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Abstract

Video sequences contain rich dynamic patterns, such as

dynamic texture patterns that exhibit stationarity in the tem-

poral domain, and action patterns that are non-stationary in

either spatial or temporal domain. We show that a spatial-

temporal generative ConvNet can be used to model and syn-

thesize dynamic patterns. The model defines a probability

distribution on the video sequence, and the log probability

is defined by a spatial-temporal ConvNet that consists of

multiple layers of spatial-temporal filters to capture spatial-

temporal patterns of different scales. The model can be

learned from the training video sequences by an “analysis

by synthesis” learning algorithm that iterates the follow-

ing two steps. Step 1 synthesizes video sequences from the

currently learned model. Step 2 then updates the model pa-

rameters based on the difference between the synthesized

video sequences and the observed training sequences. We

show that the learning algorithm can synthesize realistic

dynamic patterns.

1. Introduction

There are a wide variety of dynamic patterns in video

sequences, including dynamic textures [2] or textured mo-

tions [24] that exhibit statistical stationarity or stochastic

repetitiveness in the temporal dimension, and action patterns

that are non-stationary in either spatial or temporal domain.

Synthesizing and analyzing such dynamic patterns has been

an interesting problem. In this paper, we focus on the task

of synthesizing dynamic patterns using a generative version

of the convolutional neural network (ConvNet or CNN).

The ConvNet [14, 12] has proven to be an immensely

successful discriminative learning machine. The convolution

operation in the ConvNet is particularly suited for signals

such as images, videos and sounds that exhibit translation in-

variance either in the spatial domain or the temporal domain

or both. Recently, researchers have become increasingly

interested in the generative aspects of ConvNet, for the pur-

pose of visualizing the knowledge learned by the ConvNet,

or synthesizing realistic signals, or developing generative

models that can be used for unsupervised learning.

In terms of synthesis, various approaches based on the

ConvNet have been proposed to synthesize realistic static

images [3, 7, 1, 13, 16]. However, there has not been much

work in the literature on synthesizing dynamic patterns based

on the ConvNet, and this is the focus of the present paper.

Specifically, we propose to synthesize dynamic patterns

by generalizing the generative ConvNet model recently pro-

posed by [29]. The generative ConvNet can be derived from

the discriminative ConvNet. It is a random field model or an

energy-based model [15, 20] that is in the form of exponen-

tial tilting of a reference distribution such as the Gaussian

white noise distribution or the uniform distribution. The

exponential tilting is parametrized by a ConvNet that in-

volves multiple layers of linear filters and rectified linear

units (ReLU) [12], which seek to capture features or patterns

at different scales.

The generative ConvNet can be sampled by the Langevin

dynamics. The model can be learned by the stochastic gradi-

ent algorithm [31]. It is an “analysis by synthesis” scheme

that seeks to match the synthesized signals generated by the

Langevin dynamics to the observed training signals. Specifi-

cally, the learning algorithm iterates the following two steps

after initializing the parameters and the synthesized signals.

Step 1 updates the synthesized signals by the Langevin dy-

namics that samples from the currently learned model. Step

2 then updates the parameters based on the difference be-

tween the synthesized data and the observed data in order

to shift the density of the model from the synthesized data

towards the observed data. It is shown by [29] that the learn-

ing algorithm can synthesize realistic spatial image patterns

such as textures and objects.

In this article, we generalize the spatial generative Con-

vNet by adding the temporal dimension, so that the resulting

ConvNet consists of multiple layers of spatial-temporal fil-

ters that seek to capture spatial-temporal patterns at various

scales. We show that the learning algorithm for training the

spatial-temporal generative ConvNet can synthesize realistic

dynamic patterns. We also show that it is possible to learn

the model from incomplete video sequences with either oc-

cluded pixels or missing frames, so that model learning and
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pattern completion can be accomplished simultaneously.

2. Related work

Our work is a generalization of the generative ConvNet

model of [29] by adding the temporal dimension. [29] did

not work on dynamic patterns such as those in the video

sequences. The spatial-temporal discriminative ConvNet

was used by [11] for analyzing video data. The connection

between discriminative ConvNet and generative ConvNet

was studied by [29].

