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Abstract

Fractal analysis has been widely used in computer vi-

sion, especially in texture image processing and texture

analysis. The key concept of fractal-based image model

is the fractal dimension, which is invariant to bi-Lipschitz

transformation of image, and thus capable of representing

intrinsic structural information of image robustly. However,

the invariance of fractal dimension generally does not hold

after filtering, which limits the application of fractal-based

image model. In this paper, we propose a novel fractal di-

mension invariant filtering (FDIF) method, extending the

invariance of fractal dimension to filtering operations. Uti-

lizing the notion of local self-similarity, we first develop a

local fractal model for images. By adding a nonlinear post-

processing step behind anisotropic filter banks, we demon-

strate that the proposed filtering method is capable of pre-

serving the local invariance of the fractal dimension of im-

age. Meanwhile, we show that the FDIF method can be re-

instantiated approximately via a CNN-based architecture,

where the convolution layer extracts anisotropic structure

of image and the nonlinear layer enhances the structure

via preserving local fractal dimension of image. The pro-

posed filtering method provides us with a novel geometric

interpretation of CNN-based image model. Focusing on a

challenging image processing task — detecting complicated

curves from the texture-like images, the proposed method

obtains superior results to the state-of-art approaches.

1. Introduction

Many complex natural scenes can be modeled as frac-

tals [21, 29]. In the field of computer vision, fractal analysis

has been proven to be a useful tool for modeling textures,

and many research fruits have been proposed. Taking tex-

tures as fractals, the work in [39] learns local fractal dimen-

sions and lengths as features for classifying textures. Simi-

larly, the work in [45] learns the spectrum of fractal dimen-
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Figure 1. Given real-world noisy images (i.e., material images)

having complicated curves in (a), we apply the proposed iterative

FDIF method in (b) to detect curves. The FDIF can be efficiently

and approximately re-instantiated via a CNN in (c). The illustra-

tion of the FDIF-based curve detector is shown in (d).

sion as textures’ features via the box-counting method [10].

It is easy to find that all of these methods treat the fractal

dimension as a key concept of fractal-based image model

because the fractal dimension is invariant to bi-Lipschitz

transformation. This property means that the fractal dimen-

sion is robust to geometrical deformation (e.g., ridge and

non-ridge transformation) of image. Hence, the fractal di-

mension reflects intrinsic structural information of image,

which can be treated as a representative feature of image.

Unfortunately, the fractal dimension of image cannot be

preserved after filtering, which might lead to the loss of

structural information. A typical example is the interpo-

lation of digital image, where the result can be viewed as

a low-pass filtering of ground truth. The low-pass filtering

suppresses the high-resolution details of image, and thus,

leads to the loss of structural information. The work in [44]

shows that the fractal dimension of interpolated image is
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smaller than that of real high-dimensional image. How-

ever, the recent development of deep convolutional neural

networks (CNNs) shows that the stacked nonlinear filtering

model is very suitable to learn features of images, which

has a capability of extracting structural and semantic in-

formation of image robustly. Many CNN-based methods

have been proposed to deal with various tasks e.g. image

classification [16], texture analysis [4], and contour detec-

tion [49]. In other words, for extracting representative fea-

ture of image, the filtering operation are instrumental in

CNNs while detrimental to fractal-based methods. Given

these two seemingly contradictory phenomena about the us-

age of filtering, the following two problems arise: 1) Can

we propose a filtering method preserving the invariance of

fractal dimension? 2) If the filtering method is available, is

there any connection between the method and CNNs?

In this paper, we give positive answers to these two prob-

lems. We propose a fractal dimension invariant filtering

(FDIF) method and use a CNN-based architecture to re-

instantiate it. This work provides us with a geometrical

interpretation of CNN based on local fractal analysis of

image. The proposed work obtains encouraging curve de-

tection results for texture-like images, which is superior to

other competitors. As Fig. 1(b) shows, we give a local frac-

tal model of image and propose a curve detector under an

iterative FDIF framework. In each iteration, we take patches

of image as local fractals, and compute their fractal dimen-

sions accordingly. An anisotropic filter is designed for each

patch of image according to the analysis of gradient field,

and the filtering result is further enhanced via preserving

fractal dimension across various measurements. Inspired

by the iterative filtering strategy in [23], we apply the steps

above repeatedly to obtain the features of curves, and de-

tect curves via unsupervised (i.e., thresholding) or super-

vised (i.e., logistic regression) methods. In particular, we

demonstrate that such a pipeline can be implemented via a

CNN-based architecture, as shown in Fig. 1(c). This CNN

is interpretable from a geometrical viewpoint — the convo-

lution layer corresponds to an anisotropic filter bank while

the nonlinear layer approximately preserves local fractal di-

mensions. Applying backpropagation algorithm for super-

vised case and predefined parameters (filters) for unsuper-

vised case, we achieve encouraging curve detection results.

As Fig. 1(d) shows, the principle of our FDIF-based

curve detector is preserving local fractal dimensions via ad-

justing the measurement of fractal (i.e., the image itself).

