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Abstract

Sharing information between multiple tasks can enhance

the accuracy of human action recognition systems. Howev-

er, using shared information to improve multi-task human

action clustering has never been considered before, and

cannot be achieved using existing clustering methods. In

this work, we present a novel and effective Multi-Task In-

formation Bottleneck (MTIB) clustering method, which is

capable of exploring the shared information between mul-

tiple action clustering tasks to improve the performance

of individual task. Our motivation is that, different ac-

tion collections always share many similar action patterns,

and exploiting the shared information can lead to improved

performance. Specifically, MTIB generally formulates this

problem as an information loss minimization function. In

this function, the shared information can be quantified by

the distributional correlation of clusters in different tasks,

which is based on a high-level common vocabulary con-

structed through a novel agglomerative information max-

imization method. Extensive experiments on two kinds of

challenging data sets, including realistic action data sets

(HMDB & UCF50, Olympic & YouTube), and cross-view

data sets (IXMAS, WVU), show that the proposed approach

compares favorably to the state-of-the-art methods.

1. Introduction

Human action recognition is a fundamental research area

in computer vision. Recently, with the continuing rapid de-

velopment of information technology, massive amounts of

task-specific human action data are generated everyday. In

realistic videos, recognizing action categories from each da-

ta collection can be treated as a learning task. Apparent-

ly, different video collections usually have a considerable

amount of similar actions. For instance, both UCF50 [15]

and HMDB [4] contain motion patterns: punching, horse

riding, pushup and fencing. Intuitively, the shared pattern

information can be exploited to enhance the clustering per-

formance of each task. In cross-view videos, the same ac-

Punching HorseRiding Pushup Fencing

Figure 1. The shared information between tasks. (a) The simi-

lar action patterns in UCF50 and HMDB can be treated as shared

information. (b) In cross-view videos, the same actions from dif-

ferent viewpoints can be adopted as shared information.

tions are captured from different camera viewpoints. We

assume that action pattern discovery in each viewpoint is

treated as a learning task. Due to the problem of self-

occlusions, the single view case can not guarantee robust

action recognition. Figure 1 shows the existence of shared

information between tasks. Therefore, jointly learning all

of the tasks together can leverage the shared knowledge a-

mong them to improve the generalization ability of model

learning.

Recently, several multi-task learning (MTL) approach-

es [6, 10, 13, 26, 28, 34, 9] have been proposed for hu-

man action recognition, which capitalize on shared infor-

mation between related tasks to improve the performance

of each task. However, MTL needs to acquire sufficien-

t labeled samples for each task, it is may be impractical

for many complicated applications. Moreover, recognizing

action patterns is usually challenging just with the human

knowledge (label, annotation, etc.), which often invites sub-
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ject biases or mistakes by human labelers. So it is wise to

resort to clustering algorithms for mining the human action

in videos.

Human action clustering is crucial to many practical ap-

plications, such as fast content based video retrieval or au-

tomatic annotation of video databases. However, although

the current single task methods have demonstrated superior

performance on human action clustering, there still exist the

following challenges: 1) Neglecting the shared information

among actions. Most of current methods focus on designing

features to distinguish actions in the single task setting. For

instance, Niebles et al. [12] use pLSA and LDA to cluster

the actions based on local spatial-temporal feature. Yang et

al. [27] present a meaningful global action descriptor by hi-

erarchical clustering of optical flow feature. However, the

feature representation is not discriminative enough to dif-

ferentiate actions in more complicated scenarios, such as

multi-camera [22], cross-domain [35], etc. It will be help-

ful if we employ the shared information from other tasks

for the more challenging action recognition. 2) Difficulty in

shared information measurement. In real applications, al-

though many tasks contain similar action patterns, there are

some tasks still mutually partially related, dissimilar even

reverse. For instance, both UCF50 and HMDB have same

action patterns of punching and fencing, but they also have

many completely different patterns, e.g. kissing in UCF50

and biking in HMDB. So it is quite challenging to measure

the shared information in realistic tasks.

