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Abstract

This paper proposes a method for generative learning

of hierarchical random field models. The resulting model,

which we call the hierarchical sparse FRAME (Filters, Ran-

dom field, And Maximum Entropy) model, is a generaliza-

tion of the original sparse FRAME model by decomposing

it into multiple parts that are allowed to shift their loca-

tions, scales and rotations, so that the resulting model be-

comes a hierarchical deformable template. The model can

be trained by an EM-type algorithm that alternates the fol-

lowing two steps: (1) Inference: Given the current model,

we match it to each training image by inferring the unknown

locations, scales, and rotations of the object and its parts by

recursive sum-max maps, and (2) Re-learning: Given the

inferred geometric configurations of the objects and their

parts, we re-learn the model parameters by maximum likeli-

hood estimation via stochastic gradient algorithm. Experi-

ments show that the proposed method is capable of learning

meaningful and interpretable templates that can be used for

object detection, classification and clustering.

1. Introduction

Motivation and objective. We are entering a new age

of computer vision applications, where machine learning

technology plays a critical role in achieving a high level

of prediction performance, e.g., [7, 8, 12, 13]. However,

some machine learning models are opaque and difficult for

people to understand. Explainable models are highly de-

sirable, if users are to understand, interpret and effectively

manage the behaviors of the models. Therefore, discovering

explainable models for visual data is an important problem

in computer vision and artificial intelligence.

Models with hierarchical and compositional represen-

tations, such as deformable part-based models [5] and

stochastic And-Or templates [11], have been shown to be

a powerful basis for achieving both prediction accuracy and

explainability. They are capable of learning reconfigurable

representations to deal with both structural and appearance

variations of objects. These models can be paired with

either discriminative learning method or generative learn-

ing method. Discriminative learning seeks to identify and

weigh the most discriminant features and structures for ex-

plaining the object categories, while generative learning en-

ables us to learn the parameters and interpretable patterns

for explaining the image data instead of predicting the im-

age categories. Moreover, generative learning is not only

important for making the model explainable, it can also be

used for unsupervised learning from unlabeled images.

Recently, Xie et al. proposed a sparse FRAME (Filters,

Random field, And Maximum Entropy) model [16, 17] as

a generative model for image patterns. It can be consid-

ered a template consisting of a small number of perturbable

Gabor wavelets (sketches) at selected locations, scales and

orientations. The learned knowledge in the model can be

visualized by sampling from the model. However, the

sparse FRAME models can only deal with small deforma-

tions (e.g., edge perturbations), and may fail when there ex-

ist large geometric changes (e.g., part deformations). To

address this limitation, we propose to extend the original

sparse FRAME model to a hierarchical version, which we

call the hierarchical sparse FRAME model, by explicitly in-

volving part-level representations and deformations.

Method overview. (1) Representation: The hierarchical

sparse FRAME model is a hierarchical compositional de-

formable template, which is composed of a group of part

templates that are allowed to shift their locations and rota-

tions relative to each other. Each part template is in turn

composed of a group of Gabor wavelets that are allowed to

shift their locations and orientations relative to each other.

(2) Inference: The model inference is to determine a cer-

tain geometric configuration of the template for a given ob-

ject such that the log-likelihood is maximized. This can

be efficiently achieved by a bottom-up/top-down dynamic

programming, which is implemented by recursive sum-max

maps. (3) Generative learning: The model is learned in a

generative manner in the sense that the learning is carried

out by maximum likelihood estimation and also it involves

synthesizing image patterns via Markov chain Monte Carlo
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Figure 1: (a) Hierarchical sparse FRAME model: A hierarchical sparse FRAME model with 2 × 2 parts is learned from

roughly aligned observed images. The parts are visualized by displaying the synthesized images generated by the 4 part

models that are composed into the object model. (b) Inference: A testing image with bounding boxes showing the inferred

locations, rotations and scales of the object (red) and parts (blue). (c) A mixture of hierarchical sparse FRAME models is

learned by an EM-type algorithm from animal face images of four categories without manual labeling. The learned mixture

model is visualized as an And-Or graph, where an OR node (in black) represents a selection between difference alternatives

and an AND node (in blue) represents a composition of terminal nodes or children nodes. The object and part templates

shown in the And-Or graph are synthesized image patterns generated by the learned model via MCMC.