Generally, the measurement obtained via anisotropic filter-

ing is smoothed. To preserve local fractal dimensions, we

apply the nonlinear processing and get a new measurement,

where the sharpness of curve is enhanced while the sharp-

ness of the rest regions is suppressed. Compared with the

outcome obtained merely via anisotropic filtering, the fea-

ture of curves is enhanced greatly under local fractal dimen-

sion preservation. As a result, the FDIF method provides us

with a better representation of curves.

We test our method on a collected atomic-force mi-

croscopy (AFM) image set, detecting complicated curves

of materials from AFM images. Experimental results show

that our method is promising in most situations, especially

in the noisy and texture-like cases, which obtains superior

results to existing curve detectors. Overall, the contribu-

tions of our work are mainly in three aspects: First, to the

best of our knowledge, our work is the first attempt to pro-

pose a fractal dimension invariant filtering method and con-

nect it with CNNs. It is also perhaps the first time to inter-

pret CNNs from a (fractal) geometry perspective. Second,

we propose a robust curve detection method for noisy and

chaotic situations. Our method connects traditional hand-

crafted filter-based curve detector with a CNN architecture.

It establishes a bridge on the gap between filter-based curve

detectors and learning-based especially CNN-based ones.

This connection also allows us to instantiate a new prede-

fined CNN that can work in an unsupervised setting, dif-

ferent from most of its peers known for their ravenous ap-

petite for labeled data. Third, we demonstrate a meaningful

interdisciplinary application of our curve detector in com-

putational material science. A material informatics image

dataset is collected and will be released with this paper for

future public research.

2. Related Work

Fractal Analysis: Fractal-based image model has been

widely used to solve many problems of computer vision, in-

cluding, texture analysis [31], bio-medical image process-

ing [40], and image quality assessment [46]. The local

fractal analysis method in [39] and the spectrum of frac-

tal dimension in [52, 45] take advantage of the bi-Lipschitz

invariance property of fractal dimension for texture clas-

sification, whose features are very robust to the deforma-

tion and scale changing of textures. Because the local

self-similarity of image is often ubiquitous both within and

across scales [15, 12], natural images can also be modeled

as fractals locally [21, 29]. Recently, the fractal model of

natural image is applied to image super-resolution [44, 50],

where the local fractal analysis is used to enhance image

gradient adaptively. In [40], a fracal-based dissimilarity

measurement is proposed to analyze MRI images. How-

ever, because the invariance of fractal dimension does not

hold after filtering, it is difficult to merge fractal analysis

into other image processing methods.

Convolution Neural Networks: CNNs have been

widely used to extract visual features from images, which

have many successful applications. In these years, this use-

ful tool has been introduced into many low-and middle-

level vision problems, e.g., image reconstruction [41, 5],

super-resolution [8], dynamic texture synthesis [47], and

3492



contour detection [42, 49]. Currently, the physical mean-

ings of different CNN modules are not fully comprehended.

For example, the nonlinear layer of CNN, i.e., the rectifier

linear unit (ReLU), and its output are often mysterious. For

comprehending CNNs in depth, many attempts have been

made. Many existing feature extraction methods have been

proven to be equivalent to deep CNNs, like deformable part

models in [14] and random forests in [27]. A pre-trained

deep learning model called scattering convolution network

(SCN) is proposed in [20, 4, 25]. This model consists of hi-

erarchical wavelet transformations and translation-invariant

operators, which explains deep learning from the viewpoint

of signal processing. However, none of these methods dis-

cuss the geometrical explanation of CNNs from the view-

point of fractal analysis.

Curve Detection: Curve detection is a potential appli-

cation of fractal-based image processing method regarding

many practical tasks, such as power line detection [19], geo-

logical measurement [26], and rigid body detection [28] etc.

More recently, the curve detection technique is introduced

into more interdisciplinary fields, e.g., materials, biology,

and nanotechnology [48, 36, 17]. To our surprise, although

in the following section we show that fractal-based image

model is very suitable for the problem of curve detection,

very few existing methods apply fractal analysis to solve the

problem. Taking advantage of the directionality of curve,

early curve detectors are based on diverse transformations,

including the Hough transformation [9], the curvelets [35],

the wave atoms [43]. Besides the direction, the multi-

scale property of curve is considered via applying multi-

scale Fourier transformation [6], Frangi filtering [11], and

the scale-space distance transformation [34]. Focusing on

curve and line segment detection, the parameterless fitting

model proposed in [28] achieves the state-of-the-art. These

methods principally construct an isotropic filter bank and

detect the local strong response to certain directions. Be-

yond these manually-designed methods, the learning-based

approaches become popular as a huge amount of labeled

images become available [1, 51]. Focusing on edge de-

tection, which is a problem related to curve detection, the

structured forest-based detector [7] and the CNN-based de-

tector [33, 2, 42, 32] are proposed. These methods learn

their parameters on a large dataset, and thus, have pow-

erful generalization ability to deal with challenging cases.

However, most of the existing methods aim to detect sparse

curves from relatively smooth background. Few of them

can detect complicated curves from texture-like images.

