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Abstract

Deep convolutional neural networks (CNNs) are indis-

pensable to state-of-the-art computer vision algorithms.

However, they are still rarely deployed on battery-powered

mobile devices, such as smartphones and wearable gad-

gets, where vision algorithms can enable many revolution-

ary real-world applications. The key limiting factor is the

high energy consumption of CNN processing due to its high

computational complexity. While there are many previous

efforts that try to reduce the CNN model size or the amount

of computation, we find that they do not necessarily result

in lower energy consumption. Therefore, these targets do

not serve as a good metric for energy cost estimation.

To close the gap between CNN design and energy con-

sumption optimization, we propose an energy-aware prun-

ing algorithm for CNNs that directly uses the energy con-

sumption of a CNN to guide the pruning process. The en-

ergy estimation methodology uses parameters extrapolated

from actual hardware measurements. The proposed layer-

by-layer pruning algorithm also prunes more aggressively

than previously proposed pruning methods by minimizing

the error in the output feature maps instead of the filter

weights. For each layer, the weights are first pruned and

then locally fine-tuned with a closed-form least-square so-

lution to quickly restore the accuracy. After all layers are

pruned, the entire network is globally fine-tuned using back-

propagation. With the proposed pruning method, the en-

ergy consumption of AlexNet and GoogLeNet is reduced by

3.7× and 1.6×, respectively, with less than 1% top-5 accu-

racy loss. We also show that reducing the number of target

classes in AlexNet greatly decreases the number of weights,

but has a limited impact on energy consumption.

1. Introduction

In recent years, deep convolutional neural networks

(CNNs) have become the state-of-the-art solution for many

computer vision applications and are ripe for real-world de-

ployment [1]. However, CNN processing incurs high en-

ergy consumption due to its high computational complex-

ity [2]. As a result, battery-powered devices still cannot af-

ford to run state-of-the-art CNNs due to their limited energy

budget. For example, smartphones nowadays cannot even

run object classification with AlexNet [3] in real-time for

more than an hour. Hence, energy consumption has become

the primary issue of bridging CNNs into practical computer

vision applications.

In addition to accuracy, the design of modern CNNs

is starting to incorporate new metrics to make it more

favorable in real-world environments. For example, the

trend is to simultaneously reduce the overall CNN model

size and/or simplify the computation while going deeper.

This is achieved either by pruning the weights of exist-

ing CNNs, i.e., making the filters sparse by setting some

of the weights to zero [4–14], or by designing new CNNs

with (1) highly bitwidth-reduced weights and operations

(e.g., XNOR-Net and BWN [15]) or (2) compact lay-

ers with fewer weights (e.g., Network-in-Network [16],

GoogLeNet [17], SqueezeNet [18], and ResNet [19]).

However, neither the number of weights nor the num-

ber of operations in a CNN directly reflect its actual energy

consumption. A CNN with a smaller model size or fewer

operations can still have higher overall energy consump-

tion. This is because the sources of energy consumption

in a CNN consist of not only computation but also memory

accesses. In fact, fetching data from the DRAM for an op-

eration consumes orders of magnitude higher energy than

the computation itself [20], and the energy consumption

of a CNN is dominated by memory accesses for both fil-

ter weights and feature maps. The total number of memory

accesses is a function of the CNN shape configuration [21]

(i.e., filter size, feature map resolution, number of channels,

and number of filters); different shape configurations can

lead to different amounts of memory accesses, and thus en-

ergy consumption, even under the same number of weights

or operations. Therefore, there is still no evidence show-

ing that the aforementioned approaches can directly opti-

mize the energy consumption of a CNN. In addition, there

is currently no way for researchers to estimate the energy

consumption of a CNN at design time.
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The key to closing the gap between CNN design and en-

ergy efficiency optimization is to directly use energy, in-

stead of the number of weights or operations, as a metric

to guide the design. In order to obtain realistic estimate of

energy consumption at design time of the CNN, we use the

framework proposed in [21] that models the two sources

of energy consumption in a CNN (computation and mem-

ory accesses), and use energy numbers extrapolated from

actual hardware measurements [22]. We then extend it to

further model the impact of data sparsity and bitwidth re-

duction. The setup targets battery-powered platforms, such

as smartphones and wearable devices, where hardware re-

sources (i.e., computation and memory) are limited and en-

ergy efficiency is of utmost importance.