Dynamic textures or textured motions have been stud-

ied by [2, 24, 25, 9]. For instance, [2] proposed a vector

auto-regressive model coupled with frame-wise dimension

reduction by single value decomposition. It is a linear model

with Gaussian innovations. [24] proposed a dynamic model

based on sparse linear representation of frames. See [30] for

a recent review of dynamic textures. The spatial-temporal

generative ConvNet is a non-linear and non-Gaussian model

and is expected to be more flexible in capturing complex

spatial-temporal patterns in dynamic textures with multiple

layers of non-linear spatial-temporal filters.

Recently [23] generalized the generative adversarial net-

works [6] to model dynamic patterns. Our model is an

energy-based model and it also has an adversarial interpreta-

tion. See section 3.4 for details.

For temporal data, a popular model is the recurrent neural

network [27, 10]. It is a causal model and it requires a start-

ing frame. In contrast, our model is non-causal, and does

not require a starting frame. Compared to the recurrent net-

work, our model is more convenient and direct in capturing

temporal patterns at multiple time scales.

3. Spatial-temporal generative ConvNet

3.1. Spatial­temporal filters

To fix notation, let I(x, t) be an image sequence of a video

defined on the square (or rectangular) image domain D and

the time domain T , where x = (x1, x2) ∈ D indexes the

coordinates of pixels, and t ∈ T indexes the frames in the

video sequence. We can treat I(x, t) as a three dimensional

function defined on D × T . For a spatial-temporal filter F ,

we let F ∗ I denote the filtered image sequence or feature

map, and let [F ∗ I](x, t) denote the filter response or feature

at pixel x and time t.
The spatial-temporal ConvNet is a composition of mul-

tiple layers of linear filtering and ReLU non-linearity, as

expressed by the following recursive formula:

[F
(l)
k ∗ I](x, t) = h

(

Nl−1
∑

i=1

∑

(y,s)∈Sl

w
(l,k)
i,y,s

× [F
(l−1)
i ∗ I](x+ y, t+ s) + bl,k

)

,

(1)

where l ∈ {1, 2, ..., L} indexes the layers. {F
(l)
k , k =

1, ..., Nl} are the filters at layer l, and {F
(l−1)
i , i =

1, ..., Nl−1} are the filters at layer l − 1. k and i are

used to index filters at layers l and l − 1 respectively, and

Nl and Nl−1 are the numbers of filters at layers l and

l − 1 respectively. The filters are locally supported, so

the range of (y, s) is within a local support Sl (such as a

7× 7× 3 box of image sequence). The weight parameters

(w
(l,k)
i,y,s, (y, s) ∈ Sl, i = 1, ..., Nl−1) define a linear filter

that operates on (F
(l−1)
i ∗ I, i = 1, ..., Nl−1). The linear fil-

tering operation is followed by ReLU h(r) = max(0, r).

At the bottom layer, [F
(0)
k ∗ I](x, t) = Ik(x, t), where

k ∈ {R,G,B} indexes the three color channels. Sub-

sampling may be implemented so that in [F
(l)
k ∗ I](x, t),

x ∈ Dl ⊂ D, and t ∈ Tl ⊂ T .

The spatial-temporal filters at multiple layers are expected

to capture the spatial-temporal patterns at multiple scales.

It is possible that the top-layer filters are fully connected in

the spatial domain as well as the temporal domain (e.g., the

feature maps are 1× 1 in the spatial domain) if the dynamic

pattern does not exhibit spatial or temporal stationarity.

