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Abstract

In recent years, Deep Learning has been successfully

applied to multimodal learning problems, with the aim of

learning useful joint representations in data fusion applica-

tions. When the available modalities consist of time series

data such as video, audio and sensor signals, it becomes

imperative to consider their temporal structure during the

fusion process. In this paper, we propose the Correlational

Recurrent Neural Network (CorrRNN), a novel temporal

fusion model for fusing multiple input modalities that are

inherently temporal in nature. Key features of our proposed

model include: (i) simultaneous learning of the joint repre-

sentation and temporal dependencies between modalities,

(ii) use of multiple loss terms in the objective function, in-

cluding a maximum correlation loss term to enhance learn-

ing of cross-modal information, and (iii) the use of an at-

tention model to dynamically adjust the contribution of dif-

ferent input modalities to the joint representation. We vali-

date our model via experimentation on two different tasks:

video- and sensor-based activity classification, and audio-

visual speech recognition. We empirically analyze the con-

tributions of different components of the proposed CorrRNN

model, and demonstrate its robustness, effectiveness and

state-of-the-art performance on multiple datasets.

1. Introduction

Automated decision-making in a wide range of real-

world scenarios often involves acquisition and analysis of

data from multiple sources. For instance, human activity

may be more robustly monitored using a combination of

video cameras and wearable motion sensors than with either

∗Work carried out while at PARC, a Xerox Company

Figure 1. Different multimodal learning tasks. (a) Non-temporal

model for non-temporal data [21]. (b) Non-temporal model for

temporal data [13]. (c) Proposed CorrRNN model: temporal

model for temporal data.

sensing modality by itself. When analyzing spontaneous

socio-emotional behaviors, researchers can use multimodal

cues from video, audio and physiological sensors such as

electro-cardiograms (ECG) [17]. However, fusing informa-

tion from different modalities is usually nontrivial due to

the distinct statistical properties and highly non-linear rela-

tionships between low-level features [21] of the modalities.

Prior work has shown that multimodal learning often pro-

vides better performance on tasks such as retrieval, classifi-

cation and description [9, 13, 21, 12]. When the modalities

being fused are temporal in nature, it becomes desirable to

design a model for temporal multimodal learning (TML)

that can simultaneously fuse the information from different

sources, and capture temporal structure within the data.

In the past five years, several deep learning based ap-

proaches have been proposed for TML, in particular, for

audio-visual data. Early models proposed for audiovi-
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sual speech recognition (AVSR) were based on the use

of non-temporal models such as deep multimodal autoen-

coders [13] or deep Restricted Boltzmann Machines (RBM)

[21, 22] applied to concatenated data across a number of

consecutive frames. More recent models have attempted

to model the inherently sequential nature of temporal data,

e.g., Conditional RBMs [1], Recurrent Temporal Multi-

modal RBMs (RTMRBM) [7] for AVSR, and Multimodal

Long-Short-Term Memory networks for speaker identifica-

tion [16].

We believe that a good model for TML should simulta-

neously learn a joint representation of the multimodal input,

and the temporal structure within the data. Moreover, the

model should be able to dynamically weigh different input

modalities to enable emphasis on the more useful signal(s)

and to provide robustness to noise, a known weakness of

AVSR [8]. Third, the model should be able to generalize to

different kinds of multimodal temporal data, not just audio-

visual data. Finally, the model should be tractable and effi-

cient to train. In this paper, we introduce the Correlational

Recurrent Neural Network (CorrRNN), a novel unsuper-

vised model that satisfies the above desiderata.

An interesting characteristic of multimodal temporal

data from many application scenarios is that the differences

across modalities stem largely from the use of different

sensors such as video cameras, motion sensors and audio

recorders, to capture the same temporal phenomenon. In

other words, modalities in multimodal temporal data are of-

ten different representations of the same phenomena, which

is usually not the case with other multimodal data such as

images and text, which are related because of their shared

high-level semantics. Motivated by this observation, our

CorrRNN attempts to explicitly capture the correlation be-

tween modalities through maximizing a correlation-based

loss function, as well as minimizing a reconstruction-based

loss for retaining information.