In this paper, to perform multi-task clustering of human

actions by sharing the related information between multi-

ple tasks, we propose a novel multi-task information bot-

tleneck (MTIB) clustering method. MTIB is capable of

exploring the shared information between multiple human

action clustering tasks to improve the performance of each

task. Specifically, to bridge the distributional gap between

multiple tasks, as well as local features and action con-

cepts, we first present an agglomerative information max-

imization (AIM) method to construct a high-level common

vocabulary between multiple tasks based on bag-of-visual-

words model (See Figure 2). The common vocabulary of

multiple tasks is more discriminative than the vocabulary

from individual task. For instance, the common vocabu-

lary may contain phrase “raising your hand” that implies

high-level concept, other than separate words “rasing” and

“hand”. Then, MTIB generally formulates the multi-task

human action clustering as minimizing an information loss

function, in which the shared information between any t-

wo tasks can be quantified by the distributional correlation

based on the co-occurrence words from the common vo-

cabulary. To solve the optimization of MTIB function, a

rotational draw-and-merge solution is proposed to update

the action partition. Extensive experiments are conducted

on two kinds of challenging data sets, including realistic
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Figure 2. The action representation from multiple tasks based on

common vocabulary.

action data sets (HMDB [4] & UCF50 [15], Olympic [11]

& YouTube [7]), and cross-view data sets (IXMAS [21],

WVU [14]).

The major contributions of this paper are summarized

as follows: 1) A novel and effective multi-task information

bottleneck method is proposed for human action clustering.

To our knowledge, this is the first work proposing multi-task

framework for human action clustering. 2) An agglomera-

tive information maximization method is proposed to bridge

the gap between multiple tasks, which is general and can

be beneficial to many other fields, such as cross-domain,

multi-view, transfer learning, etc. 3) The multi-task human

action clustering is generally formulated as an information

loss minimization function, in which the task relatedness

can be quantified by the distributional correlation of clus-

ters between different tasks. 4) A novel rotational draw-

and-merge solution is proposed to update the data partition,

which can guarantee to converge to a stable solution.

2. Related Work

2.1. Multi-task Scenario

Several MTL approaches [28, 34, 13, 10, 26, 6] have

been proposed for human action recognition by jointly

learning multiple tasks using shared information among

them. For instance, Yuan et al. [28] treat learning the sparse

representation under each feature modality as a task. Since

the multiple features are generated from same input, they

are inter-related. Pentina et al. [13] propose to solve task in

a sequential manner by transferring information from a pre-

viously learned task to the next one, instead of solving all of

them simultaneously. Mahasseni et al. [10] and Yan et al.

[26] find that multi-task learning is suitable for achieving

view invariance in recognition when each viewpoint of ac-

tion set is specified as a learning task. Liu et al. [6] propose

to discover the latent task correlation as well as to learn the

action model simultaneously. However, MTL needs to ac-

quire sufficient labeled samples for each task, which may
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be impractical for massive action data.

Recently, several multi-task clustering (MTC) method-

s have been designed in the domain of machine learning.

Gu et al. [2] first address multi-task clustering by learning a

shared subspace representation of all tasks, through which

the knowledge of the tasks can be transferred to each oth-

er. After that, the works in [25, 29, 30, 31, 32, 33] have

obtained promising results for different multi-task settings.

For instance, Zhang et al. [31] propose a multi-task multi-

view clustering algorithm, which integrates the features in

the common view of each task to link the related tasks to-

gether. Zhang [33] proposes two convex multi-task cluster-

ing objectives, which aim to learn a shared feature repre-

sentation and the task relationship, respectively. However,

all previous works are designed for document analysis. Re-

cently, Jones et al. [3] estimate the correlation between two

human action clusterings and use it to improve the results

of both clusterings, but they just focus on two tasks. Yan et

al. [25] propose multi-task clustering based on earth movers

distance for first-person vision activity analysis, which con-

centrates on long time video sequence and can not be ap-

plied to large volume of action collections.

2.2. Information Bottleneck

Information Bottleneck (IB) [20] is an information-

theoretic framework, which has been applied to action

recognition effectively [8]. Given the joint distribution of a

source variable X and another relevant variable Y , IB tries

to extract a compressed representation T of X , while pre-

serving information about Y . Formally, the IB objective

function is suggested in [20] as follows:

LIB [p(t|x)] = I(T ;X)− βI(T ;Y ), (1)

where the tradeoff parameter β is the positive Lagrange

multiplier controlling compression and informativeness,

I(T ;X) is the mutual information defined in Eq. 2. IB has

been extended successfully to multivariate scenario [17],

such as multi-view [23], consensus clustering [24], etc. So

it is natural to consider using IB principle to tackle multiple

tasks. To the best of our knowledge, this is the first work

addressing multi-task clustering by information bottleneck

principle.

3. Multi-task Clustering by Sharing Informa-

tion

In this section, we first describe the problem of multi-

task clustering of human actions by sharing information.