3.2. Spatial­temporal generative ConvNet

The spatial-temporal generative ConvNet is an energy-

based model or a random field model defined on the image

sequence I = (I(x, t), x ∈ D, t ∈ T ). It is in the form of

exponential tilting of a reference distribution q(I):

p(I;w) =
1

Z(w)
exp [f(I;w)] q(I), (2)

where the scoring function f(I;w) is

f(I;w) =

K
∑

k=1

∑

x∈DL

∑

t∈TL

[F
(L)
k ∗ I](x, t), (3)

where w consists of all the weight and bias terms that define

the filters (F
(L)
k , k = 1, ...,K = NL) at layer L, and q is

the Gaussian white noise model, i.e.,

q(I) =
1

(2πσ2)|D×T |/2
exp

[

−
1

2σ2
||I||2

]

, (4)

where |D × T | counts the number of pixels in the domain

D × T . Without loss of generality, we shall assume σ2 = 1.

The scoring function f(I;w) in (3) tilts the Gaussian

reference distribution into a non-Gaussian model. In fact,

the purpose of f(I;w) is to identify the non-Gaussian spatial-

temporal features or patterns. In the definition of f(I;w)
in (3), we sum over the filter responses at the top layer L
over all the filters, positions and times. The spatial and

temporal pooling reflects the fact that we assume the model

is stationary in spatial and temporal domains. If the dynamic
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texture is non-stationary in the spatial or temporal domain,

then the top layer filters F
(L)
k are fully connected in the

spatial or temporal domain, e.g., DL is 1× 1.

A simple but consequential property of the ReLU non-

linearity is that h(r) = max(0, r) = 1(r > 0)r, where

1() is the indicator function, so that 1(r > 0) = 1 if

r > 0 and 0 otherwise. As a result, the scoring func-

tion f(I;w) is piecewise linear [17], and each linear piece

is defined by the multiple layers of binary activation vari-

ables δ
(l)
k,x,t(I;w) = 1

(

[F
(l)
k ∗ I](x, t) > 0

)

, which tells us

whether a local spatial-temporal pattern represented by the

k-th filter at layer l, F
(l)
k , is detected at position x and time

t. Let δ(I;w) =
(

δ
(l)
k,x,t(I;w), ∀l, k, x, t

)

be the activation

pattern of I. Then δ(I;w) divides the image space into a

large number of pieces according to the value of δ(I;w). On

each piece of image space with fixed δ(I;w), the scoring

function f(I;w) is linear, i.e.,

f(I;w) = aw,δ(I;w) + 〈I, Bw,δ(I;w)〉, (5)

where both a and B are defined by δ(I;w) and w. In

fact, B = ∂f(I;w)/∂I, and can be computed by back-

propagation, with h′(r) = 1(r > 0). The back-propagation

process defines a top-down deconvolution process [32],

where the filters at multiple layers become the basis functions

at those layers, and the activation variables at different layers

in δ(I;w) become the coefficients of the basis functions in

the top-down deconvolution.

p(I;w) in (2) is an energy-based model [15, 20], whose

energy function is a combination of the ℓ2 norm ‖I‖2 that

comes from the reference distribution q(I) and the piecewise

linear scoring function f(I;w), i.e.,

E(I;w) = −f(I;w) +
1

2
‖I‖2

=
1

2
‖I‖2 −

(

aw,δ(I;w) + 〈I, Bw,δ(I;w)〉
)

=
1

2
‖I−Bw,δ(I;w)‖

2 + const,

(6)

where const = −aw,δ(I;w) − ‖Bw,δ(I;w)‖
2/2, which is con-

stant on the piece of image space with fixed δ(I;w).
Since E(I;w) is a piecewise quadratic function, p(I;w)

is piecewise Gaussian. On the piece of image space {I :
δ(I;w) = δ}, where δ is a fixed value of δ(I;w), p(I;w) is

N(Bw,δ,1) truncated to {I : δ(I;w) = δ}, where we use 1

to denote the identity matrix. If the mean of this Gaussian

piece, Bw,δ , is within {I : δ(I;w) = δ}, then Bw,δ is also a

local mode, and this local mode I satisfies a hierarchical auto-

encoder, with a bottom-up encoding process δ = δ(I;w),
and a top-down decoding process I = Bw,δ. In general,

for an image sequence I, Bw,δ(I;w) can be considered a

reconstruction of I, and this reconstruction is exact if I is a

local mode of E(I;w).

