2], our

method explicitly estimates facial occlusion, which

can, in turn, help landmark detection, pose and defor-

mation estimation under facial occlusion.

• The experiments on benchmark databases demonstrate

the effectiveness of the proposed method for landmark

detection, pose estimation, and deformation estimation

under facial occlusion.

The remaining part of the paper is organized as follows.

In section 2, we review the related works. In section 3, we

introduce the proposed method. In section 4, we evaluate

the proposed method and compare it to other state-of-the-

art works. In section 5, we conclude the paper.

2. Related Work

2.1. Facial landmark detection

Facial landmark detection algorithms can be classi-

fied into the holistic methods [5][23], Constrained Local

Methods (CLM) [6][18][2] and regression-based methods

[26][17][1][4]. The proposed method follows the regres-

sion framework.

Some recent facial landmark detection algorithms try to

handle facial occlusion. The method in [3] is one early work

that predicts the occlusion labels of different facial land-

marks. The authors train nine occlusion-dependent models

based on part of the facial appearance, and combine them

with weights based on the estimated facial occlusion for

landmark detection. In [9], a probabilistic graphical model

is utilized to model the spatial relationship among facial

landmarks and their occlusions under different facial defor-

mation and expressions for robust landmark detection under

facial occlusion. The method in [25] iteratively estimates

the facial landmark occlusion and locations following the

cascade regression framework. However, this method does

not consider head pose and non-rigid facial deformation.

2.2. Head pose estimation

Head pose estimation algorithms can be classified into

learning-based methods and model-based methods. The

learning-based methods utilize pattern recognition and ma-

chine learning techniques to directly map the image ap-

pearance to the discrete head pose (e.g., left pose, frontal,

and right pose) or continuous pose angles (e.g., pitch, yaw,

and roll). Common learning techniques include multi-layer

perceptron [19], random forests [7] and the Partial Least

Squares (PLS) regression method [11] etc.

Model-based methods utilize 2D facial landmarks and

3D computer vision techniques for pose estimation. For ex-

ample, in [24], the 3D head pose and the facial deformation

of a driver are estimated based on a flexible model and de-

tected 2D facial landmarks. In [21], a general 3D face with

six landmarks is combined with the RANSAC method for

head pose estimation. The existing head pose estimation al-

gorithms usually do not explicitly handle facial occlusion.

The model-based approaches may fail on facial images with

extreme head poses, since they may not be able to exclude

the landmarks on the self-occluded facial parts.

2.3. Joint estimation

There are a few algorithms that combine head pose or

deformable models with facial landmark detection. They

can be roughly classified into 3D Constrained Local Meth-

ods (3D CLMs), 3D cascade regression methods, and other

methods.

3D CLMs [18][2][28] use the 3D facial shape de-

formable model in combination with the head pose param-

eters to regularize the 2D facial landmark locations for 2D

facial landmark detection. While traditional CLMs [6] pre-

dict the 2D deformable model coefficients for landmark

detection, the 3D CLMs can predict both the 3D model

coefficients and head pose angles. Even though both the

3D CLMs [18][2][28] and the proposed method can pre-

dict head pose and deformable models coefficients, there

are a few differences. While the goal of 3D CLMs is facial

landmark detection and the head pose estimation is only the

intermediate result, the proposed method aims to perform

both landmark detection and pose estimation. Pose estima-

tion accuracy is usually not reported in 3D CLMs [18][28].

Furthermore, while 3D CLMs perform one-step estimation

for pose and deformable coefficients to directly determine

the 2D landmark locations, the proposed method follows

the regression approaches and performs cascade regression

to gradually update the landmark locations, head poses, and

deformable model coefficients. Since 3D CLMs directly

predict model coefficients and head pose for landmark de-

tection, and small model coefficients and pose errors may

lead to large landmark detection errors, their estimation may

not be accurate. On the other hand, our method directly pre-

dicts landmarks, which may be more accurate.