Then, we present an agglomerative information maximiza-

tion (AIM) to construct common vocabulary to bridge the

gap of multiple tasks. Finally, the objective function of

MTIB and its optimization are given in details.

Given multiple collections of unlabeled videos including

various human actions, we intend to cluster each video col-

lection into discrete groups of videos with similar action-

s. In realistic applications, the action patterns in different

collections are always similar to each other. For instance,

Olympic [11] and YouTube [7] are sports data corpus, and

both of them contain various similar sports action patterns.

If recognizing action categories in each collection is treat-

ed as a learning task, we are curious about whether we can

maintain the shared pattern information to enhance the clus-

tering performance of each task.

3.1. Agglomerative Information Maximization

One key issue of human action recognition in multi-task

scenario is how to represent the action. Recently, bag-of-

visual-words (BoVW) [16] model represents a video as an

orderless set of local features and has been demonstrated

impressive levels of performance. Traditional BoVW u-

tilizes k-means to quantify the local features into visual

words, which generates vocabulary for each action collec-

tion independently. However, the independent vocabular-

ies of different tasks are heterogeneous to each other, and

can not be used to measure the shared information of mul-

tiple tasks. To bridge the gap between multiple tasks, as

well as low-level features and action concepts, we present

an agglomerative information maximization (AIM) method

to construct common vocabulary W com of multiple tasks,

which is suitable to describe multiple tasks as demonstrated

in our experiments. In this regard, the common vocabulary

may contain “phase” other than separate words. Next, we

give the AIM method in details.

Consider multiple tasks X1, X2, · · · , Xm, we first

extract a set of space-time interest points D =
{D1, D2, · · · , Dm} for each task with the Harris3D de-

tector and the HoG/HoF descriptor [5], and each task can

generate a set of 162-dimensional feature vector R =
{R1, R2, · · · , Rm}. Instead of building vocabulary of each

task separately, we wish to find a more compact and yet dis-

criminative common representation W com of interest points

D = {D1, D2, · · · , Dm} from multiple tasks. In this s-

tudy, we use mutual information to measure the similarity

between two variables, which can be defined as:

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
, (2)

so I(W com;Di), 1 ≤ i ≤ m, signifies how compact the

new representation W com is. However, that representation

may not be discriminative, because it does not give any in-

formation regarding the feature variable Ri from W com.

Therefore, this problem can be expressed as an information
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maximization function:

Lmax(p(w
com|d)) =

m
∑

i=1

I(W com;Ri)− λ−1 ·

m
∑

i=1

I(W com;Di),
(3)

where λ is the Lagrange Multiplier controlling the trade-off

between the information compression
∑m

i=1
I(W com;Ri)

and the information preservation
∑m

i=1
I(W com;Di).

In this study, we employ an agglomerative frame-

work [18, 8] to solve the function 3, in which two ele-

ments with the least merger cost will be merged together

at each step. The major extension in our method compared

with [18, 8] is that all the elements which has the least merg-

er cost in all tasks can be merged together into a new el-

ement, instead of merging the pair of elements which are

rooted in single task. Let ŵ1 and ŵ2 be the two elements of

W com, the information loss of the merging of ŵ1 and ŵ2 is

then defined as:

d(ŵ1, ŵ2) =
m
∑

i=1

[I(Ŵ com
bef ;Ri)− I(Ŵ com

aft ;Ri)], (4)

where I(Ŵ com
bef ;Ri) and I(Ŵ com

aft ;Ri) are the mutual infor-

mation before and after ŵ1 and ŵ2 are merged for all tasks.

The probability distributions p(ŵ), p(r|ŵ) and p(ŵ|w) are

calculated as:

p(ŵ) = p(ŵ1) + p(ŵ2), (5)

p(Ri|ŵ) =
p(ŵ1)

p(ŵ)
p(Ri|ŵ1)) +

p(ŵ2)

p(ŵ)
p(Ri|ŵ2). (6)

After the determination of which pair of elements should

be merged, we can give the algorithm of AIM as follows:

1) Initialize all sampling feature points as a singleton

cluster.

2) At each step, compute the merger cost d(ŵ1, ŵ2) be-

tween all pair of elements from multiple tasks.

3) Select the pair which gives the minimum information

loss argmin{d(ŵ1, ŵ2)}.

4) Update the probability distributions p(ŵ), p(r|ŵ) and

p(ŵ|w), until the number of clusters reaches predefined val-

ue.