3. Fractal Dimension Invariant Filtering

3.1. Fractal­based Image Model

A typical fractal is generated via transforming a geome-

try G to N analogues with scaling factor s and then applying

the transformation infinitely on each analogue. The union

of the analogues is a fractal, denoted as F . The fractal F is

a “Mathematical monster” that is unmeasurable in the mea-

sure space of G. The analysis of fractal is mainly based on

the Hausdorff measure [21], which gives rise to the concept

of fractal dimension. The fractal dimension is involved by

a power law of measurements across multiple scales, i.e.,

the quantities N ∝
1
sD

. Here D is called fractal dimension,

which is larger than the topological dimension of F .

In our work, an image is represented via a function of

pixels, denoted as f(X). Here X ⊂ R
2 is the union

of the coordinates of pixels. Each coordinate of pixel is

denoted as x ∈ X . We propose a fractal-based image

model, representing X as a union of local fractals, and

image f(X) as (X , µ), where µ is a measurement sup-

ported on the fractal set X . According to the power law of

measurements mentioned above, for each pixel x we have

µ(Br(x)) ∝ (2r)D(x), where Br(x) is a ball centering at

x with radius r and D(x) is the local fractal dimension at

x under the measurement µ. Here, we use the intensity of

pixel f(X) as the measurement µ directly, so the local frac-

tal dimension at x is

D(x) = lim
r→0

logµ(Br(x))

log 2r
, (1)

where µ(Br(x)) =
∫

y∈Br(x)
Gr ∗ f(y)dy, Gr =

exp(−x2/r2)√
2πr

is a Gaussian kernel defined as [45, 44], and

“∗” indicates the valid convolution.

In practice, we estimate the local fractal dimension in (1)

numerically by linear regression. Specifically, we calculate

sample pairs {log r, logµ(Br(x))}r={1,2,...} by multiscale

Gaussian filtering, and learn a linear model logµ(Br(x)) =
D(x) log 2r + L(x) for all x ∈ X according to (1). Here

exp(L(x)) is the value of measurement µ in the unit ball

(2r = 1), which is interpreted as the D-dimensional frac-

tal length in [39]. Algorithm 1 gives the scheme of fractal

dimension estimation.

Algorithm 1 Fractal Dimension Estimation

1: Input: f(X), the number of scales R.

2: Output: Fractal dimension D(X).
3: For r ∈ {1, ..., R}, perform a convolution of f(X)

with Gr to get {µ(Br(x))}x∈X .

4: minD,L

∑

r | logµ(Br(x))−D log 2r − L|2, x ∈ X .

5: D(X) = {D(x)}x∈X .

Local fractal dimension contains important structural in-

formation of image, e.g., smooth patches with fractal di-

mensions close to 2, the patch containing curves with fractal

dimensions close to 1, and textures with fractal dimensions

between 1 and 2 [10, 44]. For detecting structures, e.g.,

curves in images, fractal dimension shall be preserved. One

3493



fundamental property of fractal dimension is its invariance

to bi-Lipschitz transform shown in Theorem 1:

Theorem 1. Bi-Lipschitz Invariance. For a fractal F with

fractal dimension D, its bi-Lipschitz transformation g(F)
is still a fractal, whose fractal dimension Dg = D.

Recall (1), we can find that the fractal dimension is not

unique, which depends on the choice of measurement µ.

The theorem holds because the bi-Lipschitz transformation

(i.e., the geometric transformation and non-rigid deforma-

tion of image) does not change the measurement of frac-

tal. However, after filtering or convolution, the invariance

of fractal dimension does not hold any more. For example,

if we change the convolution kernel Gr in (1), the measure-

ment µ of fractal X and the associated fractal dimension

will be changed accordingly. Therefore, we cannot find a

filter ensuring the fractal dimension of filtering result to be

exactly same with that of original image.

To pursuit the fractal dimension preservation philosophy

in face of the reality that filtering will inevitably change

fractal dimension, we aim to suppress the expected change

between original fractal dimension and filtered one. Denote

the proposed filter as F , the measurement and the fractal di-

mension of filtering result as µF and DF , respectively. We

assume that the filter F is a random variable yielding to a

probabilistic distribution. According to (1), we have

D(x)− E(DF (x)) = lim
r→0

1

log 2r
log

µ(Br(x))

E(µD(Br(x)))

= lim
r→0

1

log 2r
log

∫

y∈Br(x)
Gr ∗ f(y)dy

∫

y∈Br(x)
Gr ∗ E(F ) ∗ f(y)dy

,

(2)

where E(·) computes the expectation of random variable.

Obviously, to minimize the expected change between D(x)
and DF (x), the expectation of the filter should be as close

to impulse function δ(x) as possible.

3.2. Iterative FDIF Framework

Motivated by the analysis above, we propose the follow-

ing iterative FDIF method as detailed in Fig. 1(b).

Anisotropic Filtering: To suppress fractal dimension

change, the expectation of the filter shall be as close as to

impulse function. Anisotropic filters have been one natu-

ral choice for this purpose. Take directional filtering [30]

as an example: for each pixel x, compute the smoothed

gradient in its neighborhood B(x) as G = [vec(∇h(G ∗
f(B(x))), vec(∇v(G ∗ f(B(x)))] ∈ R

|B|×2. Here G is

a Gaussian filter, |B| is the cardinality of the neighbor-

hood, ∇h (∇v) is partial differential operator along hori-

zontal (vertical) direction, and vec(·) denotes vectorization.