3.3. Sampling and learning algorithm

One can sample from p(I;w) of model (2) by the

Langevin dynamics:

Iτ+1 = Iτ −
ǫ2

2

[

Iτ −Bw,δ(Iτ ;w)

]

+ ǫZτ , (7)

where τ indexes the time steps, ǫ is the step size, and

Zτ ∼ N(0,1). The dynamics is driven by the reconstruction

error I − Bw,δ(I;w). The finiteness of the step size ǫ can

be corrected by a Metropolis-Hastings acceptance-rejection

step. The Langevin dynamics can be extended to Hamilto-

nian Monte Carlo [18] or more sophisticated versions [5].

The learning of w from training image sequences

{Im,m = 1, ...,M} can be accomplished by the maximum

likelihood. Let L(w) =
∑M

m=1 log p(I;w)/M , with p(I;w)
defined in (2),

∂L(w)

∂w
=

1

M

M
∑

m=1

∂

∂w
f(Im;w)−Ew

[

∂

∂w
f(I;w)

]

. (8)

The expectation can be approximated by the Monte Carlo

samples [31] produced by the Langevin dynamics. See Al-

gorithm 1 for a description of the learning and sampling al-

gorithm. The algorithm keeps synthesizing image sequences

from the current model, and updating the model parameters

in order to match the synthesized image sequences to the

observed image sequences. The learning algorithm keeps

shifting the probability density or low energy regions of the

model from the synthesized data towards the observed data.

In the learning algorithm, the Langevin sampling step

involves the computation of ∂f(I;w)/∂I, and the parame-

ter updating step involves the computation of ∂f(I;w)/∂w.

Because of the ConvNet structure of f(I;w), both gradi-

ents can be computed efficiently by back-propagation, and

the two gradients share most of their chain rule computa-

tions in back-propagation. In term of MCMC sampling,

the Langevin dynamics samples from an evolving distribu-

tion because w(t) keeps changing. Thus the learning and

sampling algorithm runs non-stationary chains.

3.4. Adversarial interpretation

Our model is an energy-based model

p(I;w) =
1

Z(w)
exp[−E(I;w)]. (9)

The update of w is based on L′(w) which can be approxi-

mated by

1

M̃

M̃
∑

m=1

∂

∂w
E(Ĩm;w)−

1

M

M
∑

m=1

∂

∂w
E(Im;w), (10)

where {Ĩm,m = 1, ..., M̃} are the synthesized image se-

quences that are generated by the Langevin dynamics. At
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Algorithm 1 Learning and sampling algorithm

Input:

(1) training image sequences {Im,m = 1, ...,M}
(2) number of synthesized image sequences M̃
(3) number of Langevin steps l
(4) number of learning iterations T

Output:

(1) estimated parameters w
(2) synthesized image sequences {Ĩm,m = 1, ..., M̃}

1: Let t← 0, initialize w(0).

2: Initialize Ĩm, for m = 1, ..., M̃ .

3: repeat

4: For each m, run l steps of Langevin dynamics to

update Ĩm, i.e., starting from the current Ĩm, each

step follows equation (7).

5: Calculate Hobs =
∑M

m=1
∂
∂wf(Im;w(t))/M , and

Hsyn =
∑M̃

m=1
∂
∂wf(Ĩm;w(t))/M̃ .

6: Update w(t+1) ← w(t)+ηt(H
obs−Hsyn), with step

size ηt.
7: Let t← t+ 1
8: until t = T

the zero temperature limit, the Langevin dynamics becomes

gradient descent:

Ĩτ+1 = Ĩτ −
ǫ2

2

∂

∂Ĩ
E(Ĩτ ;w). (11)

Consider the value function V (Ĩm,m = 1, ..., M̃ ;w):

1

M̃

M̃
∑

m=1

E(Ĩm;w)−
1

M

M
∑

m=1

E(Im;w). (12)

The updating of w is to increase V by shifting the low energy

regions from the synthesized image sequences {Ĩm} to the

observed image sequences {Im}, whereas the updating of

{Ĩm,m = 1, ..., M̃} is to decrease V by moving the syn-

thesized image sequences towards the low energy regions.