(MCMC) sampling. (4) Unsupervised learning: As the

model is a fully generative model, it can be learned in an

unsupervised manner, where the locations, scales and ori-

entations of the object, parts, and edges (Gabor wavelets)

are unknown, by an EM-type algorithm that alternates infer-

ence and re-learning steps. A mixture of hierarchical sparse

FRAME models can also be learned unsupervisedly as an

And-Or graph [22].

Figure 1 illustrates the basic idea of the hierarchical

sparse FRAME model and the mixture model. A three-

layer hierarchical model with 2 × 2 parts is visualized in

Figure 1(a) by displaying the synthesized images generated

from its part models by MCMC. Figure 1(b) displays an

example of inference of the hierarchical sparse FRAME

model on a testing image, with bounding boxes showing

the inferred locations, scales and rotations of the object

(red) and parts (blue). Figure 1(c) illustrates a mixture of

hierarchical sparse FRAME models as an And-Or graph,

which is learned from 50 animal face images of four cate-

gories, where the category labels are unknown. The black

solid dot represents an OR node for selection. The blue

empty squares denote AND nodes, which are compositions

of terminal nodes (Gabor wavelets) or children AND nodes

(parts). Each AND node (object or part) or each terminal

node (Gabor wavelet) is also associated with a geometric

OR node which accounts for its deformation. For clarity,

the geometric OR nodes are not visualized.

Related work. Most existing methods for learning hi-

erarchical representations of object patterns are based on

discriminative learning [5, 20, 9]. In this paper, we learn a

generative model for hierarchical representation of objects.

Our work is similar to [6, 21], which also learn hierarchi-

cal compositions of Gabor wavelets or edgelets. They learn

the models via bottom-up layer-by-layer schemes. Once the

lower layers are learned, they are fixed in the learning of

higher layers. In contrast, our iterative learning algorithm

re-learns the object and part templates, and re-selects the

Gabor wavelets in each iteration. Our work is also related

to And-Or template (AOT) [11] and hierarchical composi-

tional model [2]. To represent visual parts in the models,

the former uses hybrid image template (HIT) [10], and the

latter uses active basis template (ABT) [15]. Both HIT and

ABT are templates of Gabor wavelets and make the simpli-

fying assumptions that the selected Gabor wavelets are or-

thogonal and independent in order to avoid time-consuming

MCMC computation in learning. In our model, parts are

represented by sparse FRAME models, which do not make

the above simplifying assumptions, so that our model is

mathematically rigorous and is capable of visualizing the

learned model by synthesizing patterns via MCMC, which

makes our model more explainable.

2. Background of sparse FRAME model

This section reviews the background of the sparse

FRAME model [16], which serves as the foundation of the
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hierarchical sparse FRAME model.

2.1. Inhomogeneous FRAME model

Let I be an image defined on a square or rectangular do-

main D. Let Bx,s,α denote a basis function such as Gabor

wavelet (or difference of Gaussian (DoG) filter) centered at

pixel x (a two-dimensional vector) and tuned to scale s and

orientation α. Given a dictionary of basis functions or filter

bank {Bx,s,α, ∀x, s, α}, the dense version of the inhomoge-

neous FRAME model is a spatially non-stationary random

field that reproduces statistical properties of filter responses

at all the locations x, scales s and orientations α. The model

is of the following form

p(I;λ) =
1

Z(λ)
exp

(
∑

x,s,α

λx,s,α|〈I, Bx,s,α〉|

)
q(I), (1)

where λ = (λx,s,α, ∀x, s, α) are the weight parameters,

〈I, Bx,s,α〉 is the inner product between I and Bx,s,α, Z(λ)
is the normalizing constant, and q(I) is a known Gaussian

white noise reference distribution.

Given a set of roughly aligned training images {Im,m =
1, ...,M} from the same object category, where M is

the number of training images, we can learn the weight

parameters λ by maximizing the log-likelihood L(λ) =∑M

m=1 log p(Im;λ)/M , using the stochastic gradient as-

cent algorithm [19]

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑

m=1

|〈Im, Bx,s,α〉|

−
1

M̃

M̃∑

m=1

|〈Ĩm, Bx,s,α〉|

)
,

(2)

where γt is the step size, {Ĩm,m = 1, ..., M̃} are the

synthesized images sampled from p(I;λ(t)) using Hamil-

tonian Monte Carlo (HMC) algorithm [4]. M̃ is the num-

ber of independent parallel Markov chains that sample

from p(I;λ(t)). The difference
∑M

m=1 |〈Im, Bx,s,α〉|/M −
∑M̃

m=1 |〈Ĩm, Bx,s,α〉|/M̃ is the Monte Carlo estimate of the

gradient of the log-likelihood L(λ) at λ(t).