Once the common vocabulary is determined, the shared

information of multiple tasks can be discovered by the co-

occurrence words in the the common vocabulary. Intu-

itively, one action collection can be interpreted by a set

of action clusters, and similar collection consists of simi-

lar clusters. So we can utilize mutual information of clus-

ters in different tasks to measure the distributional correla-

tion between two tasks. Let Cs
i = {xs

1
, xs

2
, · · · , xs

ni
} and

Ct
j = {xt

1
, xt

2
, · · · , xt

nj
} be the clusters in task T s and T t,

respectively, where ni and nj are the number of instances

in the clusters Cs
i and Ct

j . Then we can obtain the similar-

ity matrix Zi,j between the two clusters Cs
i and Ct

j , where

each entry is the co-occurrence of key word between the t-

wo clusters. So the mutual information I(Cs
i ;C

t
j) can be

calculated now. Then, the mutual information between any

two tasks T s and T t can be defined as follows:

I(T s;T t) =

ns
∑

i=1

nt
max
j=1

I(Cs
i ;C

t
j), (7)

where the ns and nt are the number of clusters in task T s

and T t. Now, given two clusters from different tasks, we

can calculate their mutual information according to Eq. 7.

Next, we will give the objective function of our multi-task

human action clustering method, which involves data com-

pressing in individual task and the measurement of shared

information cross tasks.

3.2. Objective Function of MTIB

Once the shared information of multiple tasks is discov-

ered, we can build the objective function of our multi-task

human action clustering method: MTIB. Suppose there are

m human action clustering tasks X1, X2, · · · , Xm, each

task Xk (1 ≤ i ≤ m) takes value from a video collec-

tion X k = {xk
1
, xk

2
, · · · , xk

nk
}, where nk is the number of

videos in the k-th task. Accordingly, there are m discrete

random variables {Y 1, Y 2, · · · , Y m} on behalf of the m

feature variables of the tasks, which are mapped from the

common vocabulary W com = {w1, w2, · · · , wd} of mul-

tiple tasks. Then, we can build corresponding joint distri-

butions p(X1, Y 1), · · · , p(Xm, Y m) for each task. So the

goal of our multi-task clustering method is to learn a good

compressed representation p(tk|xk) of Xk to T k from its

own feature variable Y k.

The objective function of MTIB is built in twofold set-

ting: 1) Data compression. In this part, the source human

action collection Xk is compressed into a compact repre-

sentation T k (we also call it “bottleneck variable”). 2) Rel-

evant information preservation. This part means each bot-

tleneck variable T k attempts to preserve the maximum in-

formation in terms of its own feature variable Y k and the

shared information with other tasks. The objective function

of MTIB can be formulated as follows:

Lmax[p(t
k|xk)] = −β−1 ·

m
∑

k=1

I(T k;Xk)+

[

m
∑

k=1

I(T k;Y k) +
m
∑

s=1

λs ·
m
∑

t=1,t �=s

I(T s;T t)],

(8)

where
∑m

k=1
I(T k;Xk) measures the compactness be-

tween Xk and its new representation T k,
∑m

k=1
I(T k;Y k)

measures how much relevant information each bottleneck

variable T k preserves about the relevant variable Y k,
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I(T s;T t) quantifies the correlation among tasks by cal-

culating the mutual information between pairwise clusters

from any two tasks. β is the balance parameter controlling

the trade-off between information compression and preser-

vation. λs ≥ 0 (1 ≤ s ≤ m) controls the influence of other

tasks.

In clustering scenario, the number of categories M is

much less than the size of each video collection |Xk|,
i.e. M ≪ |Xk|, which implies a significant compression.

Therefore, to maximally preserve the relevant information

and fully explore the correlation among tasks, we set the

value of β as ∞. Now, the objective function of MTIB can

be rewritten as:

Lmax[p(t
k|xk)] =

m
∑

k=1

I(T k;Y k) +

m
∑

s=1

λs ·

m
∑

t=1,t �=s

I(T s;T t).
(9)

In this paper, we consider the hard clustering, which

means the value of p(tk|xk) is either 0 or 1. Now, the re-

maining task is to optimize objective function Eq. 9.