The eigenvector corresponding to the largest eigenvalue of

G⊤G, denoted as u = [uh, uv]
⊤ ∈ R

2, indicates the di-

rection information of x. Such a direction field of image

Figure 2. The illustration of Fθ’s with θ = {0, π

30
, ..., 29π

30
}. The

average of the filters (the last one) is close to an impulse function.

induces a series of directional filters in the polar coordinate

system, denoted as Fθ, whose element Fθ(r, φ) satisfies

Fθ(r, φ) =

{

1
|B| , φ ∈ {θ, θ + π}, r ∈ [0,

√

|B|],

0, otherwise.
(3)

Obviously, the filtering result fF (x) = Fθ ∗ f(B(x)) at x

has the strongest response for θ = arctan (uh/uv). The

directional filters satisfy the following proposition:

Proposition 2. If the distribution of pixel’s direction is uni-

form, then the expectation value of the filters in (3) is an

impulse function δ(x), where δ(0) = 1
|B| .

Fig. 2 visualizes several typical directional filters and

their mean in the right most, which further verifies the

proposition. Recall (2), we can find that as long as the dis-

tribution of directions is uniform in the direction field of im-

age, the proposition indicates that the proposed filters {Fθ}
tend to preserve the expected value of fractal dimension af-

ter filtering.

Nonlinear Post-processing: Anisotropic filtering pre-

vents the expected fractal dimension from changing glob-

ally. Furthermore, we propose a transformation T to pre-

serve local fractal dimensions of the filtering result fF (X).
In particular, although the local fractal dimension DF (x)
with the measurement µF (Br(x)) is not equal to the orig-

inal D(x) with µ(Br(x)), we can apply a transformation

T to µF (Br(x)), such that the fractal dimension with the

new measurement T (µF (Br(x))), denoted as DT◦F (x),
is equal to D(x). According to the definition of frac-

tal dimension in (1) and the relationship logµ(Br(x)) =
D log 2r + L given by Algorithm 1, it is easy find that

the proposed transformation should be T = (·)α(x), where

α(x) = D(x)
DF (x) . In this situation, we have

log T (µF (Br(x))) =
D(x)

DF (x)
(DF (x) log 2r + LF (x))

= D(x) log 2r +
LF (x)

DF (x)
.

In other words, the local fractal dimension DT◦F (x) =
D(x). Then we apply the transformation directly to the fil-

tering result fF (X) such that the local fractal dimension is

preserved under the new measurement. At each x, we have

fT◦F (x) =
‖fF (B(x))‖

‖fα
F (B(x))‖

fα
F (x), α =

D(x)

DF (x)
. (4)
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(a) Original (b) Path operator (c) #1 Iteration (d) #3 Iteration

Figure 3. Comparison between the iterative adaptive filtering pro-

cess and traditional path operator [22].

Here the term
‖fF (B(x))‖
‖fα

F
(B(x))‖ preserves the energy of filtering

result, which merely changes fractal length.

Iterative Framework: Combining the anisotropic filter-

ing with the post-processing, we obtain the proposed FDIF

method. As Fig. 1(b) shows, FDIF can be applied itera-

tively, in order to extract structures hidden in images.

Take curve detection as an example. Fig. 3 illustrates

the enlarged output of an AFM image in each iteration and

compare the iterative filtering process with traditional path

operator [22]. We can find that the pixels corresponding to

curves are more and more discriminative. When the labels

of curves are available, we learn the curve detector as a bi-

nary classifier with the help of logistic regression. Sampling

the final filtering result into patches with overlaps, we learn

the parameters of the sigmoid function. On the contrary, if

the labels are unavailable, we simply apply a thresholding

method [24] to convert the filtering result to a binary im-

age. On the contrary, the traditional morphological filtering

method, e.g., the path operator [37, 22], also aims at detect-

ing curves and tubes, but it is sensitive to the noisy in the

image. These two detection methods are shown in the last

layer in Fig. 1(b). The iterative FDIF-based curve detector

is physically-interpretable. The fractal dimension of patch

reflects its sharpness: the patch of curve has higher sharp-

ness than the patch of smooth region, whose fractal dimen-

sion tends to 1. The filters we used achieve an anisotropic

smoothing process of image, so that the measurement of

fractal dimension is smoothed as well. Essentially, pre-

serving fractal dimensions under a smoother measurement,

like (4) does, actually enhances the sharpness of curves and

suppresses the sharpness of the rest regions, which provides

us with a better representation of curves.

4. FraCNN: Implementing FDIF via CNN

In this section, we will show that FDIF can be re-

instantiated via a CNN, as described in Fig. 1(c). In

particular, the convolution layer can be explained as an

anisotropic filter bank and the nonlinear layer performs the

post-processing function approximately.