This observation regarding correlated inputs has moti-

vated previous work in multi-view representation learning

using the Deep Canonically Correlated Autoencoder (DC-

CAE) [25] and Correlational Neural Network [4]. Our

model extends this work in two important ways. First,

an RNN-based encoder-decoder framework that uses Gated

Recurrent Units (GRU) [5] is introduced to capture the tem-

poral structure, as well as long-term dependencies and cor-

relation across modalities. Second, dynamic weighting is

used while encoding input sequences to assign different

weights to input modes based on their contribution to the

fused representation.

The main contributions of this paper are as follows:

• We propose a novel generic model for temporal mul-

timodal learning that combines an Encoder-Decoder

RNN framework with Multimodal GRUs, a multi-

aspect learning objective, and a dynamic weighting

mechanism;

• We show empirically that our model outperforms state-

of-the-art methods on two different application tasks:

video- and sensor-based activity classification and

audio-visual speech recognition; and

• Our proposed approach is more tractable and efficient

to train compared with RTMRBM and other proba-

bilistic models designed for TML.

The remainder of this paper is organized as follows. In

Sec. 2, we review the related work on multimodal learning.

We describe the proposed CorrRNN model in Sec. 3. Sec. 4

introduces the two application tasks and datasets used in our

experiments. In Secs. 4.1 and 4.2, we present empirical re-

sults demonstrating the robustness and effectiveness of the

proposed model. The final section presents conclusions and

future research directions.

2. Related work

In this section, we briefly review some related work on

deep-learning-based multimodal learning and temporal data

fusion. Generally speaking, and from the standpoint of dy-

namicity, fusion frameworks can be classified based on the

type of data they support (e.g., temporal vs. non-temporal

data) and the type of model used to fuse the data (e.g., tem-

poral vs. non-temporal model) as illustrated in Fig. 1.

2.1. Multimodal Deep Learning

Within the context of data fusion applications, deep

learning methods have been shown to be able to bridge the

gap between different modalities and produce useful joint

representations [13, 21]. Generally speaking, two main

approaches have been used for deep-learning-based mul-

timodal fusion. The first approach is based on common

representation learning, which learns a joint representation

from the input modalities. The second approach is based

on Canonical Correlation Analysis (CCA) [6], which learns

separate representations for the input modalities while max-

imizing their correlation.

An example of the first approach, the Multimodal Deep

Autoencoder (MDAE) model [13], is capable of learning a

joint representation that is predictive of either input modal-

ity. This is achieved by performing simultaneous self-

reconstruction (within a modality) and cross-reconstruction

(across modalities). Srivastava et al. [21] propose to learn a

joint density model over the space of multimodal inputs us-

ing Multimodal Deep Boltzmann Machines (MDBM). Once

trained, it is able to infer a missing modality through Gibbs

sampling and obtain a joint representation even in the ab-

sence of some modalities. This model has been used to

build a practical AVSR system [22]. Sohn et al. [19] pro-

pose a new learning objective to improve multimodal learn-
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ing, and explicitly train their model to reason about missing

modalities by minimizing the variation of information.

CCA-based methods, on the other hand, aim to learn sep-

arate features for the different modalities such that the cor-

relation between them is mutually maximized. They are

commonly used in multi-view learning tasks. In order to

improve the flexibility of CCA, Deep CCA (DCCA) [2]

was proposed to learn nonlinear projections using deep net-

works. Weirang et al. [25] extended this work by combin-

ing DCCA with the multimodal deep autoencoder learning

objective [13]. The Correlational Neural Network model [4]

is similar in that it integrates two types of learning objec-

tives into a single model to learn a common representation.

However, instead of optimizing the objective function under

the hard CCA constraints, it only maximizes the empirical

correlation of the learned projections.