The estimation of the normalizing constant is required

in unsupervised learning. Starting from λ(0) = 0 and

logZ(λ(0)) = 0, we can estimate logZ(λ(t)) along

the learning process by logZ(λ(t+1)) = logZ(λ(t)) +

log Z(λ(t+1))
Z(λ(t))

, where the ratio of the normalizing constants

at two consecutive steps can be approximated by

Z(λ(t+1))

Z(λ(t))
≈

1

M̃

M̃∑

m=1

[
exp
( ∑

x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)

× |〈Ĩm, Bx,s,α〉|
)]

.

(3)

2.2. Sparse FRAME model

The sparse FRAME model is a sparsified version of the

dense model in (1), where only a small number of basis

functions are selected from the given dictionary. We can

explicitly write the sparsified model as

p(I;B, λ) =
1

Z(λ)
exp

(
n∑

i=1

λi|〈I, Bxi,si,αi
〉|

)
q(I),

where B = (Bxi,si,αi
, i = 1, ..., n) are the n basis func-

tions selected from a given dictionary (n is assumed to be

given, e.g., n = 200), and λ = (λi, i = 1, ..., n) are the cor-

responding weight parameters. The learning of the sparse

model involves the selection of basis functions and the esti-

mation of the corresponding weight parameters.

A two-stage learning algorithm [16] or a single-stage

learning algorithm [17] can be used to train the sparse

FRAME model. In this paper, we will use the two-stage

learning algorithm that consists of the following two stages:

(1) In the first stage, a shared sparse coding scheme is

used to select B = (Bxi,si,αi
, i = 1, ..., n) by simulta-

neously reconstructing all the observed images {Im,m =
1, ...,M}. To account for shape deformations, Bxi,si,αi

are

allowed to locally perturb their locations and orientations

on each observed image during reconstruction. Therefore,

we have Im =
∑n

i=1 cm,iBxi+∆xm,i,si,αi+∆αm,i
, where

(∆xm,i,∆αm,i) are the local perturbations of the location

and orientation of the i-th basis function Bxi,si,αi
in the

m-th training image, and cm,i are the reconstruction coef-

ficients of the selected wavelets. The selection is accom-

plished by minimizing the overall least squares reconstruc-

tion error

M∑

m=1

‖Im −

n∑

i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i
‖2.

This can be achieved by a shared matching pursuit algo-

rithm. (2) After selecting B = (Bxi,si,αi
, i = 1, ..., n), the

second stage estimates the corresponding weight parame-

ters λ = (λi, i = 1, ..., n) by maximum likelihood using

the stochastic gradient ascent algorithm as in equation (2)

and estimates logZ(λ) by equation (3).

The image log-likelihood L(I|B), which is computed by

n∑

i=1

λi max
∆x,∆α

|〈I, Bxi+∆x,si,αi+∆α〉| − logZ(λ),

serves as the template matching score for object recogni-

tion.

3. Hierarchical Sparse FRAME Model

3.1. Representation

Hierarchical random field model. In this section, we

will extend the original sparse FRAME model to a hi-
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erarchical version which we call the hierarchical sparse

FRAME model. It is a composition of shiftable parts,

while the parts themselves are compositions of a number

of shiftable basis functions. The model is a probability dis-

tribution defined on I,

p(I;H,Λ) =
1

Z(Λ)
exp [f(I;H,Λ)] q(I), (4)

where the scoring function f(I;H,Λ) is

f(I;H,Λ) =
K∑

j=1

nj∑

i=1

λ
(j)
i |〈I, B

x
(j)
i

,s
(j)
i

,α
(j)
i

〉|,

where H = {(B
x
(j)
i

,s
(j)
i

,α
(j)
i

, i = 1, ..., nj), j = 1, ...,K}

represents a template of K groups of selected basis func-

tions. Each group represents a part template. nj is the

number of basis functions in group j. Λ = {(λ
(j)
i , i =

1, ..., nj), j = 1, ...,K} collects the parameters. Learning

such a hierarchical random field model requires selecting

basis functions from a given dictionary to form a hierarchy

and estimating their associated parameters. In our current

implementation, we simply divide the image domain into

K = d×d non-overlapping parts, so that the basis functions

within each part form a group, and the parts are allowed to

shift.