4.1. The Architecture of The CNN

Convolution Layer: The anisotropic filtering can be ap-

proximately implemented via a filter bank. At each pixel x,

the process can be rewritten as

fF (x) = Fθ ∗ f(B(x)) = max
θ∈Θ

{FΘ ∗ f(B(x))}, (5)

where FΘ = {Fθ1 , ..., FθN } is the bank of N anisotropic

filters. maxθ∈Θ{FΘ∗f(B(x))} only preserves the filtering

result having the maximum response.

Nonlinear Layer: The proposed post-processing can

also be approximated via the following nonlinear layer:

fT◦F (x) ≈
‖fF (B(x))‖max{fF (x), 0}

α

‖max{fF (B(x), 0}α‖

=
(M ∗ fF (B(x)))max{fF (x), 0}

α

M ∗max{fF (B(x)), 0}α
.

(6)

Here the normalization term is implemented via a convo-

lution, where M is a mean filter, which sums the intensi-

ties in the neighborhood B(x) for each x. Different from

neuroscience, we explain the rectified linear unit (ReLU,

max{·, 0}) based on fractal analysis. The ReLU ensures

the filtering result to be a valid measurement (as the mea-

surement used in the box-counting method [10, 45]): A

valid measurement µ defined on the set X satisfies non-

negativity µ(X) ≥ 0, countable additivity µ(∪∞
k=1Xk) =

∑∞
k=1 µ(Xk), and null empty set µ(∅) = 0 simultaneously,

where X,Xk ⊂ X . The null empty set is satisfied by our

filtering result naturally while the ReLU operator guaran-

tees the nonnegativity and countable additivity.

Note that the parameter of transformation operation

T (·) = (·)α(x) can be fixed approximately as a constant α.

This approximation is reasonable for the problem of curve

detection. On one hand, we model the coordinates of image

X as a set of fractals, whose fractal dimension D(x) must

be in the interval [2, 2+ ǫ1], where 2 is the topology dimen-

sion of 2D geometry, and 0 ≤ ǫ1 < 1 because the fractal

dimension of a fractal generated from a 2D geometry via

2D transformation cannot reach to 3. On the other hand,

after filtering the curves are also modeled as a set of frac-

tals with fractal dimension DF (x) in the interval [1, 1+ǫ2),
where 1 is the topology dimension of curve (1D geometry)

and 0 ≤ ǫ2 < 1. Based on the fractal-based model, we have

α(x) = D(x)
DF (x) ∈ ( 2

1+ǫ2
, 2+ ǫ1). When ǫ1 and ǫ2 are small,

we can estimate D
DF

≈ 2 for all x’s.

4.2. FraCNN­based Curve Detection

The iterative FDIF framework can be achieved via stack-

ing the layers above. As a result, the architecture of the

proposed CNN is shown in Figs. 1(c). For convenience, we

call it FraCNN. Similar to the iterative FDIF framework,

we can also add a sigmoid layer to the end of the CNN and

train the model via traditional backpropagation algorithm,

or apply a thresholding layer for the final output. In contrast

to many CNN models with a disadvantage of their ravenous
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Algorithm 2 FraCNN-based Curve Detector

1: Input: Image f(X), filter bank FΘ, layer number N .

2: Output: Binary map b(X) corresponding to curves.

3: For n = 1, ..., N , obtain fT◦F (X) from f(X) via

(5,6), and set f(X) = fT◦F (X).
4: Unsupervised: b(X) = binary(f(X)).
5: Supervised: b(X) = sigmoid(β⊤P ). β is learned

parameters, P are patch matrix of f(X).

appetite for labeled training, we believe the adaptability for

unlabeled data of our method is perhaps due to the fact that

we instantiate our tailored CNN from the fractal-based ge-

ometry perspective. Focusing on the task of curve detection,

we propose a detection algorithm shown in Algorithm 2.

We present further comparisons and analysis as follows.

FraCNN v.s. FIDF: The proposed CNN model can be

viewed as a fast implementation of FIDF. Firstly, the adap-

tive anisotropic filtering is approximately achieved by an

anisotropic filter bank. The direction of filter θ is no longer

computed from the eigenvector of the local gradient matrix,

but sampled uniformly from the interval [0, π] (as Fig. 2

shows). Although such an approximation reduces the accu-

racy of the description of direction, it avoids to do eigen-

decomposition for each pixel, and thus, accelerates the fil-

tering process notably. Secondly, the ratio between the frac-

tal dimension and the original one is replaced by a fixed

value, such that we do not need to apply Algorithm 1 to esti-

mate fractal dimension. As a result, the computational com-

plexity of original FIDF is O(|X||B|3+ |X|R3), where the

first term corresponds to adaptive filtering and the second

term corresponds to local fractal dimension estimation (and

R is the number of scales in Algorithm 1), while the com-

plexity of proposed CNN is at most O(|X||B|L), where L
is the number of filters in the filter bank.

FraCNN v.s. Scattering Convolution Network: To our

CNN model, the most related work might be the scattering

convolution network (SCN) in [4, 25]. Both of our fractal-

based CNN and the SCN can apply predefined filters and

are suitable for unsupervised learning when labels are not

available. However, there are several important differences

between our model and SCNs. First, SCNs aim at extract-

ing discriminative feature for image recognition and clas-

sification, while our Fractal-based CNN model focuses on

low-and middle-level vision problems, i.e., curve detection.