2.2. Temporal Models for Multimodal Learning

In contrast to multimodal learning using non-temporal

models, there is little literature on fusing temporal data

using temporal models. Amer et al. [1] proposed a hy-

brid model for fusing audio-visual data in which a Condi-

tional Restricted Boltzmann Machines (CRBM) is used to

model short-term multimodal phenomena and a discrimina-

tive Conditional Random Field (CRF) is used to enhance

the model. In more recent work [7], the Recurrent Tem-

poral Multimodal RBM was proposed which learns joint

representations and temporal structures. The model yields

state-of-the-art performance on the ASVR datasets AVLet-

ters and AVLetters2. A supervised multimodal LSTM was

proposed in [16] for speaker identification using face and

audio sequences. The method was shown to be robust to

both distractors and image degradation by modeling long-

term dependencies over multimodal high-level features.

3. Proposed Model

In this section, we describe the proposed CorrRNN

model. We start by formulating the temporal multimodal

learning problem mathematically. For simplicity, and with-

out loss of generality, we consider the problem of fusing two

modalities X and Y ; it should be noted, however, that the

model seamlessly extends to more than two modalities. We

then present an overview of the model architecture, which

consists of two components: the multimodal encoder and

the multimodal decoder. We describe the multimodal en-

coder, which extracts the joint data representation, in Sec.

3.3, and the multimodal decoder, which attempts to recon-

struct the individual modalities from the joint representation

in Sec. 3.4.

3.1. Temporal Multimodal Learning

Let us denote the two temporal modalities as sequences

of length T , namely X = (xm
1
, xm

2
, ..., xm

T
) and Y =

Corr Corr Corr

xt-l yt-l xtxt-1 yt-1 yt

xt-l yt-lxt-1 yt-1xt yt

Multimodal Encoder

Multimodal Decoder

copy

Figure 2. Basic architecture of the proposed model

(yn
1
, yn

2
, ..., yn

T
), where xm

t
denotes the m dimensional fea-

ture of modality X at time t. For simplicity, we omit the

superscripts m and n in most of the following discussion.

In order to achieve temporal multimodal learning, we

fuse the two modalities at time t by considering both their

current state and history. Specifically, at time t we ap-

pend the recent per-modality history to the current sam-

ples xt and yt to obtain extended representations x̃t =
{xt−l, ..., xt−1, xt} and ỹt = {yt−l, ..., yt−1, yt}, where l

denotes the scope of the history taken into account. Given

pairs of multimodal data sequences {(x̃i, ỹi)}
N

i=1
, our goal

is to train a feature learning model M that learns a d-

dimensional joint representation
{

h̃i

}N

i=1

which simultane-

ously fuses information from both modalities and captures

underlying temporal structures.

3.2. Model Overview

We first describe the basic model architecture, as shown

in Fig. 2. We implement an Encoder-Decoder frame-

work, which enables sequence-to-sequence learning [23]

and learning of sequence representations in an unsupervised

fashion [20]. Specifically, our model consists of two re-

current neural nets: the multimodal encoder and the multi-

modal decoder. The multimodal encoder is trained to map

the two input sequences into a joint representation, i.e., a

common space. The multimodal decoder attempts to re-

construct two input sequences from the joint representation

obtained by the encoder. During the training process, the

model learns a joint representation that retains as much in-

formation as possible from both modalities.

In our model, both the encoder and decoder are two-layer

networks. The multimodal inputs are first mapped to sepa-

rate hidden layers before being fed to a common layer called

the fusion layer. Similarly, the joint representation is first

decoded to separate hidden layers before reconstruction of

the multimodal inputs takes place.

The standard Encoder-Decoder framework relies on the
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Figure 3. The structure of the multimodal encoder. It includes three modules: Dynamic Weighting module (DW), GRU module (GRU) and

Correlation module (Corr).

(reconstruction) loss function only in the decoder. As men-

tioned in Section 1, in order to obtain a better joint represen-

tation for temporal multimodal learning, we introduce two

important components into the multimodal encoder, one

that explicitly captures the correlation between the modal-

ities, and another that performs dynamic weighting across

modality representations. We also consider different types

of reconstruction losses to enhance the capture of informa-

tion within and between modalities.