Hierarchical deformation. We may treat H as a hi-

erarchical deformable template, so that when it is fitted to

each training image Im, the part templates and the basis

functions are allowed to perturb their locations and orien-

tations to account for shape deformations. Learning model

(4) from roughly aligned training images requires inference

of the deformations of both parts and basis functions.

3.2. Hierarchical deformable template

Part template. Each part in the model can be consid-

ered a sparse FRAME model, so we can simply generalize

the notation for the original sparse FRAME templates to ob-

tain the one for the part templates. Given a sparse FRAME

template B = (Bxi,si,αi
, i = 1, .., n), for simplicity, we

shall temporarily assume B is only allowed spatial transla-

tion in encoding images. Suppose B appears at location X
in image I, then we can write the representation as

I =

n∑

i=1

ciBX+xi+∆xi,si,αi+∆αi
+ ǫ = CBX + ǫ,

where C = (ci, i = 1, ..., n) collects all coefficients, BX =
(BX+xi+∆xi,si,αi+∆αi

, i = 1, ..., n) is the deformed tem-

plate spatially translated to X . BX explains the part of I

that is covered by BX . For image I and location X , the

log-likelihood L(I|BX) is computed by

n∑

i=1

λi max
∆x,∆α

|〈I, BX+xi+∆x,si,αi+∆α〉| − logZ(λ).

We can generalize BX by using BX,S,A to denote the part

template at location X , scale S and rotation A. We will

use L(I|BX,S,A) to denote the log-likelihood of the part

template BX,S,A.

Object template. With the notation of part template, we

can denote a hierarchical sparse FRAME model, which is

a template of K part templates, by H = {B
(j)
Xj ,Sj ,Aj

, j =

1, ..,K}, where (Xj , Sj , Aj) are the location, scale and ro-

tation of the j-th part template in the object template H.

Then we can represent image Im by a template of K parts:

Im =

K∑

j=1

Cm,jB
(j)
Xj ,Sj ,Aj

+ ǫm, (5)

where each B
(j)
Xj ,Sj ,Aj

is assumed to deform its basis func-

tions by local max pooling when it encodes the image.

Since the object template H is deformable in the sense

that all the parts are allowed to perturb their locations, scales

and rotations to account for the deformation in the image,

we can extend (5) to

Im =

K∑

j=1

Cm,jB
(j)
Xj+∆Xm,j ,Sj+∆Sm,j ,Aj+∆Am,j

+ ǫm,

where (∆Xm,j ,∆Sm,j ,∆Am,j) are perturbations of the

location, scale and rotation of the j-th part template

B
(j)
Xj ,Sj ,Aj

, and assumed to take values within limited and

properly discretized ranges (default setting: ∆Xm,j ∈
[−1, 1] × [−1, 1] pixels, ∆Sm,j ∈ {−1, 0, 1} × 0.1, and

∆Am,j ∈ {−1, 0, 1} × π/16). We use L(Im|B
(j)
Xj ,Sj ,Aj

)

to denote the log-likelihood of part B
(j)
Xj ,Sj ,Aj

. Further, we

assume the parts do not overlap with each other, i.e., the

subspaces spanned by the basis functions in different parts

are orthogonal to each other, then the log-likelihood score

of the image Im given the object template H is

L(Im|H) =

K∑

j=1

max
∆X,∆S,∆A

L(Im|B
(j)
Xj+∆X,Sj+∆S,Aj+∆A).

(6)

3.3. EM­type learning algorithm

Objective function. Equation (6) assumes all objects are

aligned with only part-level deformations. In unsupervised

learning, objects in the training images can be non-aligned

in the sense that they might appear at different locations,

even with different scales and rotations. For notation sim-

plicity, we temporarily assume H is only allowed spatial

translation in matching objects. We will use HX to denote

the object template at location X , and let L(Im|HX ) be

the log-likelihood score of HX . The learning of the hier-

archical sparse FRAME model is to learn the K part tem-
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plates {B(j), j = 1, ...,K} from non-aligned training im-

ages {Im,m = 1, ...,M}, while inferring the object loca-

tions Xm, the part perturbations (∆Xm,j ,∆Sm,j ,∆Am,j),
and the perturbations of basis functions, by maximizing the

objective function defined as the sum of the log-likelihood

given H over all the training images,
∑M

m=1 L(Im|HXm
),

which is

M∑

m=1




K∑

j=1

L(Im|B
(j)
Xm+Xj+∆Xm,j ,Sj+∆Sm,j ,Aj+∆Am,j

)