We further propose a new CNN pruning algorithm with

the goal to minimize overall energy consumption with

marginal accuracy degradation. Unlike the previous prun-

ing methods, it directly minimizes the changes to the out-

put feature maps as opposed to the changes to the filters

and achieves a higher compression ratio (i.e., the number of

removed weights divided by the number of total weights).

With the ability to directly estimate the energy consumption

of a CNN, the proposed pruning method identifies the parts

of a CNN where pruning can maximally reduce the energy

cost, and prunes the weights more aggressively than previ-

ously proposed methods to maximize the energy reduction.

In summary, the key contributions of this work include:

• Energy Estimation Methodology: Since the number

of weights or operations does not necessarily serve as a

good metric to guide the CNN design toward higher en-

ergy efficiency, we directly use the energy consumption

of a CNN to guide its design. This methodology is based

on the framework proposed in [21] for realistic battery-

powered systems, e.g., smartphones, wearable devices,

etc. We then further extend it to model the impact of data

sparsity and bitwidth reduction. The corresponding en-

ergy estimation tool is available at [23].

• Energy-Aware Pruning: We propose a new layer-by-

layer pruning method that can aggressively reduce the

number of non-zero weights by minimizing changes in

feature maps as opposed to changes in filters. To max-

imize the energy reduction, the algorithm starts pruning

the layers that consume the most energy instead of with

the largest number of weights, since pruning becomes

more difficult as more layers are pruned. Each layer is

first pruned and the preserved weights are locally fine-

tuned with a closed-form least-square solution to quickly

restore the accuracy and increase the compression ratio.

After all the layers are pruned, the entire network is fur-

ther globally fine-tuned by back-propagation. As a result,

for AlexNet, we can reduce energy consumption by 3.7×
after pruning, which is 1.7× lower than pruning with the

popular network pruning method proposed in [8]. Even

for a compact CNN, such as GoogLeNet, the proposed

pruning method can still reduce energy consumption by

1.6×. The pruned models will be released at [23]. As

many embedded applications only require a limited set

of classes, we also show the impact of pruning AlexNet

for a reduced number of target classes.

• Energy Consumption Analysis of CNNs: We evalu-

ate the energy versus accuracy trade-off of widely-used

or pruned CNN models. Our key insights are that (1)

maximally reducing weights or the number of MACs in

a CNN does not necessarily result in optimized energy

consumption, and feature maps need to be factored in, (2)

convolutional (CONV) layers, instead of fully-connected

(FC) layers, dominate the overall energy consumption

in a CNN, (3) deeper CNNs with fewer weights, e.g.,

GoogLeNet and SqueezeNet, do not necessarily consume

less energy than shallower CNNs with more weights,

e.g., AlexNet, and (4) sparsifying the filters can pro-

vide equal or more energy reduction than reducing the

bitwidth (even to binary) of weights.

2. Energy Estimation Methodology

2.1. Background and Motivation

Multiply-and-accumulate (MAC) operations in CONV

and FC layers account for over 99% of total operations in

state-of-the-art CNNs [3, 17, 19, 24], and therefore domi-

nate both processing runtime and energy consumption. The

energy consumption of MACs comes from computation

and memory accesses for the required data, including both

weights and feature maps. While the amount of compu-

tation increases linearly with the number of MACs, the

amount of required data does not necessarily scale accord-

ingly due to data reuse, i.e., the same data value is used for

multiple MACs. This implies that some data have a higher

impact on energy than others, since they are accessed more

often. In other words, removing the data that are reused

more has the potential to yield higher energy reduction.

Data reuse in a CNN arises in many ways, and is de-

termined by the shape configurations of different layers.

In CONV layers, due to its weight sharing property, each

weight and input activation are reused many times accord-

ing to the resolution of output feature maps and the size of

filters, respectively. In both CONV and FC layers, each in-

put activation is also reused across all filters for different

output channels within the same layer. When input batch-

ing is applied, each weight is further reused across all input

feature maps in both types of layers. Overall, CONV lay-

ers usually present much more data reuse than FC layers.

Therefore, as a general rule of thumb, each weight and acti-

vation in CONV layers have a higher impact on energy than

in FC layers.