Once the model is trained using a pair of multimodal in-

puts, the multimodal encoder plays the role of a feature ex-

tractor. Specifically, the activations of the fusion layer in

the encoder at the last time step is output as the sequence

feature representation. Two types of feature representation

may be obtained depending on the model inputs: if both

input modalities are present, we obtain their joint represen-

tation; on the other hand, if only one of the modalities is

present, we obtain an “enhanced” unimodal representation.

The model may be extended to more than two modalities

by maximizing the sum of correlations between all pairs of

modalities. This can be implemented by adding more cor-

relation modules to the multimodal encoder.

3.3. Multimodal Encoder

The multimodal encoder is designed to fuse the input

modality sequences into a common representation such that

a coherent input is given greater importance, and the corre-

lation between the inputs is maximized. Accordingly, three

main modules are used by the multimodal encoder at each

time step.

• Dynamic Weighting module (DW): Dynamically as-

signs weights to the two modalities by evaluating the

coherence of the incoming signal with recent past his-

tory.

• GRU module (GRU): Fuses the input modalities to

generate the fused representation. The module also

captures the temporal structure of the sequence using

forget and update gates.

• Correlation module (Corr): Takes the intermediate

states generated by the GRU module as inputs to com-

pute the correlation-based loss.

The structure of the multimodal encoder and the relation-

ships among the three modules are illustrated in Fig. 3. We

now describe the implementation of these modules in detail.

The Dynamic Weighting module assigns a weight to

each modality input at a given time step according to an

evaluation of its coherence over time. With reference to re-

cent work on attention models [3], our approach may be

characterized as a soft attention mechanism that enables the

model to focus on the modality with the more useful sig-

nal when, for example, the other is corrupted with noise.

The dynamic weights assigned to the input modalities are

based on the agreement between their current input and the

fused data representation from the previous time step. This

is based on the intuition that an input corrupted by noise

would be less in agreement with the fused representation

from the previous time step when compared with a “clean”

input. We use bilinear functions to evaluate the coherence

scores α1

t
and α2

t
of the two modalities, namely:

α1

t
= xtA1h

T

t−1
, α2

t
= ytA2h

T

t−1
,

where A1 ∈ R
m×d, A2 ∈ R

n×d are parameters learned

during the training of the module. The weights of the

two modalities is obtained by normalizing the scores using

Laplace smoothing:

wi

t
=

1 + exp(αi
t
)

2 +
∑

k
exp(αk

t
)
, i = 1, 2
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Figure 4. Block diagram illustrations of unimodal and multimodal

GRU modules.

The GRU module (see Fig. 4(b)) is a multimodal ex-

tension of the standard GRU (see Fig. 4(a)), and contains

different gating units that modulate the flow of information

inside the module. The GRU module takes xt and yt as in-

put at time step t and keeps track of three quantities, namely

the fused representation ht, and modality-specific represen-

tations h1

t
, h2

t
. The fused representation ht constitutes a sin-

gle representation of historical multimodal input that prop-

agates along the time axis to maintain a consistent concept

and learn its temporal structure. The modality-specific rep-

resentations h1

t
, h2

t
may be thought of as projections of the

modality inputs which are maintained so that a measure of

their correlation can be computed. The computation within

this module may be formally expressed as follows:

ri
t
= σ

(

Wi

r
Xi

t
+ Urht−1 + bi

r

)

, i = 1, 2 (1)

zi
t
= σ

(

Wi

z
Xi

t
+ Uzht−1 + bi

z

)

, i = 1, 2 (2)

h̃i

t
= ϕ

(

Wi

h
Xi

t
+ Uh(r

i

t
⊙ ht−1) + bi

h

)

, i = 1, 2 (3)

rt = σ

(

2
∑

i=1

wi

t

(

Wi

r
Xi

t
+ bi

r

)