 ,

(7)

subject to the constraint that there are no overlapping parts

in each Im. The learning can be done by an EM-type algo-

rithm that iterates the inference step and the re-learning step

in order to maximize the objective function (7):

E-step: Inference. Given the current hierarchical sparse

FRAME model H = {B
(j)
Xj ,Sj ,Aj

, j = 1, ..,K}, we match

it to each image Im by inferring the location X̂m of the ob-

ject template in Im via X̂m =

argmax
X

K∑

j=1

max
∆X,∆S,∆A

L(Im|B
(j)
X+Xj+∆X,Sj+∆S,Aj+∆A),

and the perturbations in locations, scales and rotations of K
parts via

(∆Xm,j ,∆Sm,j ,∆Am,j)

= arg max
∆X,∆S,∆A

L(Im|B
(j)

X̂m+Xj+∆X,Sj+∆S,Aj+∆A
),

as well as the perturbations of all basis functions in each

part. The inference can be efficiently accomplished by re-

cursive sum-max maps described in Algorithm 1, which is

a bottom-up/top-down procedure. For notation simplicity,

we omit the scales and rotations of both the object template

and its part templates in the description of Algorithm 1.

M-step: Re-learning. Given the inferred deformations

(i.e., object and part bounding boxes), we can first align

the objects and parts by morphing the corresponding image

patches. We then learn an original sparse FRAME model

on the aligned training images, which involves the selection

of basis functions and the parameters estimation, and then

divide the object template into K = d× d non-overlapping

part templates.

The EM-type algorithm is initialized by randomly as-

signing an initial bounding box of object to each training

image. It is run for a few of iterations until convergence.

If the scales and rotations of the objects are also inferred

by the argmax operation in E-step, the learning algorithm

can deal with learning from non-aligned objects with un-

known locations, scales, and rotations. Figure 2 displays

one example of learning from non-aligned images. The ob-

ject template consists of 2 × 2 part templates. Each part

template is of size 50 × 50. The number of non-aligned

training images is 26. The total number of the selected ba-

sis functions (Gabor wavelets) is 300. The number of itera-

tions is 6. Figure 2 (a) displays 2 × 2 parts of synthesized

images generated by the learned model. Figure 2(b) dis-

plays 2 × 2 parts of sketch templates which illustrate the

selected Gabor wavelets by shared matching pursuit. Fig-

ure 2(c) illustrates 12 examples of 26 non-aligned training

images from cat category, with bounding boxes showing

the inferred locations, scales, and rotations of the objects

(black) and their parts (colored) after the model is learned.

Figure 2(d) shows the inference results of the learned model

on 2 testing images, with bounding boxes indicating the ge-

ometric configurations of the detected objects (black) and

their parts (colored).

(a) (b) (d)

(c)

Figure 2: Learning a hierarchical sparse FRAME model

from non-aligned images. (a) 2 × 2 parts of synthesized

images generated by the learned model. (b) 2 × 2 parts of

sketch templates where each Gabor wavelet is illustrated by

a bar (smaller scales of bars appear darker). (c) 12 exam-

ples of 26 non-aligned training images from cat category,

with bounding boxes showing the inferred locations, scales,

and rotations of the objects (black) and parts (colored) by

the learned model in E-step. (d) Inference results of the

learned model on 2 testing images.

4. Experiments

4.1. Evaluating mixture models by clustering tasks

A mixture of hierarchical sparse FRAME models can be

trained in an unsupervised manner by an EM-type algo-

rithm that iterates the following two steps: (1) classifying

images into different clusters based on the current mixture

model, (2) re-learning the model of each cluster from im-

ages. Mixture models can be evaluated by clustering tasks,

and we use a benchmark clustering dataset [17] that con-

sists of 12 clustering tasks, where the number of clusters of

each task varies from 2 to 5, and each cluster has 15 images.
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Algorithm 1 Inference algorithm for hierarchical sparse

FRAME model

Input: A hierarchical sparse FRAME model H = {B
(j)
Xj

, j = 1, ..,K},

where B
(j) = (B

x
(j)
i

,s
(j)
i

,α
(j)
i

, i = 1, ..., nj), model parameters

Λ = {(λ
(j)
i , i = 1, ..., nj), j = 1, ...,K}, and a testing image I.