3.3. Optimization of MTIB

In this section, a rotational draw-and-merge optimiza-

tion solution is proposed to obtain the partition of each

task. To begin with, the solution partitions each tasks

X1, X2, . . . , Xm into M clusters and obtains an initializa-

tion. Then, for the task T k, we perform the following two

procedures at each step, while remaining the other tasks sta-

tionary. 1) Draw each data point xk from the current cluster

tk(x
k) and treat it as a singleton cluster {xk}, thus the cur-

rent task has M + 1 clusters. 2) The singleton cluster {xk}
must be merged into a new clusters tnewk to ensure the to-

tal number of clusters is M . After these two steps, we do

the same procedure as the task T k for the next task. So

we guarantee that each data point of all tasks is gradually

merged into a better cluster.

In the rotational draw-and-merge procedure, we attempt

to merge each data point {xk} of every task into an optimal

cluster tnewk at each step. For clarity, the value of objec-

tive function 9 before and after drawing {xk} are denoted

as Lbefore and Lafter respectively. The value of objec-

tive function 9 after the merger of {xk} into some clus-

ter tnewk is indicated by Lnew. In the Merge step, how

to select an optimal cluster tnewk for {xk} is equivalen-

t to choose the minimum value change between Lafter and

Lnew, i.e. tnewk = argmin(Lafter − Lnew). Here, we

call the value change “merger cost”, denoted by dL, which

consists of two parts: the value change of within-task com-

pression and cross-task regularization denoted by ∆I1 and

∆I2 separately. Thus, we write the total merger cost as:

dL = ∆I1 +∆I2.

Let each singleton cluster {xk} be merged into some

cluster tk and become a new cluster, i.e. {{xk, tk}} ⇒ t̃k.

Then we obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p(t̃k) = p(xk) + p(tk),

p(y|t̃k) = π1 · p(y|x
k) + π2 · p(y|tk),

π1 =
p(xk)

p(t̃k)
, π2 =

p(tk)

p(t̃k)

(10)

where 1 ≤ k ≤ m. Then, we can calculate the merger cost

with respect to feature as follows.

∆I1 = Lafter − Lnew =
m
∑

k=1

I(T k
after;Y

k)−

m
∑

k=1

I(T k
new;Y

k) =

m
∑

k=1

[I(T k
after;Y

k)− I(T k
new;Y

k)] =
m
∑

k=1

∆Irel.

(11)

According to Eq. 10, we can get

∆Irel = p(xk)
∑

y

p(y|xk) log
p(y|xk)

p(y)
+

p(tk)
∑

y

p(y|tk) log
p(y|tk)

p(y)
−

∑

y

p(xk)p(y|xk) log
p(y|t̃k)

p(y)

−
∑

y

p(tk)p(y|tk) log
p(y|t̃k)

p(y)

= p(xk)
∑

y

p(y|xk) log
p(y|xk)

p(y|t̃k)
+ p(tk)

∑

y

p(y|tk) log
p(y|tk)

p(y|t̃k)

= p(x)DKL

[

p(y|xk)||p(y|t̃k)
]

+ p(tk)DKL

[

p(y|tk)||p(y|t̃k)
]

=
[

p(xk) + p(tk)
]

· JSΠ

[

p(y|xk), p(y|tk)
]

,

(12)

where the JSΠ is the Jensen-Shannon divergence [19]. Be-

cause JSΠ is non-negative, we get ∆Icom ≥ 0. Next, we

give the computation of the merger cost ∆Ireg .

∆I2 =
m
∑

s=1

λs ·

m
∑

t=1,t �=s

[I(T s
after;T

t
after)− I(T s

new;T
t
new)].

(13)

At each draw-and-merge step, we merge each data point

xk into some cluster tnewk with the purpose of minimizing

the information loss, i.e. tnewk = argmin dL. It should be

noted that there must be some information losses when xk

is merged into a new cluster, that is, ∆Ireg ≥ 0 and dL ≥ 0.

The details of MTIB are shown in Algorithm 1.

3.4. Complexity Analysis

Now, we focus on the complexity analysis of the pro-

posed MTIB method, which consists of time complexity

and space complexity. 1) Time complexity: at the step 9
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Algorithm 1 The Multi-Task Information Bottleneck

1: Input: m joint distributions {p(Xk, Y k)}mk=1
; Cluster-

ing number of each task M ; The trade-off parameter

λst(1 ≤ s, t ≤ m).
2: Output: Partitions {T k}mk=1

.

3: Initialize: Random partitions of {X k}mk=1
into M clus-

ters {T k}mk=1
.