+ Urht−1)

)

(4)

zt = σ

(

2
∑

i=1

wi

t

(

Wi

z
Xi

t
+ bi

z

)

+ Uzht−1)

)

(5)

h̃t = ϕ

(

2
∑

i=1

wi

t

(

Wi

h
Xi

t
+ bi

h

)

+ Uh(rt ⊙ ht−1)

)

(6)

hi

t
= (1− zi

t
)⊙ ht−1 + zi

t
⊙ h̃i

t
, i = 1, 2 (7)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (8)

where σ is the logistic sigmoid function and ϕ is the hy-

perbolic tangent function, r and z are the input to the reset

and update gates, and h and h̃ represent the activation and

candidate activation, respectively, of the standard GRU [5].

Note that our model uses separate weights for the dif-

ferent inputs X and Y , which differs from the approach

proposed in [16]. However, as we enforce an explicit

correlation-based loss term in the fusing process, our model

in principle can capture both the correlation across modali-

ties, and specific aspects of each modality.

The Correlation module computes the correlation be-

tween the projections of the modality inputs h1

t
and h2

t
ob-

tained from the GRU module. Formally, given N mappings

of two modalities H1

t
= {h1

ti
}N
i=1

and H2

t
= {h2

ti
}N
i=1

at

time t, the correlation is calculated as follows:

corr(H1

t
, H2

t
) =

∑

N

i=1
(h1

ti
−H1

t
)(h2

ti
−H2

t
)

√

∑

N

i=1
(h1

ti
−H1

t )
2
∑

N

i=1
(h2

ti
−H2

t )
2

where H1

t
= 1

N

∑

N

i
h1

ti
and H2

t
= 1

N

∑

N

i
h2

ti
. We

denote the correlation-based loss function as Lcorr =
corr(H1

t
, H2

t
) and maximize the correlation between two

modalities by maximizing this function. In practice, the em-

pirical correlation is computed within a mini-batch of size

N .

3.4. Multimodal Decoder

The multimodal decoder attempts to reconstruct the indi-

vidual modality input sequences X and Y simultaneously,

from the joint representation ht computed by the multi-

modal encoder described above. By minimizing the recon-

struction loss at training, the resulting joint representation

retains as much information as possible from both modali-

ties. In order to better share information across the modal-

ities, we introduce two additional reconstruction loss terms

into the multimodal decoder: cross-reconstruction and self-

reconstruction. These two terms not only benefit the joint

representation, but also improve the performance of the

model in cases when only one of the modalities is present,

as shown in Section 4.1. In all, our multimodal decoder

includes three reconstruction losses:

• Fused-reconstruction loss. The error in reconstruct-

ing x̃i and ỹi from joint representation h̃i = f(x̃i, ỹi).

Lfused = L(g(f(x̃i, ỹi)), x̃i) + βL(g(f(x̃i, ỹi), ỹi)

• Self-reconstruction loss. The error in reconstructing

x̃i from x̃i, and ỹi from ỹi.

Lself = L(g(f(x̃i)), x̃i) + βL(g(f(ỹi), ỹi)
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• Cross-reconstruction loss. The error in reconstruct-

ing x̃i from ỹi, and ỹi from x̃i.

Lcross = L(g(f(ỹi), x̃i) + βL(g(f(x̃i)), ỹi)

where β is a hyperparameter used to balance the relative

scale of the loss function values of the two input modali-

ties, and f, g denote the functional mappings implemented

by the multimodal encoder and decoder, respectively. The

objective function used to train our model may thus be ex-

pressed as:

L =

N
∑

i=1

(Lfused + Lcross + Lself)− λLcorr

where λ is a hyperparameter used to scale the contribution

of the correlation loss term, and N is the mini-batch size

used in the training stage. The objective function thus com-

bines different forms of reconstruction losses computed by

the decoder, with the correlation loss computed as part of

the encoding process. We use a stochastic gradient descent

algorithm with an adaptive learning rate to optimize the ob-

jective function above.