3D cascade regression methods are learning-based meth-

ods that perform 3D prediction. They either predict the 3D

facial landmark locations that determine the head pose and
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3D model coefficients, or they predict head pose and de-

formable coefficients that determine the 3D facial landmark

locations. For example, in [22], Tulyakov and Sebe propose

to predict the 3D facial shape from the facial image using

cascade regression methods based on 3D training data, and

the head pose can be calculated based on the predicted 3D

facial shape. In [13][30] [14], cascade regression learning

methods are proposed to directly predict the pose and 3D

model coefficients with 3D training data. There are a few

differences between the 3D cascade regression methods and

the proposed method. For example, 3D cascade regression

methods are purely data-driven, and they require 3D fa-

cial landmark annotations or head pose annotations for each

training data. Since the proposed method combines learning

with model-based head pose estimation, it does not require

3D annotations. Similar to the 3D CLMs, the 3D cascade

regression methods mainly focus on facial landmark detec-

tion and head pose estimation results may not be reported.

It is also not clear how them perform on images with facial

occlusion.

There are a few other joint learning methods that try to

simultaneously predict 2D facial landmarks and pose from

image appearance. For example, in [31][12], 2D head pose-

dependent facial landmark detection models are constructed

and applied to the testing image. The final selected 2D

landmark detection results and head pose are determined

by the pose-dependent model with the smallest fitting error.

In [29], a cascade iterative framework is proposed to predict

2D landmarks, pose, and expression labels based on random

forests. Compared to the proposed method, the methods in

this category are purely learning-based approaches requir-

ing additional pose labels, ignoring the projection model,

while the proposed method combines learning and model

without the need for pose annotations. In addition, while

those methods can only predict the discrete head poses, the

proposed method can predict the continuous head pose. It

is also not clear how the method in [29] will perform on

images with occlusion.

3. Approach

3.1. General framework

The proposed method simultaneously performs facial

landmark detection, head pose estimation, and facial de-

formation estimation under facial occlusion given the facial

image, denoted as I . The facial landmark locations of the

facial key points on 2D images are denoted as x ∈ R
D,

where D is the number of landmark points. The head pose

refers to the continuous pose angles, including pitch, yaw,

and roll, denoted as h = {pitch, yaw, roll}. The facial

deformation refers to the non-rigid facial deformation re-

lated to facial expression, facial action unit etc., excluding

the rigid pose variations. In particular, assume we have a

3D deformable facial model trained with 3D facial shapes

using principal component analysis technique, the 3D face

shape can be represented using the deformation coefficients,

denoted as α.

s = s +Bα (1)

Here, s = {x1, y1, z1, ..., xD, yD, zD}T denotes the 3D

face shape. s is the average 3D shape and B represents

the orthonormal bases. To handle facial occlusion, we in-

troduce the landmark visibility vector c ∈ [0, 1]D, which

specifies the probabilities that the landmark points are visi-

ble. The proposed algorithm simultaneously estimates x, h,

α, and c.

Head pose
2d facial landmark 
locations

Vision model, 
deformable 
model

Image Appearance

Landmark occlusion 
probability

Non‐rigid 
deformation

Model based pose 
and deformation 
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Figure 3. Overall framework

The proposed method follows a cascade iterative proce-

dure. The overall algorithm is illustrated in Algorithm 1 and

Figure 3. We first initialize the facial landmark locations us-

ing the mean face x0, assuming the pose is frontal h0 = 0,

there is no non-rigid deformation α0 = 0, and all the land-

marks are visible c0 = 1. Then, we iteratively update the

landmark visibility probabilities, the landmark locations,

the head pose angles and non-rigid deformations. For each

iteration t, we sequentially update the landmark visibility

probabilities, the landmark locations, and the head poses. In

the first step, when updating the landmark visibility prob-

abilities ct, we predict the landmark visibility probability

updates ∆ct given the previously predicted landmark loca-

tions xt−1 and the head pose ht−1. The estimated visibility

probability updates ∆ct will be added to the previously es-

timated visibility probabilities ct−1 to generate the new vis-

ibility probabilities ct. In the second step, when updating

the landmark locations xt, we predict the landmark location

updates ∆xt by using the previously estimated landmark

locations xt−1, the currently estimated landmark visibility

probabilities ct, the previously estimated non-rigid defor-

mation information αt−1, and the previously estimated head

pose ht−1. The update will be added to the previous estima-

tion to generate the new estimation of landmark locations

xt. In the third step, when updating the head pose ht and
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Algorithm 1: The general framework

1 Initialize the landmark locations x0 using the mean

face; Assuming all the landmarks are visible c0 = 1,

the pose is frontal h0 = 0, and the there is no

non-rigid deformation α0 = 0.