Output: Location X̂ of the object template H on image I, perturbations

{∆Xj , j = 1, ...,K} of the parts, and perturbations of the basis func-

tions in all parts {(∆x
(j)
i ,∆α

(j)
i ), i = 1, ..., nj , j = 1, ...,K}.

1: Up-1 compute feature map SUM1 of Gabor B on I for all locations x,

scales s and orientations α:

SUM1(x, s, α) = |〈I, Bx,s,α〉|, ∀x, s, α

2: Up-2 compute MAX1 by local max-pooling to account for the shifts

of Gabor wavelets:

MAX1(x, s, α) = max
∆x,∆α

SUM1(x+∆x, s, α+∆α), ∀x, s, α

3: Up-3 compute the matching score SUM2 of part template B(j) on the

image I for all locations X:

SUM2(j)(X) =

nj∑

i=1

λ
(j)
i MAX1(X + x

(j)
i , s

(j)
i , α

(j)
i )

− logZ(λ(j)), ∀X, j

4: Up-4 compute the MAX2 by local max-pooling to account for the

shifts of parts:

MAX2(j)(X) = max
∆X

SUM2(j)(X +∆X), ∀X, j

5: Up-5 compute the matching score SUM3 of object template H on the

image I for all locations X :

SUM3(X ) =
K∑

j=1

MAX2(j)(X +Xj), ∀X

6: Up-6 compute the optimum matching score of H:

MAX4 = max
X

SUM3(X )

7: Down-1 compute the location of the object on the image I:

X̂ = argmax
X

SUM3(X )

8: Down-2 compute the perturbations of all parts on the image I:

∆Xj = argmax
∆X

SUM2(j)(X̂ +Xj +∆X), ∀j

9: Down-3 compute the perturbations of Gabor wavelets in all parts on

the image I:

(∆x
(j)
i ,∆α

(j)
i ) = arg max

∆x,∆α
SUM1(X̂

+Xj +∆Xj + x
(j)
i +∆x, s

(j)
i , α

(j)
i +∆α), ∀i, j

The numbers of clusters are assumed known in these tasks.

The image ground-truth category labels are provided for the

sake of computing the clustering accuracies but assumed

unknown to the learning algorithm. Conditional purity and

conditional entropy [14] are used to measure the clustering

performance. Let x be the ground-truth category label and y
be the inferred category label of an image. The conditional

purity is defined as
∑

y p(y)maxx p(x|y), and the condi-

tional entropy is
∑

y p(y)
∑

x p(x|y) log(1/p(x|y)). Both

p(y) and p(x|y) can be estimated from the training images.

Higher purity and lower entropy are expected for a better

clustering algorithm.

For each task, a model-based clustering is performed by

fitting a mixture of hierarchical sparse FRAME models with

2 × 2 parts in an unsupervised setting. We infer the un-

known locations, scales, and rotations of objects and parts,

as well as category labels in the learning process. M̃ = 100
chains of sampled images are generated to estimate the pa-

rameters and normalizing constants. The ranges of pertur-

bations for both Gabor wavelets and part templates are 1

pixel in locations and π/8 in orientations. Typical template

sizes are 100 × 100. Typical number of Gabor wavelets for

object template is 300. The range of rotations for object

templates is π/8. In classification, we search over 4 differ-

ent resolutions of the images to account for different scales

of objects.

We compare our model with (a) the original sparse

FRAME model without shiftable parts [16], (b) the sparse

FRAME model learned via generative boosting [17], (c)

the active basis model [15], (d) two-step EM method [1],

(e) k-means with HoG features [3], and (f) And-Or tem-

plate (AOT) [11]. Table 1 summarizes the comparisons

by showing the average clustering accuracies based on 5

repetitions for 12 tasks. The results show that our method

performs better than the other models. An improvement is

obtained when we generalize the original sparse FRAME

model to the hierarchical version by explicitly modeling the

part-level deformations.

4.2. Object, part, and key point localization

The inference step (E-step) plays an important role in the

unsupervised learning of our model. We evaluate the ac-

curacy of the inference of the hierarchical sparse FRAME

model on detection tasks, in comparison to two baseline

methods, which are And-Or template (AOT) [11] and part-

based latent SVMs (LSVM) [5].