4. Empirical Analysis

In the following sections, we describe experiments to

demonstrate the effectiveness of CorrRNN at modeling tem-

poral multimodal data. We demonstrate its general appli-

cability to multimodal learning problems by evaluating it

on multiple datasets, covering two different types of mul-

timodal data (video-sensor and audio-video) and two dif-

ferent application tasks (activity classification and audio-

visual speech recognition). We also evaluate our model in

three multimodal learning settings [13] for each task. We

review these settings in Table 1.

Feature

Learning

Supervised

Training
Testing

Multimodal

Fusion
X + Y X + Y X + Y

Cross Modality X + Y X X

Learning X + Y Y Y

Shared Represe- X + Y X Y

ntation Learning X + Y Y X

Table 1. Multimodal Learning settings, where X and Y are differ-

ent input modalities

For each application task and dataset, the CorrRNN

model is first trained in an unsupervised manner using both

the input modalities and the composite loss function de-

scribed. The trained model is then used to extract the fused

representation and the modality-specific representations of

the data. Each of the multimodal learning settings is then

implemented as a supervised classification task using a clas-

sifier, either an SVM or a logistic-regression classifier (in

order to maintain consistency, the choice of classifier de-

pends on the method involved in the benchmarking imple-

mented).

4.1. Experiments on Video­Sensor Data

In this section, we apply the CorrRNN model to the task

of human activity classification. For this purpose, we use

the ISI dataset [10], a multimodal dataset in which 11

subjects perform seven actions related to an insulin self-

injection activity. The dataset includes egocentric video

data acquired using a Google Glass wearable camera, and

motion data acquired using an Invensense motion wrist sen-

sor. Each subject’s video and motion data is manually la-

beled and segmented into seven videos corresponding to the

seven actions in the self-injection procedure. Each of these

videos are further segmented into short video clips of fixed

length.

4.1.1 Implementation Details

We first temporally synchronize the video and motion sen-

sor data with the same sampling rate of 30 fps. We compute

a 1024-dimensional CNN feature representation for each

video frame using GoogLeNet [24]. Raw motion sensor sig-

nals are smoothed by applying an averaging filter of width

4. Sensor features are obtained by computing the output

of the last convolutional layer (layer 5) of a Deep Convo-

lutional and LSTM (DCL) Network [14] pre-trained on the

OPPORTUNITY dataset [18] to the smoothed sensor data

input. The extracted features are a temporal sequence of

448-dimensional elements.

We build sequences from the video and sensor data, us-

ing a sliding window of 8 frames with a stride of 2, sam-

pled from a duration of 2 seconds, resulting in 13, 456 se-

quences. These video and motion sequences are used to

train the CorrRNN model, using stochastic gradient descent

with the mini-batch size set to 256. The values of β and λ

were set to 1 and 0.1, respectively; these values were opti-

mized using grid search methods.

4.1.2 Results

Figure 5 shows the activity recognition accuracy of the pro-

posed CorrRNN model. We evaluate the contribution of

each component in our model under the various multimodal

learning settings listed in Table 1. In order to understand the

contribution of different aspects of the CorrRNN design, we

also evaluate different model configurations summarized in

Table 2. The baseline results are obtained by first training a

single layer GRU recurrent neural network with 512 hidden

units, separately for each modality. The 512-dimensional
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Config Description

Baseline Single-layer GRU RNN per modality

Fused Objective uses only Lfused term

Self Objective uses Lfused & Lself

Cross Objective uses Lfused & Lcross

All Objective uses Lfused,Lself & Lcross

Corr Objective uses all loss terms

Corr-DW Objective uses all loss terms & dyn. weights

Table 2. CorrRNN model configurations evaluated

Figure 5. Classification accuracy on the ISI dataset for different

model configurations

hidden layer representations obtained from each network

are then reduced to 256 dimensions using PCA, and con-

catenated to obtain a 512-dimensional fused representation.