Second, the nonlinear layer of SCN applies multiple non-

linear operators to enhance the invariance of feature to ge-

ometric transformation. For example, the absolute opera-

tor | · | is applied to achieve translation invariance. In our

work, the nonlinear layer aims to preserve local fractal di-

mension such that the local structural information of image

will be enhanced. The geometric invariance of feature is

not our goal. Finally, different from wavelet transforma-

tion, our fractal-based CNNs do not down-sample filtering

result (i.e., pooling operation).

5. Experiments

5.1. The AFM Image Benchmark and Protocols

We apply our fractal dimension invariant filtering

method to a challenging real-world task: detecting struc-

tural curves in AFM images of materials. The demo

code and partial data are in https://sites.google.

com/site/htxu313/resources/software. The

images in this study are 40 atomic force microscopy (AFM)

phase images of nano-fibers. Each image is taken in tap-

ping mode at a 10 µm and with size 512 × 512. The fib-

rillar structure of the material has a huge influence on its

electronic properties, which is represented via the complex

salient curves in the image, as Fig.1(a) shows. Detecting

curves from the AFM images is challenging. First, the

AFM images often suffer from heavy noise and low con-

trast, which has negative influences on curve detection. Sec-

ond, the curves in these scenes are very complicated —

dense curves (i.e., nano fibers) with different shapes and

directions are distributed in the image randomly and have

overlaps with each other. The ground truth of curves are

extracted manually by a semi-automatic tool called Fiber-

App [38].

We test our FraCNN-based curve detector with the orig-

inal FDIF-based detector in both unsupervised and super-

vised cases. Specifically, we consider these two detectors

with thresholding-based binary processing (BP) and logis-

tic regression (LR) as the last layer, respectively. The size

of filters used in FDIF and FraCNN is 9 × 9, and the num-

ber of anisotropic filters used in FraCNN is 30, as shown

in Fig. 2. For investigating the influence of model’s itera-

tion number (depth) on learning results, we set the iteration

number of FDIF to be 3 (relatively shallow) or 6 (relatively

deep). Accordingly, the depth of FraCNN is 6 or 12. In the

supervised case (note only for last layer), we use 20 AFM

images as training set and the remaining 20 AFM images as

testing set. 80, 000 patches of size 9 × 9 are sampled from

the output images of FDIF or FraCNN to training parame-

ters of the sigmoid layer. A half of training patches whose

central pixels correspond to curves are labeled as positive

samples, while the rest patches are negative ones.

For further demonstrating the superiority of our method,

we consider the following competitors: the curve and line

segment detector (ELSD) in [28]; the traditional Frangi

filtering-based curve detector [11] the simple logistic re-

gression LR using patches as features directly; the classi-

cal CNN so-called LeNet [18]; the state-of-art holistically-

nested edge detector (HED) [42]. Although the HED is

originally designed to detect edges, it should also be suit-

able to detect curves because both curves and edges satis-
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Table 1. Performance comparison for various methods.

Method ODS OIS AP

Non-Learning

ELSD [28] 0.058 0.058 0.030

Frangi [11] 0.629 0.659 0.578

FDIF(×3)+BP 0.717 0.735 0.699

FDIF(×6)+BP 0.715 0.733 0.695

FraCNN(×6)+BP 0.691 0.719 0.708

FraCNN(×12)+BP 0.689 0.715 0.702

Learning

LR 0.639 0.706 0.707

LeNet [18] 0.677 0.718 0.643

HED [42] 0.722 0.739 0.784

FDIF(×3)+LR 0.728 0.770 0.700

FDIF(×6)+LR 0.724 0.767 0.697

FraCNN(×6)+LR 0.743 0.782 0.730

FraCNN(×12)+LR 0.739 0.774 0.718

fies the assumption of multi-scale consistency. Therefore,

we use the 20 training images to fine-tune the pre-trained

HED model and learn a curve detector accordingly. Follow-

ing the instruction in [42], a post-process is applied to the

output of CNNs, achieving the shrinkage and the binariza-

tion of detected curves. The logistic regression is trained

by 80, 000 patches with size 9× 9 sampled randomly from

training images. The training samples of the LeNet is also

80, 000 patches of images, the only difference is that the

size of the patches is 28 × 28. In the testing phase, each

patch of testing image will be classified and its label will be

used as the corresponding pixel value of final binary map.

Similar to contour detection [1], we use the standard

metrics for curve detection, including the optimal F-score

with fixed threshold (ODS), the optimal F-score with per-

image best threshold (OIS), and average precision (AP).

5.2. Experimental Results

Table 1 gives comparison results for various methods,

and Figs. 4 and 5 visualize some typical results. The tra-

ditional image processing methods like the ELSD and the

Frangi filter seems unsuitable for detecting complicated

curves in our case. The ELSD method aims at detecting line

segments and ellipse curves of rigid body in natural image.