2 for t=1, 2, ..., T or convergence do

3 Update the landmark visibility probabilities given

the image, the landmark locations, and the head

pose.;

4

ft : I, xt−1, ht−1 → ∆ct

ct = ct−1 +∆ct

5 Update the landmark locations given the image,

the landmark locations, the landmark visibility

probabilities, the head pose, and the non-rigid

deformation.;

6

gt : I, xt−1, ct, ht−1, αt−1 → ∆xt

xt = xt−1 +∆xt

7 Update the head pose and non-rigid deformation

given the landmark locations, the landmark

visibility probabilities, and a pre-trained 3D

deformable model.;

8

mt : xt, ct, 3D model → ht, αt

9 Output the estimated landmark locations xT , the

predicted visibility probabilities cT , the estimated

head pose hT , and the non-rigid deformation αT .

non-rigid deformation αt simultaneously, we use the cur-

rently predicted landmark locations xt, the landmark visi-

bility probabilities ct, and the 3D deformable model. Note

that, in the third step for pose and deformation estimation,

we follow model-based approach, and there is no learning

involved. Therefore, we do not need any annotation for pose

and deformation. We only need the landmark locations and

occlusion labels, since learning is involved in the first two

steps for landmark and occlusion predictions. Those three

steps iterate until convergence. In the following, we discuss

each step in details.

3.2. Predict the facial occlusion

In each cascade level, the first task is to estimate the fa-

cial occlusion. We need to update the landmark visibility

probabilities ct by predicting the landmark visibility proba-

bility updates ∆ct. Intuitively, we can predict the visibility

based on the local appearance information, which refers to

the local image patches around the landmarks encoded with

image features (e.g. SIFT features). The previously pre-

dicted head pose information is also an effective cue for es-

timation, since the occlusion could be caused by head poses.

Overall, we use the linear regression model for the predic-

tion.

∆ct = T t
aΦ(x

t−1, I) + T t
hht−1 (2)

ct = ct−1 +∆ct (3)

In the first term, we predict the probability updates from the

local facial appearance information, denoted as Φ(xt−1, I)
for the image I with regression parameters T t

a. In the sec-

ond term, we add the current pose angles as additional fea-

tures for the prediction with linear regression parameters

T t
h. Note that, the prediction is bounded, since ct represents

probability vectors and they should be in the range [0, 1].
The goal for model learning is to estimate the param-

eters of those linear regression models, including T t
a, and

T t
h. We can get the ground truth landmark visibility prob-

abilities (cd = 0 for occluded point and 1 otherwise) given

the ground truth facial landmark occlusion labels. Then we

can calculate the ground truth landmark visibility probabil-

ity updates ∆c
t,∗
i = c∗i −ct−1

i , where c∗i refers to the ground

truth visibility probability (1 for visible points and 0 for oc-

cluded points). In addition, we have the previously esti-

mated landmark locations xt−1

i , head pose angles ht−1

i , and

deformation parameters αt−1. We can formulate parame-

ter learning as a linear least squares problem with a closed

form solution.