We observe that the fused representation obtained using

CorrRNN significantly improves over this baseline fused

representation.

Each loss component contributes to better performance,

especially in the settings of cross-modality learning and

shared representation learning. Performance in the presence

of poor fidelity or noisy modality (for instance, the motion

sensor modality) is boosted by the inclusion of the other

modality, due to the cross reconstruction loss component.

Inclusion of the correlation loss and dynamic weighting fur-

ther improves the accuracy.

In Table 3, we compare the correlation between the pro-

jections of the modality inputs for different model config-

urations. This measure of correlation is computed as the

mean encoder loss over the training data in the final train-

ing epoch, divided by the number of hidden units in the fu-

sion layer. These values demonstrate that the use of the

correlation-based loss term maximizes the correlation be-

tween the two projections, leading to a richer joint and

shared representations.

4.2. Experiments on Audio­Video Data

The task of audio-visual speech classification using mul-

timodal deep learning has been well studied in the litera-

ture [7, 13]. In this section, we focus on comparing the

Configuration Correlation

Fused 0.46

Self 0.67

Cross 0.76

Corr 0.95

Corr-DW 0.93

Table 3. Normalized correlation for different model configurations

performance of the proposed model with other published

methods on the AVLetters and CUAVE datasets:

• AVLetters [11] includes audio and video of 10 speak-

ers uttering the English alphabet three times each. We

use the videos corresponding to the first two times for

training (520 videos) and the third time for testing (260
videos). This dataset provides pre-extracted lip re-

gions scaled to 60 × 80 pixels for each video frame

and 26-dimensional Mel-Frequency Cepstrum Coeffi-

cient (MFCC) features for the audio.

• CUAVE [15] consists of videos of 36 speakers pro-

nouncing the digits 0-9. Following the protocol in [13],

we use the first part of each video, containing the

frontal facing speakers pronouncing each digit 5 times.

The even-numbered speakers are used for training,

and the odd-numbered speakers are used for testing.

The training dataset contains 890 videos and the test

data contains 899 videos. We pre-processed the video

frames to extract only the region of interest containing

the mouth, and rescaled each image to 60× 60 pixels.

The audio is represented using 26-dimensional MFCC

features.

4.2.1 Implementation Details

We reduced the dimensionality of the video features of both

the datasets to 100 using PCA whitening, and concatenated

the features representing every 3 consecutive audio sam-

ples, in order to align the audio and the video data. In order

to train the CorrRNN model, we generated sequences with

length 8 using a stride of 2. Training was performed using

stochastic gradient descent with the size of the mini-batch

set to 32. The number of hidden units in the hidden layers

was set to 512. After training the model in an unsupervised

manner, the joint representation generated by CorrRNN is

treated as the fused feature. Similar to [7], we first break

down the fused features of each speaking example into one

and three equal slices and perform mean-pooling over each

slice. The mean-pooled features for each slice are then con-

catenated and used to train a linear SVM classifier in a su-

pervised manner.
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4.2.2 Results

Table 4 showcases the classification performance of the pro-

posed CorrRNN model using the Corr-DW configuration on

the AVLetters and the CUAVE datasets. The fused repre-

sentation of the audio-video data generated using the Cor-

rRNN model is used to train and test an SVM classifier.

We observe that the CorrRNN representation leads to more

accurate classification than the representation generated by

non-temporal models such as Multimodal deep autoencoder

(MDAE), multimodal deep belief networks (MDBN), and

the multimodal deep Boltzmann machines (MDBM). This

is because the CorrRNN model is able to learn the tempo-

ral dependencies between the two modalities. CorrRNN

also outperforms conditional RBM (CRBM), and RTM-

RBM models due to the incorporation of the correlational

loss and the dynamic weighting mechanism.