While data reuse serves as a good metric for comparing
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Figure 1. The energy estimation methodology is based on the framework proposed in [21], which optimizes the memory accesses at each

level of the memory hierarchy to achieve the lowest energy consumption. We then further account for the impact of data sparsity and

bitwidth reduction, and use energy numbers extrapolated from actual hardware measurements of [22] to calculate the energy for both

computation and data movement.

relative energy impact of data, it does not directly translate

to the actual energy consumption. This is because modern

hardware processors implement multiple levels of memory

hierarchy, e.g., DRAM and multi-level buffers, to amortize

the energy cost of memory accesses. The goal is to access

data more from the less energy-consuming memory levels,

which usually have less storage capacity, and thus mini-

mize data accesses to the more energy-consuming memory

levels. Therefore, the total energy cost to access a single

piece of data with many reuses can vary a lot depending on

how the accesses spread across different memory levels, and

minimizing overall energy consumption using the memory

hierarchy is the key to energy-efficient processing of CNNs.

2.2. Methodology

With the idea of exploiting data reuse in a multi-level

memory hierarchy, Chen et al. [21] have presented a frame-

work that can estimate the energy consumption of a CNN

for inference. As shown in Fig 1, for each CNN layer, the

framework calculates the energy consumption by dividing

it into two parts: computation energy consumption, Ecomp,

and data movement energy consumption, Edata. Ecomp is

calculated by counting the number of MACs in the layer

and weighing it with the energy consumed by running each

MAC operation in the computation core. Edata is calculated

by counting the number of memory accesses at each level of

the memory hierarchy in the hardware and weighing it with

the energy consumed by each access of that memory level.

To obtain the number of memory accesses, [21] proposes

an optimization procedure to search for the optimal number

of accesses for all data types (feature maps and weights)

at all levels of memory hierarchy that results in the low-

est energy consumption. For energy numbers of each MAC

operation and memory access, we use numbers extrapolated

from actual hardware measurements of the platform target-

ing battery-powered devices [22].

Based on the aforementioned framework, we have cre-

ated a methodology that further accounts for the impact of

data sparsity and bitwidth reduction on energy consump-

tion. For example, we assume that the computation of a

MAC and its associated memory accesses can be skipped

completely when either of its input activation or weight

is zero. Lossless data compression is also applied on the

sparse data to save the cost of both on-chip and off-chip data

movement. The impact of bitwidth is quantified by scaling

the energy cost of different hardware components accord-

ingly. For instance, the energy consumption of a multiplier

scales with the bitwidth quadratically, while that of a mem-

ory access only scales its energy linearly.

2.3. Potential Impact

With this methodology, we can quantify the difference

in energy costs between various popular CNN models and

methods, such as increasing data sparsity or aggressive

bitwidth reduction (discussed in Sec. 5). More importantly,

it provides a gateway for researchers to assess the energy

consumption of CNNs at design time, which can be used

as a feedback that leads to CNN designs with significantly

reduced energy consumption. In Sec. 4, we will describe an

energy-aware pruning method that uses the proposed energy

estimation method for deciding the layer pruning priority.

3. CNN Pruning: Related Work

Weight pruning. There is a large body of work that aims

to reduce the CNN model size by pruning weights while

maintaining accuracy. LeCun et al. [4] and Hassibi et al. [5]

remove the weights based on the sensitivity of the final ob-

jective function to that weight (i.e., remove the weights with

the least sensitivity first). However, the complexity of com-

puting the sensitivity is too high for large networks, so the

magnitude-based pruning methods [6] use the magnitude

of a weight to approximate its sensitivity; specifically, the

small-magnitude weights are removed first. Han et al. [7, 8]

applied this idea to recent networks and achieved large

model size reduction. They iteratively prune and globally

fine-tune the network, and the pruned weights will always

be zero after being pruned. Jin et al. [9] and Guo et al. [10]

extend the magnitude-based methods to allow the restora-

tion of the pruned weights in the previous iterations, with

tightly coupled pruning and global fine-tuning stages, for

greater model compression. However, all the above meth-
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ods evaluate whether to prune each weight independently

and do not account for correlation between weights [11].

When the compression ratio is large, the aggregate impact

of many weights can have a large impact on the output; thus,

failing to consider the combined influence of the weights on

the output limits the achievable compression ratio.

Filter pruning. Rather than investigating the removal

of each individual weight (fine-grained pruning), there is

also work that investigates removing entire filters (coarse-

grained pruning). Hu et al. [12] proposed removing filters

that frequently generate zero outputs after the ReLU layer

in the validation set. Srinivas et al. [13] proposed merging

similar filters into one. Mariet et al. [14] proposed merg-

ing filters in the FC layers with similar output activations

into one. Unfortunately, these coarse-grained pruning ap-

proaches tend to have lower compression ratios than fine-

grained pruning for the same accuracy.

Previous work directly targets reducing the model size.