This is an adversarial interpretation of the learning and sam-

pling algorithm. It can also be considered a generalization

of the herding method [26] from exponential family models

to general energy-based models.

In our work, we let −E(I;w) = f(I;w) − ‖I‖2/2σ2.

We can also let −E(I;w) = f(I;w) by assuming a uni-

form reference distribution q(I). Our experiments show that

the model with the uniform q can also synthesize realistic

dynamic patterns.

The generative adversarial learning [6, 23] has a generator

network. Unlike our model which is based on a bottom-up

ConvNet f(I;w), the generator network generates I by a

top-down ConvNet I = g(X; w̃) where X is a latent vec-

tor that follows a known prior distribution, and w̃ collects

(a) river

(b) ocean

Figure 1. Synthesizing dynamic textures with both spatial and

temporal stationarity. For each category, the first row displays the

frames of the observed sequence, and the second and third rows

display the corresponding frames of two synthesized sequences

generated by the learning algorithm. (a) river. (b) ocean.

the parameters of the top-down ConvNet. Recently [8] de-

veloped an alternating back-propagation algorithm to train

the generator network, without involving an extra network.

More recently, [28] developed a cooperative training method

that recruits a generator network g(X; w̃) to reconstruct and

regenerate the synthesized image sequences {Ĩm} to speed

up MCMC sampling.

4. Experiments

We learn the spatial-temporal generative ConvNet from

video clips collected from DynTex++ dataset of [4] and

the Internet. The code in the experiments is based on the

MatConvNet of [22] and MexConv3D of [21].

We show the synthesis results by displaying the frames

in the video sequences. We have posted the synthesis results

on the project page http://www.stat.ucla.edu/

~jxie/STGConvNet/STGConvNet.html, so that the

reader can watch the videos.

4.1. Experiment 1: Generating dynamic textures
with both spatial and temporal stationarity

We first learn the model from dynamic textures that are

stationary in both spatial and temporal domains. We use

spatial-temporal filters that are convolutional in both spatial

and temporal domains. The first layer has 120 15× 15× 15
filters with sub-sampling size of 7 pixels and frames. The
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(a) flashing lights

(b) fountain

(c) burning fire heating a pot

(d) spring water

Figure 2. Synthesizing dynamic textures with only temporal sta-

tionarity. For each category, the first row displays the frames of the

observed sequence, and the second row displays the corresponding

frames of a synthesized sequence generated by the learning algo-

rithm. (a) flashing lights. (b) fountain. (c) burning fire heating a

pot. (d) spring water.

second layer has 40 7×7×7 filters with sub-sampling size of

3. The third layer has 20 3× 3× 2 filters with sub-sampling

size of 2 × 2 × 1. Figure 1 displays 2 results. For each

category, the first row displays 7 frames of the observed

sequence, while the second and third rows show the corre-

sponding frames of two synthesized sequences generated by

the learning algorithm.

We use the layer-by-layer learning scheme. Starting from

the first layer, we sequentially add the layers one by one.

Each time we learn the model and generate the synthesized

image sequence using Algorithm 1. While learning the new

layer of filters, we refine the lower layers of filters with

back-propagation.

We learn a spatial-temporal generative ConvNet for each

Figure 3. Comparison on synthesizing dynamic texture of waterfall.

From top to bottom: segments of the observed sequence, synthe-

sized sequence by our method, and synthesized sequence by the

method of [2].

category from one observed video that is prepared to be

of the size 224 × 224 × 50 or 70. The range of intensi-

ties is [0, 255]. Mean subtraction is used as pre-processing.

We use M̃ = 3 chain for Langevin sampling. The num-

ber of Langevin iterations between every two consecutive

updates of parameters, l = 20. The number of learning

iterations T = 1200, where we add one more layer every

400 iterations. We use layer-specific learning rates, where

the learning rate at the higher layer is less than that at the

lower layer, in order to obtain stable convergence.