The Frangi filter is originally designed for detecting vessels

from medical images. Both of these two methods can only

detect sparse curves from relatively smooth background. In

our case, however, the curves of nano-fibers are very dense

and complex and the AFM images are generally noisy. As

a result, the ELSD cannot detect complete curves and ob-

tains very low ODS, OIS, and AP while the Frangi filtering

method is not robust to noise and the change of contrast,

which can only obtain chaotic results.

The learning-based approaches, including LR, LeNet,

and HED, achieve much better results (i.e., higher ODS,

OIS, and AP) than basic image processing methods. How-

ever, their results are still very noisy. In Fig. 4, LR’s results

(a) AFM image (b) Manual labels (c) ELSD [28] (d) Frangi [11]

(e) LR (f) LeNet [18] (g) HED [42] (h) Proposed

Figure 4. Visual comparisons for various methods.

contain many non-curve pixels and the many broken curves.

LeNet gets some improvements: long curves are detected

correctly, but there are still many non-curve pixels. HED is

superior to LR and LeNet. Long curves are detected with

more confidence and fewer incorrect isolated pixels appear

in the results. Table 1 shows the superiority of HED.

FDIF and FraCNN both achieve encouraging results.

Specifically, our unsupervised methods, FDIF+BP and

FraCNN+BP, outperform the other non-learning methods

(ELSD and Frangi) notably, with better performance in Ta-

ble 1 and visual results in Fig. 4. Additionally, FDIF+BP

and FraCNN+BP are also better than some learning-based

methods. We can find that they get higher ODS, OIS and

AP than LR and LeNet. The comparison results still demon-

strate that the fractal-based image model is suitable for the

problem of curve detection, and our methods can extract

representative features for curves. In the supervised case,

our FDIF+LR and FraCNN+LR methods outperform all the

competitors in ODS and OIS while getting slightly worse

AP than HED. Moreover, from the enlarged comparison re-

sults in Fig. 5, we can find that HED’s result is still very

coarse, while our method can get thin curves. The results

demonstrate that the proposed methods are at least com-

parable to the state-of-art in the problem of curve detec-

tion. Note that our method is superior to HED in the aspect

of computational complexity. Specifically, in each layer,

our FraCNN just applies L 2D convolutions with kernel

size |B| to image X , whose computational complexity is

O(|X||B|L), while HED applies L 3D convolutions to an

image tensor with C channels, whose computational com-

plexity is O(|X||B|LC).

One important observation here is that although FraCNN

can be viewed as an implementation of FDIF, it sometimes

outperforms FDIF in Table 1. A potential explanation for

this phenomenon might be that FDIF is more sensitive to

the noise in the image. Specifically, the flexibility of FDIF

on selecting directions might be a “double-edged sword”.

Heavy noise in the image would lead to bad estimate of fil-

ter’s direction and have negative influences on filtering re-
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(a) Manual labels (b) HED’s curves (c) FDIF’s curves

Figure 5. Enlarged comparisons for various methods. The red

curves are manually labeled results and the learning results of var-

ious methods. The green regions mark the unlabeled curves.

(a) (b) (c)

Figure 6. Brodatz texture images and filtering results. The numer-

ical results of FDIF(×3)+LR are: OIS= 0.534; ODS= 0.530;

AP= 0.803. On the other hand, the results of HED (the best com-

petitor) are: OIS= 0.522; ODS= 0.518; AP= 0.791.

sults. The FraCNN, however, uses a predefined anisotropic

filter bank. The limited options of directions might help to

suppress the influence of noise. Additionally, experimental

results show that with the increase of iteration number and

depth, the performance of our methods is degraded slightly.

In the viewpoint of numerical analysis, too many iterations

or too deep architecture might lead to the underflow prob-

lem of pixel value. In the unsupervised case, instead of

fine-tuning the threshold case by case, we uniformly set the

threshold to 0.1 for fair comparison. Note the threshold can

have direct impact to final results: some underflow points

might appear on curves, and thus the thresholding operation

might break a complete curve into several pieces of short

segments. In the supervised case, the underflow points in

patches also hurt the representation of curve, which have

negative influences on training the sigmoid layer.

Furthermore, we select some texture images containing

curves from the public Brodatz texture data set [3], label

them manually, and test our method accordingly. Some typ-

ical visual results and numerical results are shown in Fig. 6,

which further verify the performance of our method.

5.3. Robustness to Missing Labels

Compared with the state-of-art learning-based detector,

an important advantage of the proposed method is that it

is able to detect unlabeled curves. The ground truth of

curves is manually labeled. For labeling the texture-like

complex image samples, humans are likely to miss some

subtle or short curves in the labeling phase, as exempli-

fied in Fig. 5(a). As a result, the learning-based methods

(e.g. HED) tend to ignore many existing curves or merge

them together because in the training phase they have been

“taught” to pay less attention to such unlabeled curves – see

(a) Natural image (b) #2 Iterations (c) #3 Iterations

Figure 7. The painting-style portrait of Benoit B. Mandelbrot, the

author of “The fractal geometry of nature” [21].