However, as discussed in Sec. 1, the number of weights

alone does not dictate the energy consumption. Hence, the

energy consumption of the pruned CNNs in the previous

work is not minimized.

To address issues highlighted above, we propose a new

fine-grained pruning algorithm that specifically targets

energy-efficiency. It utilizes the estimated energy provided

by the methodology described in Sec. 2 to guide the pro-

posed pruning algorithm to aggressively prune the layers

with the highest energy consumption with marginal impact

on accuracy. Moreover, the pruning algorithm considers the

joint influence of weights on the final output feature maps,

thus enabling both a higher compression ratio and a larger

energy reduction. The combination of these two approaches

results in CNNs that are more energy-efficient and compact

than previously proposed approaches.

The proposed energy-efficient pruning algorithm can be

combined with other techniques to further reduce the en-

ergy consumption, such as bitwidth reduction of weights

or feature maps [15, 25, 26], weight sharing and Huffman

coding [8], student-teacher learning [27], filter decomposi-

tion [28, 29] and pruning feature maps [30].

4. Energy-Aware Pruning

Our goal is to reduce the energy consumption of a given

CNN by sparsifying the filters without significant impact

on the network accuracy. The key steps in the proposed

energy-aware pruning are shown in Fig. 2, where the input

is a CNN model and the output is a sparser CNN model with

lower energy consumption.

In Step 1, the pruning order of the layers is determined

based on the energy as described in Sec. 2. Step 2, 3 and

4 removes, restores and locally fine-tunes weights, respec-

tively, for one layer in the network; this inner loop is re-

peated for each layer in the network. Pruning and restoring

Determine Order of Layers Based on Energy

Remove Weights Based on Magnitude

Restore Weights to Reduce Output Error

Locally Fine-tune Weights

Other Unpruned 
Layers?

Globally Fine-tune Weights

Accuracy Below 
Threshold?

Input Model

Output Model

No
(Start Next Iteration)

Yes

No

Yes
(Prune Next Layer)

Figure 2. Flow of energy-aware pruning.

weights involve choosing weights, while locally fine-tuning

weights involves changing the values of the weights, all

while minimizing the output feature map error. In Step 2, a

simple magnitude-based pruning method is used to quickly

remove the weights above the target compression ratio (e.g.,

if the target compression ratio is 30%, 35% of the weights

are removed in this step). The number of extra weights re-

moved is determined empirically. In Step 3, the correlated

weights that have the greatest impact on reducing the output

error are restored to their original non-zero values to reach

the target compression ratio (e.g., restore 5% of weights).

In Step 4, the preserved weights are locally fine-tuned with

a closed-form least-square solution to further decrease the

output feature map error. Each of these steps are described

in detail in Sec. 4.1 to Sec. 4.4.

Once each individual layer has been pruned using Step 2

to 4, Step 5 performs global fine-tuning of weights across

the entire network using back-propagation as described in

Sec. 4.5. All these steps are iteratively performed until the

final network can no longer maintain a given accuracy, e.g.,

1% accuracy loss.

Compared to the previous magnitude-based pruning ap-

proaches [6–10], the main difference of this work is the in-

troduction of Step 1, 3, and 4. Step 1 enables pruning to

minimize the energy consumption. Step 3 and 4 increase

the compression ratio and reduce the energy consumption.

4.1. Determine Order of Layers Based on Energy

As more layers are pruned, it becomes increasingly dif-

ficult to remove weights because the accuracy approaches

the given accuracy threshold. Accordingly, layers that are

pruned early on tend to have higher compression ratios than

the layers that follow. Thus, in order to maximize the over-

5690



all energy reduction, we prune the layers that consume the

most energy first. Specifically, we use the energy estima-

tion from Sec. 2 and determine the pruning order of layers

based on their energy consumption. As a result, the layers

that consume the most energy achieve higher compression

ratios and energy reduction. At the beginning of each outer

loop iteration in Fig. 2, the new pruning order is redeter-

mined according to the new energy estimation of each layer.

4.2. Remove Weights Based on Magnitude

For a FC layer, Yi ∈ R
k×1 is the ith output feature map

across k images and is computed from

Yi = XiAi +Bi1, (1)

where Ai ∈ R
m×1 is the ith filter among all n filters

(A ∈ R
m×n) with m weights, and Xi ∈ R

k×m denotes

the corresponding k input feature maps, Bi ∈ R is the ith

bias, and 1 ∈ R
k×1 is a vector where all entries are one.