4.2. Experiment 2: Generating dynamic textures
with only temporal stationarity

Many dynamic textures have structured background and

objects that are not stationary in the spatial domain. In this

case, the network used in Experiment 1 may fail. However,

we can modify the network in Experiment 1 by using filters

that are fully connected in the spatial domain at the second

layer. Specifically, the first layer has 120 7 × 7 × 7 filters

with sub-sampling size of 3 pixels and frames. The second

layer is a spatially fully connected layer, which contains

30 filters that are fully connected in the spatial domain but

convolutional in the temporal domain. The temporal size of

the filters is 4 frames with sub-sampling size of 2 frames in

the temporal dimension. Due to the spatial full connectivity

at the second layer, the spatial domain of the feature maps

at the third layer is reduced to 1× 1. The third layer has 5

1× 1× 2 filters with sub-sampling size of 1 in the temporal

dimension.

We use end-to-end learning scheme to learn the above

3-layer spatial-temporal generative ConvNet for dynamic

textures. At each iteration, the 3 layers of filters are updated

with 3 different layer-specific learning rates. The learning

rate at the higher layer is much less than that at the lower

layer to avoid the issue of large gradients.

We learn a spatial-temporal generative ConvNet for each

category from one training video. We synthesize M̃ = 3
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(a) 21-st frame of 30 observed sequences

(b) 21-st frame of 30 synthesized sequences

(c) 2 examples of synthesized sequences

Figure 4. Learning from 30 observed fire videos with mini-batch

implementation.

videos using the Langevin dynamics. Figure 2 displays the

results. For each category, the first row shows 6 frames of the

observed sequence (224 × 224 × 70), and the second row

shows the corresponding frames of a synthesized sequence

generated by the learning algorithm. We use the same set

of parameters for all the categories without tuning. Figure 3

compares our method to that of [2], which is a linear dynamic

system model. The image sequence generated by this model

appears more blurred than the sequence generated by our

method.

The learning of our model can be scaled up. We learn

the fire pattern from 30 training videos, with mini-batch

implementation. The size of each mini-batch is 10 videos.

Each video contains 30 frames (100× 100 pixels). For each

mini-batch, M̃ = 13 parallel chains for Langevin sampling

is used. For this experiment, we slightly modify the network

by using 120 11 × 11 × 9 filters with sub-sampling size

of 5 pixels and 4 frames at the first layer, and 30 spatially

fully connected filters with temporal size of 5 frames and

sub-sampling size of 2 at the second layer, while keeping the

setting of the third layer unchanged. The number of learning

iterations T = 1300. Figure 4 shows one frame for each

of 30 observed sequences and the corresponding frame of

the synthesized sequences. Two examples of synthesized

sequences are also displayed.

4.3. Experiment 3: Generating action patterns
without spatial or temporal stationarity

Experiments 1 and 2 show that the generative spatial-

temporal ConvNet can learn from sequences without align-

observed sequences

synthesized sequences

(a) running cows

observed sequences

synthesized sequences

(b) running tigers

Figure 5. Synthesizing action patterns. For each action video se-

quence, 6 continuous frames are shown. (a) running cows. Frames

of 2 of 5 training sequences are displayed. The corresponding

frames of 2 of 8 synthesized sequences generated by the learning

algorithm are displayed. (b) running tigers. Frames of 2 observed

training sequences are displayed. The corresponding frames of 2

of 4 synthesized sequences are displayed.

ment. We can also specialize it to learning roughly aligned

video sequences of action patterns, which are non-stationary

in either spatial or temporal domain, by using a single top-

layer filter that covers the whole video sequence. We learn

a 2-layer spatial-temporal generative ConvNet from video

sequences of aligned actions. The first layer has 200 7×7×7
filters with sub-sampling size of 3 pixels and frames. The

second layer is a fully connected layer with a single filter

that covers the whole sequence. The observed sequences are

of the size 100× 200× 70.