Fig. 5(b). On the contrary, our method (e.g. FDIF+BP) is

more robust to unlabeled curves – see Fig. 5(c). We think

this is partially attributed to its intrinsic unsupervised learn-

ing nature: the representation of curve aims at preserving

local fractal-dimension rather than approaching manual la-

bels. As long as the response of a patch after anisotropic

filtering is large enough, it will be preserved to represent

curves. In this viewpoint, our method can be utilized as a

robust feature extraction method, which has potential to la-

bel salient curves automatically.

5.4. A Further Possible Application

Besides curve detection, our fractal dimension invariant

filtering method can also be used to create painting-style

image from natural image. Considering the nature of most

paintings that the objects in a painting are drawn via a series

of curved strokes, we can treat paintings as a union of curves

(fractals). Therefore, we can apply iterative FDIF method

to natural image, enhancing their strokes and suppressing

their textures. Fig. 7 gives a typical example. Similar to

the neural algorithm in [13], our FDIF method has potential

to generate diverse artistic styles via designing or learning

different anisotropic filters.

6. Conclusion and Outlook

Taking an image as a union of local fractals, this paper

presents a model involving anisotropic filtering with fractal

dimension preservation. The model is also re-implemented

from a CNN interpretation. This work is the first attempt

to bridge fractal-based image model with neural networks.

One notable character of our method is for its unsupervised

feature extraction part, which does not rely on manually la-

beled data. This fact can be potentially of interest to the

community: manual labeling in low-level vision problems

is tedious and error-prone, which hurts the practical use of

supervised learning approaches, while our method can ob-

tain competitive performance on these task against super-

vised learning method (i.e., HED).
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[30] G. Peyré. Texture synthesis with grouplets. TPAMI, 32(4):733–746,

2010.

[31] Y. Quan, Y. Xu, Y. Sun, and Y. Luo. Lacunarity analysis on image

patterns for texture classification. In CVPR, 2014.

[32] L. Shen, T. Wee Chua, and K. Leman. Shadow optimization from

structured deep edge detection. In CVPR, 2015.

[33] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A

deep convolutional feature learned by positive-sharing loss for con-

tour detection. In CVPR, 2015.

[34] A. Sironi, V. Lepetit, and P. Fua. Multiscale centerline detection by

learning a scale-space distance transform. In CVPR, 2014.

[35] J.-L. Starck, E. J. Candès, and D. L. Donoho. The curvelet transform

for image denoising. TIP, 11(6):670–684, 2002.

[36] C. J. Takacs, N. D. Treat, S. Kramer, Z. Chen, A. Facchetti, M. L.

Chabinyc, and A. J. Heeger. Remarkable order of a high-performance

polymer. Nano letters, 13(6):2522–2527, 2013.

[37] H. Talbot and B. Appleton. Efficient complete and incomplete path

openings and closings. Image and Vision Computing, 25(4):416–425,

2007.

[38] I. Usov and R. Mezzenga. Fiberapp: an open-source software for

tracking and analyzing polymers, filaments, biomacromolecules, and

fibrous objects. Macromolecules, 48(5):1269–1280, 2015.

[39] M. Varma and R. Garg. Locally invariant fractal features for statisti-

cal texture classification. In ICCV, 2007.

[40] C. Wang, E. Subashi, F.-F. Yin, and Z. Chang. Dynamic fractal signa-

ture dissimilarity analysis for therapeutic response assessment using

dynamic contrast-enhanced mri. Medical physics, 43(3):1335–1347,

2016.

[41] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with

deep neural networks. In NIPS, 2012.

[42] S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.

[43] H. Xu, G. Zhai, L. Chen, and X. Yang. Automatic movie restoration

based on wave atom transform and nonparametric model. EURASIP

Journal on Advances in Signal Processing, (1):1–19, 2012.

[44] H. Xu, G. Zhai, and X. Yang. Single image super-resolution with de-

tail enhancement based on local fractal analysis of gradient. TCSVT,

23(10):1740–1754, 2013.

[45] Y. Xu, H. Ji, and C. Fermüller. Viewpoint invariant texture descrip-

tion using fractal analysis. IJCV, 83(1):85–100, 2009.

[46] Y. Xu, D. Liu, Y. Quan, and P. Le Callet. Fractal analysis for reduced

reference image quality assessment. TIP, 24(7):2098–2109, 2015.

[47] X. Yan, H. Chang, S. Shan, and X. Chen. Modeling video dynamics

with deep dynencoder. In ECCV. 2014.

[48] H. Yang and W. B. Lindquist. Three-dimensional image analysis of

fibrous materials. In International Symposium on Optical Science

and Technology, pages 275–282, 2000.

[49] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object contour

detection with a fully convolutional encoder-decoder network. arXiv

preprint arXiv:1603.04530, 2016.

[50] L. Yu, Y. Xu, H. Xu, and X. Yang. Self-example based super-

resolution with fractal-based gradient enhancement. In ICME Work-

shops, pages 1–6, 2013.

[51] C. Zhang, X. Ruan, Y. Zhao, and M.-H. Yang. Contour detection via

random forest. In ICPR, 2012.

[52] Q. Zhang and Y. Xu. Block-based selection random forest for texture

classification using multi-fractal spectrum feature. Neural Comput-

ing and Applications, 27(3):593–602, 2016.

3499