T t,∗
a , T

t,∗
h = arg min

T t
a
,T t

h

∑

i

‖∆c
t,∗
i −T t

aΦ(x
t−1, I)−T t

hht−1‖2

(4)

3.3. Predict the facial landmark locations

In each cascade level, the second task is to update the fa-

cial landmark locations. We could use the local appearance

information from the previously estimated landmark loca-

tions for the update, as in the traditional cascade regression

framework [26]. However, due to the facial occlusion, the

local appearance information may not be reliable. The head

pose and the facial deformation can also be useful for land-

mark detection. To take all these factors into consideration,

we predict the facial landmark location updates as follows:

∆xt = Rt
a[
√

ct ◦ Φ(xt−1, I)] +Rt
hht−1 +Rt

dα
t−1 (5)

xt = xt−1 +∆xt (6)

In the first term, similar to [25], we propose to weigh the

local appearance, denoted as Φ(xt−1, I), using the currently

predicted landmark visibility probabilities ct, and use a lin-

ear regression model with parameter Rt
a to predict the shape

updates. “◦” represents the point-wise product between the

landmark occlusion probability of a particular point and its

corresponding appearance information. The square root is
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used for better empirical performance. The intuition is that

we want to weigh more on the appearance information from

the visible points rather than that from the occluded points,

since the occluded parts may not provide useful information

for the landmark locations. In the second and third terms,

we add the current pose and deformation information into

the prediction with regression parameters Rt
h and Rt

d, re-

spectively.

For model learning, we can calculate the ground truth

shape updates ∆x
t,∗
i = x∗i − xt−1

i for the arbitrary ith sam-

ple. Similar to learning the regression parameters for visi-

bility prediction in section 3.2, we can formulate the param-

eter estimation problem in a weighted linear least squares

formulation.

Rt,∗
a , R

t,∗
h , R

t,∗
d =arg min

Rt
a
,Rt

h
,Rt

d

∑

i

‖∆x
t,∗
i

−Rt
a[
√

ct ◦ Φ(xt−1, I)]

−Rt
hht−1 −Rt

dα
t−1‖2C

(7)

In Equation 7, we introduce the diagonal matrix C to handle

missing facial landmark annotations. Due to the extreme

head poses, some facial landmarks may not be visible for

annotation. The corresponding element of C is set to zero

for completely occluded points, and one otherwise. Overall,

the problem is a weighted linear least squares problem and

it can be solved in a closed-form solution.

3.4. Predict the head pose and non­rigid deforma­
tion

In each cascade level, the third task is to predict the head

pose angles ht and facial deformation αt. We first build

a 3D deformable model to capture the variations of frontal

3D facial shapes caused by the non-rigid facial deformation

(e.g., cross-subject variations, expression variations). Given

the 3D facial shapes as training data, we can learn the de-

formable model as shown in Equation 1 using the principal

component analysis technique to generate the average 3D

shape s and the orthonormal bases B.

Given the pre-trained 3D deformable model, the cur-

rently estimated facial landmark locations xt, and the facial

visibility probabilities ct, we can simultaneously predict the

head pose angles ht and the facial deformation αt by mini-

mizing the projection error for all landmark points.

M∗, α∗ = arg min
M,α,t

∑

k

wk(‖ud,k−up,k‖2+‖vd,k−vp,k‖2)

(8)

Here, ud,k and vd,k denote the column and row coordinates

extracted from currently predicted 2D facial landmarks xt.

up,k and vp,k denote the column and row coordinates of the

projected 2D landmarks based on the 3D deformable model

with coefficients αt and the current head pose ht with weak-

perspective projection.

[

uk

vk

]

= M





xk

yk
zk



+ t (9)

Here, M is a 2 by 3 weak-perspective projection matrix that

consists of two rows, representing respectively the scaled

first and second rows of the rotation matrix. M hence en-

codes pose angles: pitch, yaw, and roll. t presents 2D trans-

lation. As in section 3.3, we handle facial occlusion by in-

troducing the weight wk for each point based on its visi-

bility probability ck. The intuition is that we weigh more

on the projection errors produced by more visible landmark

points. To solve Equation 8, we iteratively update the head

pose angles and deformation parameters. While fixing one

set of variables and estimating the other set of variables

(e.g. M or α), the problem becomes a weighted linear least

squares problem with a closed-form solution.

4. Experimental results

4.1. Implementation details

4.1.1 Model details

We use the SIFT [16] features to represent the local fa-

cial appearance information. We augment the training data

by 8 random initializations of the landmarks in different

scales and locations with consistent initializations of the

pose and deformation for each sample. We trained the 3D

deformable model using the 3D facial shape from BU4D-

FE databases [27] provided in [22]. We retain 90% of the

energy when choosing the number of principal components.