4: repeat

5: k ← 1
6: while k ≤ m do

7: for all xk ∈ Xk do

8: Remove xk from current cluster tk(x
k);

9: Reassign xk into different clusters in current

task, and compute the merger cost dL({x
k, tk})

according to Eq. 9;

10: Merge xk into cluster tnewk to such that tnewk =
argmintk∈Tk dL({x

k}, tk);
11: end for

12: k ← k + 1
13: end while

14: until Convergence

of Algorithm 1, we compute the merger cost dL for each tk
in every task which takes O(lmM(|X1|+ · · ·+ |Xm|)|Y |),
where l is the number of iterations until MTIB converges

to a stable solution, m and M are the number of tasks and

clusters, respectively, which can be seen as constants. S-

ince we construct a common vocabulary of all the tasks, the

dimension of the relevant variables is same to each other,

i.e. |Y | = |Y 1| =, · · · ,= |Y m|. Note that the compu-

tation of mutual information between pairwise tasks takes

O(1). Therefore, the total time complexity of MTIB is

O(lmM(|X1| + · · · + |Xm|)|Y |). 2) Space complexity:

the MTIB has to store the joint distributions of all tasks, so

the space complexity is O(|X1||Y |+ · · ·+ |Xm||Y |).

4. Experiments

In this section, we will compare the proposed MTIB al-

gorithm with 10 clustering algorithms on two kinds of data

sets—realistic and cross-view. The competitive algorithms

can be categorized into three classes. They are 1) Single-

task clustering: K-Means (KM), Information Bottleneck

(IB) [20]. All-KM and All-IB imply that KM and IB group

all tasks into a single task respectively. 2) Multi-task clus-

tering: Learn a Shared Subspace for MTC (LSSMTC) [2],

Multi-task Bregman Clustering with Pairwise task regular-

ization (MBC-P) [29], Multi-Task Multi-View Clustering

(MTMVC) [31], convex Discriminative Multi-Task Rela-

tionship Clustering (DMTRC) [33]. 3) Human action clus-

tering: Latent Dirichlet Allocation (LDA) [12], Dual As-

signment K-Means (DAKM) [3]. The experiments of the

competitive algorithms are run exactly with the authors’ ex-

perimental settings. For the convex algorithm DMTRC, we

perform it once under each parameter to select the best re-

sult, while all the other algorithms are executed 10 times to

alleviate the influence caused by random initialization. We

report the average evaluation with the metrics of Cluster-

ing Accuracy (ACC) and Normalized Mutual Information

(NMI), as they are widely used in the literature [1].

4.1. Experimental Setup

To extract motion representation of the actions, we uti-

lize the STIP with the detector of Harris 3D and the de-

scriptor of HoG/HoF [5] for space-time interest point ex-

traction and description. Then the popular BoVW frame-

work is leveraged for feature representation. Different-

ly, we implement the proposed agglomerative information

maximization for common vocabulary generation. The di-

mensions of BoVW for all data sets are set as 1000. The

λs (1 ≤ s ≤ m) of MTIB is selected from the grid

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

4.2. Results on Realistic Data Sets

In the realistic scenario, we utilize 4 data sets, separat-

ed into 2 groups of multi-task clustering evaluation, to ver-

ify the effectiveness of MTIB. 1) UCF50 [15] & HMD-

B [4]. UCF50 is an action recognition data set with 50

action categories, consisting of 6,000 realistic videos from

the web. HMDB consists of 51 human actions with 6,766

videos, which has been collected from various sources,

mostly movies. 2) Olympic [11] & YouTube [7]. Olympic

contains 16 sports classes, with 50 sequences per class. Y-

ouTube contains 11 sports categories, with 1,168 sequences

in total. All the realistic data sets are quite challenging due

to large variations in camera motion, cluttered background,

illumination conditions, etc. In this study, action clustering

on each data set is treated as a learning task.

We show the performance of MTIB on realistic human

action data set compared with different clustering method-

s in Table 1. From this table, several observations can be

made. 1) The performances of ALL-KM and ALL-IB are

not always better than their single-task version (KM and

IB). This phenomenon illustrates that simply merging al-

l tasks together for clustering may be harmful to each task

and degrade the clustering quality. It is wise to characterize

the shared information between tasks for improved cluster-

ing. 2) Most multi-task clustering methods obtain better

performance than single-task algorithm. For instance, the

DMTRC algorithm gets improvement 14.24% and 8.4% on

ACC compared with KM. It demonstrates that exploiting

the shared information among tasks can boost the cluster-

ing performance of each task. 3) MTIB can not only beat

single-task clustering algorithms and their all-task versions,

but also perform much better than all the multi-task clus-
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Table 1. Clustering results on realistic data
HMDB & UCF50 Olympic & YouTube