The CorrRNN model also produces rich representations

for each modality, as demonstrated in the cross-modality

and shared representation learning experimental results in

Table 5. Indeed, there is a significant improvement in ac-

curacy from using CorrRNN features relative to the scenar-

ios where only the raw features for both audio and video

modalities are used, and this improvement holds for both

the datasets. For instance, the accuracy improves by more

than two times on the CUAVE dataset by learning the video

features with both audio and video, compared to learning

only with the video features. In the shared representa-

tion learning experiments, we learn the feature represen-

tation using both the audio and video modalities, but the

supervised training and testing are performed using differ-

ent modalities. The results show that the CorrRNN model

captures the correlation between the modalities very well.

In order to evaluate the robustness of the CorrRNN

model to noise, we added white Gaussian noise at 0dB SNR

to the original audio signal in the CUAVE dataset. Un-

like prior models whose performance degrades significantly

(12 − 20%) due to presence of noise , there is only a mi-

nor decrease of about 5% in the accuracy of the CorrRNN

model, as shown in Table 6. This may be ascribed to the

richness of the cross-modal information embedded in the

fused representation learned by CorrRNN.

5. Conclusions

In this paper, we have proposed CorrRNN, a new model

for multimodal fusion of temporal inputs such as audio,

video and sensor data. The model, based on an Encoder-

Decoder framework, learns joint representations of the mul-

timodal input by exploiting correlations across modalities.

The model is trained in an unsupervised manner (i.e., by

minimizing an input-output reconstruction loss term and

maximizing a cross-modality-based correlation term) which

obviates the need for labeled data, and incorporates GRUs

Method Accuracy

AVLetters CUAVE

MDAE [13] 62.04 66.70
MDBN [21] 63.2 67.20
MDBM [21] 64.7 69.00

RTMRBM [7] 66.04 -

CRBM [1] 67.10 69.10
CorrRNN 83.40 95.9

Table 4. Classification performance for audio-visual speech recog-

nition on the AVLetters and CUAVE datasets, compared to the best

published results in literature, using the fused representation of the

two modalities.

Train Method Accuracy

/Test AVLetters CUAVE

Cross- Video Raw 38.08 42.05

modality /Video CorrRNN 81.85 96.22

learning Audio Raw 57.31 88.32

/Audio CorrRNN 85.33 96.11

Shared Video MDAE - 24.30

represe- /Audio CorrRNN 85.33 96.77

ntation Audio MDAE - 30.70

learning /Video CorrRNN 81.85 96.33

Table 5. Classification accuracy for the cross-modality and shared

representation learning settings. MDAE results from [13].

Method Accuracy

Clean Audio Noisy Audio

MDAE 94.4 77.3

Audio RBM 95.8 75.8

MDAE + Audio RBM 94.4 82.2

CorrRNN 96.11 90.88

Table 6. Classification accuracy for audio-visual speech recogni-

tion on the CUAVE dataset, under clean and noisy audio condi-

tions. White Gaussian noise is added to the audio signal at 0dB

SNR. Baseline results from [13].

to capture long-term dependencies and temporal structure in

the input. We also introduced a dynamic weighting mech-

anism that allows the encoder to dynamically modify the

contribution of each modality to the feature representation

being computed. We have demonstrated that the CorrRNN

model achieves state-of-the-art accuracy in a variety of tem-

poral fusion applications. In the future, we plan to apply the

model to a wider variety of multimodal learning scenarios.

We also plan to extend the model to seamlessly ingest asyn-

chronous inputs.

5454



References

[1] M. R. Amer, B. Siddiquie, S. Khan, A. Divakaran, and

H. Sawhney. Multimodal fusion using dynamic hybrid mod-

els. In IEEE Winter Conference on Applications of Computer

Vision, pages 556–563. IEEE, 2014.

[2] G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep

canonical correlation analysis. In Proceedings of the 30th In-

ternational Conference on Machine Learning, pages 1247–

1255, 2013.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-

lation by jointly learning to align and translate. in ICLR

2015, abs/1409.0473, 2014.

[4] S. Chandar, M. M. Khapra, H. Larochelle, and B. Ravindran.

Correlational neural networks. Neural computation, 2015.

[5] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
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