The overall model contains four cascade iterations.

4.1.2 Evaluation criteria

For facial landmark detection, we use two evaluation crite-

ria. For images without self-occlusion (e.g. COFW [3]), we

use the normalized error, which is defined as the distance

between the predicted facial landmark locations and the

ground truth landmark locations normalized by the inter-

ocular distance (times 100%). We denote the error as nor-

malized error. On images with self-occlusion (e.g. Multi-

PIE [10]), since one eye may be occluded, we cannot use

the normalized error. Therefore, we use the average abso-

lute pixel distance. For facial occlusion prediction, we fol-

low the previous works [3] and compare the recall values

by fixing the precision value to 80%. For the evaluation of

head pose estimation algorithms, we use the mean absolute

error, which calculates the difference between the estimated

angles and the ground truth angles. On databases with dis-

crete head pose labels, we also include the head pose classi-

fication accuracy, which calculates the percentage of images

that have an error less than 7.5 degrees.
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4.2. Comparison of the proposed method to state­
of­the­art works

4.2.1 Evaluation of head pose estimation on BU

database

In the first experiment, we evaluate the proposed method

on the Boston University (BU) head tracking database [15].

The BU database contains facial videos of subjects with dif-

ferent translation and rotation movements. Following the

previous works [15] [20] [24], we use the 45 sequences of

5 subjects with uniform lighting conditions. Since the BU

database only provides the continuous pitch yaw roll pose

label, we cannot train the joint framework. Therefore, we

only evaluate the head pose estimation on the BU database,

where the 68 facial landmarks are generated using the pre-

trained detector [26].

The experimental results are shown in Table 1. Since

there is limited facial occlusion on the BU database, all the

methods perform reasonably well and our method achieves

the best overall head pose estimation accuracy compared to

other model-based methods [21][15][20][24]. Our method

is more effective than [21], [20] and [15], since they rely

on a general rigid 3D head model or the cylindrical mod-

els. It also performs better than the flexible model in [24],

even though they further assume that the camera intrinsic

parameters are known. We also run [2] (code provided by

the authors), and their pose estimation errors are also worse

than ours (cannot reproduce their reported results).

Table 1. Comparison of the head pose estimation methods (mean

absolute errors) on BU database.

Method Pitch Yaw Roll Average

Rigid model [21] 11.9 5.2 2.8 6.6

Cylindrical [15] 6.6 3.3 9.8 6.4

Cylindrical+AAM [20] 5.6 5.4 3.1 4.7

Deformable model [24] 4.3 6.2 3.2 4.6

3D CLM [2] 6.0 3.9 3.7 4.5

ours 5.3 4.9 3.1 4.4

4.2.2 Evaluation of proposed joint method on COFW

database with severe facial occlusion

In the second experiment, we evaluate the overall frame-

work on the Caltech Occluded Faces in the Wild (COFW)

database [3]. The COFW database contains facial images

(Figure 2 (a)) with severe facial occlusions in arbitrary

head poses, facial deformations collected from the website.

There are 1345 training images and 507 testing images, with

29 facial landmark location annotations and their occlusion

labels. Since COFW only provides the landmark annota-

tion and occlusion labels, we can just evaluate the landmark

detection and occlusion prediction accuracy.

The experimental results are shown in Table 2. We

compared the proposed method with other state-of-the-art

works, including the CRC [8], OC [9], RCPR [3], CRC

[8], ESR [4], and FPLL [31], where the first three meth-

ods are specifically designed to handle facial occlusion. For

both landmark detection and occlusion prediction, the pro-

posed method outperforms all of the existing works, and

its performance is closest to human performance. Our re-

sults on COFW outperforms the basic version of [25] (base-

line in Tab. 1 of [25]), which demonstrates the impor-

tance of adding the pose/deformation information to help

landmark/occlusion predictions. We are slightly worse than

their full version with occlusion pattern and shape features.