Figure 5 displays two results of modeling and synthesiz-

ing actions from roughly aligned video sequences. We learn

a model for each category, where the number of training

sequences is 5 for the running cow example, and 2 for the

running tiger example. The videos are collected from the

Internet and each has 70 frames. For each example, Figure 5

displays segments of 2 observed sequences, and segments of

2 synthesized action sequences generated by the learning al-

gorithm. We run M̃ = 8 paralleled chains for the experiment

of running cows, and 4 paralleled chains for the experiment

of running tigers. The experiments show that our model can

capture non-stationary action patterns.

One limitation of our model is that it does not involve

explicit tracking of the objects and their parts.
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4.4. Experiment 4: Learning from incomplete data

Our model can learn from video sequences with occluded

pixels. The task is inspired by the fact that most of the

videos contain occluded objects. Our learning method can

be adapted to this task with minimal modification. The

modification involves, for each iteration, running k steps of

Langevin dynamics to recover the occluded regions of the

observed sequences. At each iteration, we use the completed

observed sequences and the synthesized sequences to com-

pute the gradient of the log-likelihood and update the model

parameters. Our method simultaneously accomplishes the

following tasks: (1) recover the occluded pixels of the train-

ing video sequences, (2) synthesize new video sequences

from the learned model, (3) learn the model by updating

the model parameters using the recovered sequences and the

synthesized sequences. See Algorithm 2 for the description

of the learning, sampling, and recovery algorithm.

Table 1. Recovery errors in occlusion experiments

(a) salt and pepper masks

ours MRF-ℓ1 MRF-ℓ2

flag 3.7923 6.6211 10.9216

fountain 5.5403 8.1904 11.3850

ocean 3.3739 7.2983 9.6020

playing 5.9035 14.3665 15.7735

sea world 5.3720 10.6127 11.7803

traffic 7.2029 14.7512 17.6790

windmill 5.9484 8.9095 12.6487

Avg. 5.3048 10.1071 12.8272

(b) single region masks

ours MRF-ℓ1 MRF-ℓ2

flag 8.1636 10.6586 12.5300

fountain 6.0323 11.8299 12.1696

ocean 3.4842 8.7498 9.8078

playing 6.1575 15.6296 15.7085

sea world 5.8850 12.0297 12.2868

traffic 6.8306 15.3660 16.5787

windmill 7.8858 11.7355 13.2036

Avg. 6.3484 12.2856 13.1836

(c) 50% missing frames

ours MRF-ℓ1 MRF-ℓ2

flag 5.5992 10.7171 12.6317

fountain 8.0531 19.4331 13.2251

ocean 4.0428 9.0838 9.8913

playing 7.6103 22.2827 17.5692

sea world 5.4348 13.5101 12.9305

traffic 8.8245 16.6965 17.1830

windmill 7.5346 13.3364 12.9911

Avg. 6.7285 15.0085 13.7746

We design 3 types of occlusions: (1) Type 1: salt and

pepper occlusion, where we randomly place 7× 7 masks on

the 150× 150 image domain to cover 50% of the pixels of

the videos. (2) Type 2: single region mask occlusion, where

we randomly place a 60× 60 mask on the 150× 150 image

Algorithm 2 Learning, sampling, and recovery algorithm

Input:

(1) training image sequences with occluded pixels

{Im,m = 1, ...,M}
(2) binary masks {Om,m = 1, ...,M} indicating the

locations of the occluded pixels in the training image

sequences

(3) number of synthesized image sequences M̃
(4) number of Langevin steps l for synthesizing image

sequences

(5) number of Langevin steps k for recovering the oc-

cluded pixels

(6) number of learning iterations T
Output:

(1) estimated parameters w
(2) synthesized image sequences {Ĩm,m = 1, ..., M̃}
(3) recovered image sequences {I

′

m,m = 1, ...,M}

1: Let t← 0, initialize w(0).

2: Initialize Ĩm, for m = 1, ..., M̃ .

3: Initialize I
′

m, for m = 1, ...,M .

4: repeat

5: For each m, run k steps of Langevin dynamics to

recover the occluded region of I
′

m, i.e., starting from

the current I
′

m, each step follows equation (7), but

only the occluded pixels in I
′

m are updated in each

step.