For a CONV layer, we can convert the convolutional oper-

ation into a matrix multiplication operation, by converting

the input feature maps into a Toeplitz matrix, and compute

the output feature maps with a similar equation as Eq.(1).

To sparsify the filters without impacting the accuracy,

the simplest method is pruning weights with magnitudes

smaller than a threshold, which is referred to as magnitude-

based pruning [6–10]. The advantage of this approach is

that it is fast, and works well when a few weights are re-

moved, and thus the correlation between weights only has a

minor impact on the output. However, as more weights are

pruned, this method introduces a large output error as the

correlation between weights becomes more critical. For ex-

ample, if most of the small-magnitude weights are negative,

the output error will become large once many of these small

negative weights are removed using the magnitude-based

pruning. In this case, it would be desirable to remove a

large positive weight to compensate for the introduced error

instead of removing more smaller negative weights. Thus,

we only use magnitude-based pruning for fast initial prun-

ing of each layer. We then introduce additional steps that

account for the correlation between weights to reduce the

output error due to the magnitude-based pruning.

4.3. Restore Weights to Reduce Output Error

It is the error in the output feature maps, and not the

filters, that affects the overall network accuracy. Therefore,

we focus on minimizing the error of the output feature maps

instead of that of the filters. To achieve this, we model the

problem as the following ℓ0-minimization problem:

Ãi = argmin
Âi

∥

∥

∥
Ŷi −XiÂi

∥

∥

∥

p

p
,

subject to

∥

∥

∥
Â

∥

∥

∥

0

6 q, i = 1, ..., n,

(2)

where Ŷi denotes Yi −Bi1, ‖·‖p is the p-norm, and q is the

number of non-zero weights we want to retain in all filters.

p can be set to 1 or 2, and we use 1. Unfortunately, solv-

ing this ℓ0-minimization problem is NP-hard. Therefore, a

greedy algorithm is proposed to approximate it.

The algorithm starts from pruned filters Ă ∈ R
m×n, ob-

tained from the magnitude-based pruning in Step 2. These

filters are pruned at a higher compression ratio than the tar-

get compression ratio. Each filter Ai has the correspond-

ing support Si, where Si is a set of the indices of non-zero

weights in the filter. It then iteratively restores weights until

the number of non-zero weights is equal to q, which reflects

the target compression ratio.

The residual of each filter, which indicates the current

output feature map difference we need to minimize, is ini-

tialized as Ŷi −XiĂi. In each iteration, out of the weights

not in the support of a given filter Si, we select the weight

that reduces the ℓ1-norm of the corresponding residual the

most, and add it to the support Si. The residual then is up-

dated by taking this new weight into account.

We restore weights from the filter with the largest resid-

ual in each iteration. This prevents the algorithm from

restoring weights in filters with small residuals, which will

likely have less effect on the overall output feature map er-

ror. This could occur if the weights were selected based

solely on the largest ℓ1-norm improvement for any filter.

To speed up this restoration process, we restore multiple

weights within a given filter in each iteration. The g weights

with the top-g maximum ℓ1-norm improvement are chosen.

As a result, we reduce the frequency of computing resid-

ual improvement for each weight, which takes a significant

amount of time. We adopt g equal to 2 in our experiments,

but a higher g can be used.

4.4. Locally Fine­tune Weights

The previous two steps select a subset of weights to pre-

serve, but do not change the values of the weights. In this

step, we perform the least-square optimization on each filter

to change the values of their weights to further reduce the

output error and restore the network accuracy:

Āi,Si
= argmin

Âi,Si

∥

∥

∥
Ŷi −Xi,Si

Âi,Si

∥

∥

∥

2

2

, Ā
i,SC

i
= 0, (3)

where the subscript Si means choosing the non-pruned

weights from the ith filter and the corresponding columns

from Xi. The least-square problem has a closed-form solu-

tion, which can be efficiently solved.

4.5. Globally Fine­tune Weights

After all the layers are pruned, we fine-tune the whole

network using back-propagation with the pruned weights

fixed at zero. This step can be used to globally fine-tune the

weights to achieve a higher accuracy. Fine-tuning the whole

network is time-consuming and requires careful tuning of

several hyper-parameters. In addition, back-propagation
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can only restore the accuracy within certain accuracy loss.

However, since we first locally fine-tune weights, part of

the accuracy has already been restored, which enables more

weights to be pruned under a given accuracy loss tolerance.

As a result, we increase the compression ratio in each it-

eration, reducing the total number of globally fine-tuning

iterations and the corresponding time.