The performance of detection is measured by evaluating

the accuracy of localizing key points, parts, and objects. We

collect an animal face detection dataset with 8 categories,

where each category includes 10 training images and 30

testing images. For each image, roughly twenty identifi-

able key points are selected manually as pixel-level ground

truths by a human labeler. The key points are manually

grouped into different semantic parts as ground truths for

parts. These key points are not used in training the models.

They are used only for evaluating detection performance.

Once our model is trained from the training images, we as-

sociate each key point with the most likely nearest Gabor

wavelet in the template. Similar strategy is used for And-Or

template, since its bottom level representational units are

7404



Table 1: Comparison of conditional purity and conditional

entropy on clustering tasks

(a) Conditional purity

Task Ours Sparse Generative Active Two-step k-means AOT

FRAME Boosting Basis EM +HoG

1 0.993 0.967 0.887 0.667 0.873 0.760 0.813

2 0.993 0.980 0.907 0.787 0.820 0.640 0.773

3 0.993 0.960 0.973 0.960 0.713 0.793 0.907

4 0.920 0.907 0.920 0.729 0.720 0.800 0.876

5 0.996 0.987 0.982 0.658 0.858 0.840 0.849

6 1.000 1.000 1.000 0.836 0.800 0.933 1.000

7 0.920 0.917 0.850 0.830 0.773 0.807 0.830

8 0.993 0.953 0.920 0.903 0.730 0.780 0.770

9 0.960 0.893 0.953 0.923 0.850 0.840 0.880

10 0.907 0.797 0.883 0.797 0.869 0.715 0.824

11 0.960 0.872 0.923 0.888 0.757 0.784 0.960

12 0.909 0.907 0.880 0.805 0.813 0.768 0.712

Avg. 0.962 0.928 0.923 0.815 0.798 0.788 0.849

(b) Conditional entropy

Task Ours Sparse Generative Active Two-step k-means AOT

FRAME Boosting Basis EM +HoG

1 0.025 0.123 0.213 0.585 0.345 0.479 0.371

2 0.025 0.066 0.246 0.453 0.404 0.636 0.425

3 0.025 0.100 0.082 0.139 0.530 0.434 0.192

4 0.170 0.202 0.177 0.594 0.594 0.491 0.305

5 0.017 0.050 0.067 0.658 0.302 0.333 0.365

6 0.000 0.000 0.000 0.260 0.355 0.092 0.000

7 0.140 0.150 0.208 0.321 0.421 0.272 0.313

8 0.025 0.118 0.163 0.176 0.552 0.519 0.346

9 0.106 0.191 0.067 0.169 0.280 0.265 0.216

10 0.220 0.425 0.286 0.447 0.301 0.516 0.359

11 0.055 0.191 0.112 0.225 0.486 0.387 0.064

12 0.189 0.222 0.290 0.354 0.459 0.477 0.543

Avg. 0.083 0.153 0.159 0.365 0.419 0.408 0.291

also Gabor wavelets. For LSVM, each key point is associ-

ated with the most likely nearest part, and then we record

the most likely location of the key point in that part. With

these associations, we can predict the key points via the

templates of these models for each testing image. We train

the hierarchical sparse FRAME models with 3 × 3 non-

overlapping moving parts from aligned images. The ranges

of perturbations for both Gabor wavelets and part templates

are 2 pixels in locations and π/8 in orientations. Typical

template sizes are 100 × 100. Typical number of wavelets

for object template is 370.

We plot imprecision-recall curves and use area under

curve (AUC) to measure the performance of the localiza-

tion of key points. Figure 3 shows the imprecision-recall

curves for key points, parts, and object in deer and cow cat-

egories. A higher curve indicates larger AUC and better

performance. The horizontal axis of the curve is the toler-

ance for the normalized key point deviation (divided by the

size of the template), which is the distance between the pre-

dicted location and the ground-truth location of key point.

The vertical axis is the recall rate, which is the percentage

of the predicted key points within a certain tolerance. For

curves of parts and object, the deviation of the part is com-

puted by averaging the deviations of key points inside the

part. The deviation of the object is computed by averaging

the deviations of all the key points. Table 2 shows the com-

Figure 3: Comparison of imprecision-recall curves of dif-

ferent models for key points, parts, and object in the cate-

gories of deer and cow.

parisons of accuracies of localization of key points, parts,

and object. Our approach outperforms the other methods in

terms of average AUC on the detection tasks.

Figure 4 shows a comparison of the templates of hierar-

chical sparse FRAME models, LSVM models, and And-Or

templates learned from cat, lion, tiger, and wolf categories.