6: For each m, run l steps of Langevin dynamics to

update Ĩm, i.e., starting from the current Ĩm, each

step follows equation (7).

7: Calculate Hobs =
∑M

m=1
∂
∂wf(I

′

m;w(t))/M , and

Hsyn =
∑M̃

m=1
∂
∂wf(Ĩm;w(t))/M̃ .

8: Update w(t+1) ← w(t) + η(Hobs −Hsyn), with step

size η.

9: Let t← t+ 1
10: until t = T

domain. (3) Type 3: missing frames, where we randomly

block 50% of the image frames from each video. Figure 6

displays one example of the recovery result for each type of

occlusion. Each video has 70 frames.

To quantitatively evaluate the qualities of the recovered

videos, we test our method on 7 video sequences, which

are collected from DynTex++ dataset of [4], with 3 types

of occlusions. We use the same model structure as the one

used in Experiment 3. The number of Langevin steps for

recovering is set to be equal to the number of Langevin

steps for synthesizing, which is 20. For each experiment,

we report the recovery errors measured by the average per

pixel difference between the original image sequence and

the recovered image sequence on the occluded pixels. The

range of pixel intensities is [0, 255]. We compare our results
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(a) 50% salt and pepper masks

(b) single region masks

(c) 50% missing frames

Figure 6. Learning from occluded video sequences. For each exper-

iment, the first row shows a segment of the occluded sequence with

black masks. The second row shows the corresponding segment of

the recovered sequence. (a) type 1: salt and pepper mask. (b) type

2: single region mask. (c) type 3: missing frames.

with the results obtained by a generic Markov random field

model defined on the video sequence. The model is a 3D

(spatial-temporal) Markov random field, whose potentials are

pairwise ℓ1 or ℓ2 differences between nearest neighbor pixels,

where the nearest neighbors are defined in both the spatial

and temporal domains. The image sequences are recovered

by sampling the intensities of the occluded pixels conditional

on the observed pixels using the Gibbs sampler. Table 1

shows the comparison results for 3 types of occlusions. We

can see that our model can recover the incomplete data, while

learning from them.

4.5. Experiment 5: Background inpainting

If a moving object in the video is occluded in each frame,

it turns out that the recovery algorithm will become an algo-

rithm for background inpainting of videos, where the goal

is to remove the undesired moving object from the video.

We use the same model as the one in Experiment 2 for Fig-

ure 2. Figure 7 shows two examples of removals of (a) a

moving boat and (b) a walking person respectively. The

videos are collected from [19]. For each example, the first

column displays 2 frames of the original video. The second

column shows the corresponding frames with masks occlud-

(a) removing a moving boat in the lake

(b) removing a walking person in front of fountain

Figure 7. Background inpainting for videos. For each experiment,

the first column displays 2 frames of the original video. The second

column shows the corresponding frames with black masks occlud-

ing the target to be removed. The third column shows the inpainting

result by our algorithm. (a) moving boat. (b) walking person.

ing the target to be removed. The third column presents

the inpainting result by our algorithm. The video size is

130 × 174 × 150 in example (a) and 130 × 230 × 104 in

example (b). The experiment is different from the video

inpainting by interpolation. We synthesize image patches to

fill in the empty regions of the video by running Langevin

dynamics. For both Experiments 4 and 5, we run a single

Langevin chain for synthesis.

5. Conclusion

In this paper, we propose a spatial-temporal generative

ConvNet model for synthesizing dynamic patterns, such

as dynamic textures and action patterns. Our experiments

show that the model can synthesize realistic dynamic pat-

terns. Moreover, it is possible to learn the model from video

sequences with occluded pixels or missing frames.

Other experiments, not included in this paper, show that

our method can also generate sound patterns.

The MCMC sampling of the model can be sped up by

learning and sampling the models at multiple scales, or by re-

cruiting the generator network to reconstruct and regenerate

the synthesized examples as in cooperative training [28].
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