We can further include occlusion patterns and shape fea-

tures to improve the performances of our method.

Table 2. Comparison of facial landmark detection errors (normal-

ized errors w.r.t. inter-ocular distance) and occlusion prediction

results on COFW database (29 points) [3].

Method Landmark error Occlusion

(precision/recall)

Human 5.6 [3] -

CRC [8] 7.30 -

OC [9] 7.46 80.8/37.0%

RCPR [3] 8.50 80/40%

ESR [4] 11.20 -

FPLL [31] 14.40 -

SDM [26] 7.70 -

ours 6.40 80/44.43%

4.2.3 Evaluation of proposed joint method on Multi-

PIE database with varying head poses and self-

occlusion

In the third experiment, we evaluate the full model on the

MultiPIE database [10] for both head pose estimation and

facial landmark detection. The MultiPIE database con-

tains facial images (Figure 2 (b)) with varying illumina-

tions, head poses, and facial deformations. There are 13

head poses with yaw angles ranging from -90 to 90 degrees

with a 15-degree difference between two angles. The facial

deformations are induced by different expressions, includ-

ing happiness, surprise, etc. The facial landmark locations

and head pose labels are provided. In the experiments, we

use the facial images from the first 150 subjects for training
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Table 3. Facial landmark detection (pixel errors) and head pose estimation (mean absolute error, classification rate: error less than 7.5

degree) results on MultiPIE database (51 points) with the proposed method.

90 75 60 45 30 15 0

landmark error 3.41 3.33 3.17 4.16 2.96 3.19 3.37

pose estimation
classification accuracy 62.5 62.3 49.1 78.4 82.6 71.0 89.3

yaw 5.27 7.25 8.33 5.81 4.99 5.90 3.85

-15 -30 -45 -60 -75 -90

landmark error 3.39 3.09 3.99 3.13 4.03 4.89

pose estimation
classification accuracy 96.5 96.6 94.9 31.3 56.3 12.5

yaw 3.00 2.87 3.20 12.5 7.76 15.8

Table 4. Comparison of head pose estimation methods on MultiPIE database (mean absolute error, classification rate: error less than 7.5

degree).

PCR [11] linear PLS [11] kPLS [11] ours

yaw 11.03 9.11 5.31 5.36

classification accuracy 48.33% 57.22% 79.48% 77.1%

Table 5. Comparison of landmark detection (average pixel errors) on MultiPIE database (51 points).

near-frontal all poses

CLM [18] FPLL [31] Pose-free [28] Deep3D [30] 3D CLM [2] Chehra [1] ours ours

4.75 4.39 7.34 5.74 5.30 4.09 3.51 3.50

and use the subjects with IDs between 151 and 200 as test-

ing data. In the MultiPIE database, the facial occlusion is

caused by self-occlusion due to extreme head poses.

Table 3 shows the performance of the proposed method

on facial images with different yaw angles. For landmark

detection, the average pixel errors are similar across differ-

ent head poses. However, for head pose estimation, the er-

rors increase on images with extreme head poses. This is

due to the fact that for images with extreme head poses, the

numbers of visible points decrease. With limited informa-

tion, the prediction accuracy would decrease.

Comparisons of the proposed method to other state-of-

the-art works are shown in Table 4 and Table 5. For head

pose estimation, we compare the proposed method to the

learning-based head pose estimation algorithms, including

the Principal Component Regression (PCR), linear Partial

Least Squares (PLS), and kernel PLS (kPLS) methods [11].

Our method is more accurate than PCR and linear PLS, and

it is comparable to kPLS. The model-based methods [2] that

take all landmarks may fail on the images with large head

poses.

For landmark detection, our method outperforms

CLM [18], FPLL [31], Pose-free [28], Deep 3D [30], 3D

CLM [2], and Chehra [1] on near-frontal facial images. The

performances of the proposed method on images of all 13

poses are similar to that of near-frontal images.

4.3. Further evaluation of the proposed method

4.3.1 Effectiveness of the interaction among landmark,

pose and deformable estimation

One major benefit of the proposed method is to leverage

the interactions among landmarks, pose, and deformation

to boost the performances of all tasks. In this section, we

show empirical study about how the joint interactions would

improve the performances.