Figure 5 displays some detection results with the learned

models. We can see that our model can locate the objects

and internal parts with higher precision.

(a) ours

(b) LSVM

(c) AOT

Figure 4: Comparison of templates learned by different hi-

erarchical models. (a) shows the templates of the hierarchi-

cal sparse FRAME models, which are generated by MCMC

sampling from the learned models. (b) shows the HoG fea-

ture templates for LSVM. (c) displays the symbolic sketch

templates for And-Or templates (AOT), where each bar rep-

resents the selected Gabor wavelet. (From left to right col-

umn: cat, lion, tiger, and wolf.)

4.3. Evaluating unsupervisedly learned models via
classification

The model can be used for unsupervised hierarchical fea-

ture learning. Supervised classifiers learned on top of these

features can be used for classification. We use the LHI-
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Table 2: Comparison of AUCs for localization of object, parts and key points

Tasks
object part key point

ours AOT LSVM ours AOT LSVM ours AOT LSVM

cat 0.954 0.949 0.700 0.955 0.950 0.718 0.954 0.949 0.700

lion 0.879 0.842 0.834 0.908 0.856 0.830 0.907 0.857 0.834

tiger 0.954 0.948 0.744 0.956 0.950 0.744 0.954 0.948 0.744

wolf 0.857 0.774 0.741 0.888 0.826 0.750 0.887 0.825 0.741

deer 0.738 0.675 0.559 0.736 0.673 0.570 0.738 0.676 0.565

cougar 0.960 0.936 0.831 0.961 0.939 0.825 0.960 0.938 0.831

cow 0.757 0.549 0.663 0.762 0.546 0.670 0.763 0.556 0.673

bear 0.769 0.607 0.744 0.776 0.605 0.745 0.773 0.611 0.751

Avg. 0.859 0.785 0.727 0.868 0.793 0.732 0.867 0.795 0.730

ours

LSVM

AOT

Figure 5: Comparison of localizing objects, parts, and keypoints. From top to bottom, we display the results of hierarchical

sparse FRAME models, LSVM models, and AOT templates. For each testing image, the detected bounding boxes for the

object (red) and parts (blue) are shown. One example is displayed for each task. Best viewed in color.

Animal-Faces dataset [10], which has around 2200 images

of 20 categories of animal faces. Each category exhibits

rich appearance variations and shape deformations, e.g., (a)

flip and rotation transformations and (b) sub-categories. We

randomly select half of the images per category for train-

ing and the rest for testing. For each category, we learn

a mixture model of 5 or 11 hierarchical sparse FRAME

models with 2 × 2 moving parts in an unsupervised man-

ner. We then combine the object templates from all the

learned mixture models into a codebook of 20×5 = 100 or

20× 11 = 220 codewords. (Each object templte is a code-

word.) The maps of template matching scores from all the

codewords in the codebook are computed for each image,

and then they are fed into spatial pyramid matching (SPM)

[18], which equally divides an image into 1, 4, 16 areas,

and the maximum scores at different image areas are con-

catenated into a feature vector. SVM classifiers with ℓ2 loss

are trained on these feature vectors, and are evaluated on

the testing data in terms of classification accuracies using

the one-versus-all rule.

Table 3 lists a comparison of our models with some base-

line methods. For each method, we use the same train-

ing/testing data split, the same approach of classifier train-

ing, and the same number of clusters in the mixture model

learned from each category. The results show that our mod-

els outperform the original sparse FRAME models without

moving parts and the And-Or templates (AOT) in terms of

classification accuracy on this dataset.

Table 3: SVM (with ℓ2 loss) classification accuracy on

features that are unsupervisedly learned from LHI-Animal-

Faces dataset with 20 categories

# clusters AOT ours w/o parts ours

5 65.80% 70.62% 74.33%

11 62.54% 72.56% 75.83%

5. Conclusion

This paper proposes a generative learning framework ap-

plied to hierarchical representations of object patterns. Our

model is defined as a hierarchical extension of the original

sparse FRAME model. The model is capable of capturing

geometric deformations and can be learned in an unsuper-

vised manner. It can be visualized by MCMC sampling.

Compared to previous generative hierarchical leaning meth-

ods, our method performs better in terms of accuracies of

localization of object, parts, and key points in detection, ob-

ject classification, and clustering.

Project page: The data, code, and more results and de-

tails can be found at http://www.stat.ucla.edu/

˜jxie/hsFRAME.html
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