HMDB UCF50 Olympic YouTube

ACC(%) NMI(%) ACC(%) NMI(%) ACC(%) NMI(%) ACC(%) NMI(%)

KM 19.25 33.36 35.26 56.49 31.82 33.36 36.15 36.29

IB 25.93 47.19 40.86 63.53 39.58 40.63 42.76 43.60

ALL-KM 18.09 30.29 28.68 47.76 30.21 30.40 26.12 22.06

ALL-IB 23.68 43.52 28.23 46.33 35.03 34.79 37.24 33.26

LSSMTC 17.00 34.85 19.80 40.25 32.27 30.47 33.94 31.13

MBC-P 20.08 39.02 25.99 48.14 35.21 34.93 34.52 34.27

MTMVC 23.05 42.07 34.14 56.90 38.49 37.05 36.76 36.97

DMTRC 26.30 48.14 40.28 62.59 46.06 32.45 44.55 32.37

LDA 24.50 44.67 34.00 55.96 38.03 38.08 39.85 40.03

DAKM 18.21 37.93 33.78 57.9 31.21 35.86 33.76 37.95

MTIB 29.91 51.29 41.45 63.73 50.21 48.27 49.60 47.79

tering algorithms. The bold values in the last row of Ta-

ble 1 show that MTIB algorithm obtains best ACC and N-

MI compared with other clustering methods. This is mainly

because that MTIB can discover the shared information be-

tween multiple tasks effectively.

To further verify the effectiveness of MTIB on human

action clustering, we adopt two unsupervised human ac-

tion categorization method as baselines, which are Latent

Dirichlet Allocation (LDA) and Dual Assignment K-Means

(DAKM). Niebles et al. [12] utilize LDA to learn the proba-

bility distributions of the spatial-temporal words and the in-

termediate topics corresponding to human action categories.

Jones et al. [3] estimate the mutual information between

two clusterings and use it to improve the results of each

clustering simultaneously, which conducts unsupervised d-

ual assignment clustering of human actions in context. Ta-

ble 1 shows the ACC and NMI of MTIB compared with

these two action clustering methods. As shown in this ta-

ble, the performances of MTIB are much better than LDA

and DAKM on all the tasks of realistic videos. So it verifies

the effectiveness of MTIB on realistic videos.

Camera 2 Camera 4 Camera 6 Camera 8

Figure 3. Exemplar frames from the WVU action data set. Each

row shows one action viewed across four angles.

4.3. Results on Cross-view Data Sets

In the cross-view scenario, 2 cross-view action data sets

are adopted for the evaluation of MTIB. 1) IXMAS [21], a

well-known multi-view human action data set, consists of

11 different actions with the total of 1,148 video samples

captured by 5 fixed cameras around the actors. Due to the

unavoidable partial occlusion, we selected 4 views excep-

t the top-down view. 2) WVU [14] data set consists of 11

Table 2. ACC (%) comparison on cross-view data
IXMAS WVU

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

KM 31.85 36.48 30.12 39.70 30.28 31.51 32.02 31.28

IB 55.73 58.85 56.09 60.64 55.29 47.45 53.69 50.94

ALL-KM 23.52 20.52 13.12 19.61 31.85 22.63 26.98 24.62

ALL-IB 49.12 47.88 41.06 50.03 45.42 46.36 38.61 46.58

LSSMTC 29.39 26.49 26.07 24.73 33.35 30.72 31.03 35.75

MBC-P 29.75 27.21 27.91 25.18 33.46 31.34 33.20 38.64

MTMVC 51.00 53.49 53.27 52.49 47.11 43.57 44.35 48.05

DMTRC 52.73 57.58 56.06 58.48 61.38 53.38 60.92 56.77

LDA 37.76 41.00 34.45 47.67 50.37 45.48 50.65 47.97

DAKM 30.00 38.18 39.09 40.09 33.66 32.32 31.82 30.86

MTIB 66.97 66.69 66.51 67.30 61.32 61.26 61.55 61.23
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Figure 4. NMI (%) comparison of different methods on IXMAS.

action patterns, each of which has 65 video sequences. This

data set is obtained from a network of 8 embedded cameras,

organized in a rectangular region, such that the cameras al-

together can provide an overlapping coverage from various

view directions. Figure 3 shows example frames in WVU

data. In our experiment, we select the view 2, 4, 6, 8 as

four tasks to evaluate our method. Action clustering on each

viewpoint is treated as a learning task.