First, we show how the occlusion, pose and deforma-

tion estimation will improve facial landmark detection on

the COFW database in Table 6. The baseline method is a

conventional cascade regression method for landmark de-

tection [26], and it doesn’t consider the facial occlusion,

head pose, and facial deformation. Our method can add

the occlusion prediction (ours occlusion) without the head

pose and deformation estimation to help in facial landmark

detection. We can also additionally add the head pose and

facial deformation (second term in Equation 2, second and

third terms in Equation 5) to have the full model (ours all)

for the prediction. From the comparison, we see that by

adding the occlusion (ours occlusion), the landmark de-
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tection performance is better than the baseline. By fur-

ther adding the head pose and deformation, the full model

(ours all) achieves the best performance. The experiments

demonstrate the effectiveness of utilizing the interactions

among landmarks, pose, and deformation and the occlusion

prediction.

Table 6. Effectiveness of joint occlusion, pose, and deformation

estimation for landmark detection on COFW database (normalized

errors w.r.t inter-ocular distance, 29 points).

Method baseline [26] ours occlusion ours all

error 7.70 6.61 6.40

Second, we illustrate why the occlusion prediction is im-

portant for head pose and deformation estimation on the

MultiPIE database. As shown in Figure 4, due to self-

occlusion, it’s difficult to detect the facial landmarks on the

occluded facial part. Without considering the landmark oc-

clusion, the pose estimation algorithms may take all the fa-

cial landmarks into consideration and lead to incorrect pose

estimation results. Our method jointly performs landmark

detection and occlusion estimation. Therefore, the method

only uses the visible points for pose estimation. For exam-

ple, by fitting all points for Figure 4 (a), the estimated yaw

angle is about 26 degree, which significantly differs from

the ground truth (yaw angle is 90 degree). If we consider

the occlusion label, we can use the visible points and accu-

rately estimate the yaw angle as 90 degree.

(a) (b)
Figure 4. Facial landmark detection and occlusion prediction re-

sults on sample images. Green points: visible landmarks. Red

points: occluded landmarks.

4.3.2 Convergence study

Since the proposed method is an iterative cascade method,

we need to study its convergence property. Figure 5 and

6 show the performances of the proposed method across

different iterations on COFW and MultiPIE databases, re-

spectively. For COFW, we show landmark detection and

occlusion prediction performances. For MultiPIE, we show

landmark detection and pose estimation accuracies. As can

be seen, the proposed method converges quickly for land-

mark detection, occlusion prediction and pose estimation.

(a) (c)
Figure 5. Performance of the proposed method across iterations

on COFW database. (a) Landmark detection errors (normalized

errors). (b) Occlusion prediction accuracy (recall while fixing pre-

cision = 0.8).

(a) (b)
Figure 6. Performance of the proposed method across iterations on

MultiPIE database. (a) Landmark detection errors (pixel errors).

(b) Head pose estimation errors for the yaw angle (mean absolute

error).

5. Conclusion

In this work, we propose a unified framework that can si-

multaneously perform facial landmark detection, head pose

estimation and deformation estimation under facial occlu-

sion. With a cascade iterative procedure augmented with

model-based pose estimation, we iteratively predict the fa-

cial occlusion, facial landmark locations, head pose angles

and facial deformation. The iterative cascade procedure al-

lows us to fully exploit their joint relationships. The exper-

iments demonstrate the effectiveness of the proposed meth-

ods on benchmark databases compared to state-of-the-art

works for landmark detection, occlusion predictions and

head pose estimations.

In the future, we would further evaluate the frame-

work on more “in-the-wild” databases with the joint land-

mark, poses, and deformation annotations. In addition, al-

though the proposed method solves a specific vision prob-

lem, it demonstrates the power of leveraging the relation-

ships among related tasks with the cascade iterative proce-

dure. It can be applied to other problems that involve mul-

tiple tasks, such as joint object detection, image segmenta-

tion, and scene understanding.
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