Table 2 shows the results (ACC) obtained with different

clustering methods. From this table, it is evident that the

MTIB outperforms all three types of clustering algorithm-

s, i.e., single-task, multi-task and action clustering. For

instance, the convex method DMTRC obtains best ACC

compared with all the competitive algorithms on the IX-

MAS and WVU as shown in Table 2. Compared with

DMTRC, MTIB gets significant improvements (14.24%,

9.11%, 10.45% and 8.82%, respectively) on IXMAS da-

ta. For WVU data set, the MTIB also obtains improve-

ments (7.88%, 0.63% and 4.46%, respectively) compared

with DMTRC except for the task 1 (MTIB produces compa-

rable performance). The same observations can be obtained

from the NMI value in Figure 4 and Figure 5.

To further demonstrate the effectiveness of MTIB, we

give the confusion matrices of DMTRC and MTIB on the

four tasks of the IXMAS data set in Figure 6. From this

figure, it is obvious that the learned categories of MTIB on

all the four tasks are much purer than DMTRC algorithm.

So we can conclude that MTIB algorithm can effectively

discover meaningful action categories by exploiting shared

information between multiple tasks.
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Figure 5. NMI (%) comparison of different methods on WVU.

Figure 6. Confusion matrices of DMTRC and MTIB on the four

tasks of IXMAS data.

Table 3. ACC (%) comparison of MTIB with different vocabulary

generation methods, i.e., AIM and KM.
Realistic Data Cross-view Data

Realistic-1 Realistic-2 IXMAS WVU

T1 T2 T1 T2 T1 T2 T3 T4 T1 T2 T3 T4

KM 27.47 36.35 46.85 46.75 64.66 65.63 66.09 65.78 57.83 57.64 57.71 57.80

AIM 29.91 41.45 50.21 49.60 66.97 66.69 66.51 67.30 61.32 61.26 61.55 61.23

4.4. Exploration of Impact Factors

Common Vocabulary: In this study, we propose an ag-

glomerative information maximization (AIM) to construct

common vocabulary of multiple tasks. To test the impact of

AIM, MTIB is performed on the common vocabulary con-

structed by AIM and KM respectively. Table 3 provides the

ACC comparison results, in which the size of common vo-

cabulary is set as 1000. From this table, we can observe that

the MTIB based on AIM can get improvements on all the

12 tasks used in this study compared with these on KM. It

is mainly because the high-level common vocabulary con-

structed by AIM is more discriminative than KM. So we can

conclude that the common vocabulary constructed by AIM

is more suitable to represent actions from multiple tasks.

Parameters: Since there are two tasks in realistic and

four tasks in cross-view scenarios, we set all parameters e-

qual to each other, i.e., λ = λ1 = λ2 for realistic data and

λ = λ1 = λ2 = λ3 = λ4 for cross-view data. In this ex-

periment, the values of λ vary from 0 to 1, with 0.1 as the
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Figure 7. The performance of MTIB with parameter λ.
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Figure 8. The convergence of MTIB on all used data sets.

change gap between adjacent values. From the Figure 7, we

observe that the fluctuation of ACC value of MTIB on all

tasks are typically slight, which demonstrates that MTIB is

not sensitive to the trade-off parameters and the impact of

parameters can be negligible.

Convergence: We investigate the convergence of the ob-

jective function of MTIB algorithm. Figure 8 shows the val-

ue of objective function of MTIB on all the four multi-task

settings in this paper. We observe that the value of objective

function of MTIB increases monotonically with each iter-

ation, which shows that MTIB can converges to a optimal

solution in a finite number of iterations.

5. Conclusion

This paper presents a novel multi-task information bot-

tleneck (MTIB) method for discovering action patterns. Un-

like previous methods, we exploited the shared informa-

tion between multiple tasks in totally unsupervised set-

ting. Specifically, to bridge the gap between multiple tasks,

an agglomerative information maximization is proposed,

which is general and can be beneficial to many multivari-

ate problems. Then, the multi-task human action clustering

is generally formulated as an information loss minimization

function, in which the task relatedness can be quantified by

the mutual information of clusters between different tasks.

Extensive experiments on two kinds of challenging data set-

s, including realistic action data sets (HMDB & UCF50,

Olympic & YouTube), and cross-view data sets (IXMAS,

WVU), show that the proposed approach compares favor-

ably to the state-of-the-art methods.
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