5. Experiment Results

5.1. Pruning Method Evaluation

We evaluate our energy-aware pruning on AlexNet [3],

GoogLeNet v1 [17] and SqueezeNet v1 [18] and compare

it with the state-of-the-art magnitude-based pruning method

with the publicly available models [8].1 The accuracy and

the energy consumption are measured on the ImageNet

ILSVRC 2014 dataset [31]. Since the energy-aware pruning

method relies on the output feature maps, we use the train-

ing images for both pruning and fine-tuning. All accuracy

numbers are measured on the validation images. To esti-

mate the energy consumption with the proposed methodol-

ogy in Sec. 2, we assume all values are represented with

16-bit precision, except where otherwise specified, to fairly

compare the energy consumption of networks. The hard-

ware parameters used are similar to [22].

Table 1 summarizes the results.2 The batch size is 44 for

AlexNet and 48 for other two networks. All the energy-

aware pruned networks have less than 1% accuracy loss

with respect to the other corresponding networks. For

AlexNet and SqueezeNet, our method achieves better re-

sults in all metrics (i.e., number of weights, number of

MACs, and energy consumption) than the magnitude-based

pruning [8]. For example, the number of MACs is reduced

by another 3.2× and the estimated energy is reduced by an-

other 1.7× with a 15% smaller model size on AlexNet. Ta-

ble 2 shows a comparison of the energy-aware pruning and

the magnitude-based pruning across each layer; our method

gives a higher compression ratio for all layers, especially for

CONV1 to CONV3, which consume most of the energy.

Our approach is also effective on compact models. For

example, on GoogLeNet, the achieved reduction factor is

2.9× for the model size, 3.4× for the number of MACs and

1.6× for the estimated energy consumption.

5.2. Energy Consumption Analysis

We also evaluate the energy consumption of popular

CNNs. In Fig. 3, we summarize the estimated energy con-

sumption of CNNs relative to their top-5 accuracy. The re-

sults reveal the following key observations:

1The proposed energy-aware pruning can be easily combined with

other techniques in [8], such as weight sharing and Huffman coding.
2We use the models provided by MatConvNet [32] or converted from

Caffe [33] or Torch [34], so the accuracies may be slightly different from

that reported by other works.

• Convolutional layers consume more energy than

fully-connected layers. Fig. 4 shows the energy break-

down of the original AlexNet and two pruned AlexNet

models. Although most of the weights are in the FC lay-

ers, CONV layers account for most of the energy con-

sumption. For example, in the original AlexNet, the

CONV layers contain 3.8% of the total weights, but con-

sume 72.6% of the total energy. There are two reasons for

this: (1) In CONV layers, the energy consumption of the

input and output feature maps is much higher than that

of FC layers. Compared to FC layers, CONV layers re-

quire a larger number of MACs, which involves loading

inputs from memory and writing the outputs to memory.

Accordingly, a large number of MACs leads to a large

amount of weight and feature map movement and hence

high energy consumption; (2) The energy consumption

of weights for all CONV layers is similar to that of all

FC layers. While CONV layers have fewer weights than

FC layers, each weight in CONV layers is used more fre-

quently than that in FC layers; this is the reason why the

number of weights is not a good metric for energy con-

sumption – different weights consume different amounts

of energy. Accordingly, pruning a weight from CONV

layers contributes more to energy reduction than prun-

ing a weight from FC layers. In addition, as a network

goes deeper, e.g., ResNet [19], CONV layers dominate

both the energy consumption and the model size. The

energy-aware pruning prunes CONV layers effectively,

which significantly reduces energy consumption.

• Deeper CNNs with fewer weights do not necessarily

consume less energy than shallower CNNs with more

weights. One network design strategy for reducing the

size of a network without sacrificing the accuracy is to

make a network thinner but deeper. However, does this

mean the energy consumption is also reduced? Table 1

shows that a network architecture having a smaller model

size does not necessarily have lower energy consump-

tion. For instance, SqueezeNet is a compact model and a

good fit for memory-limited applications; it is thinner and

deeper than AlexNet and achieves a similar accuracy with

50× size reduction, but consumes 33% more energy. The

increase in energy is due to the fact that SqueezeNet uses

more CONV layers and the size of the feature maps can

only be greatly reduced in the final few layers to preserve

the accuracy. Hence, the newly added CONV layers in-

volve a large amount of computation and data movement,

resulting in higher energy consumption.

• Reducing the number of weights can provide lower

energy consumption than reducing the bitwidth of

weights. From Fig. 3, the AlexNet pruned by the pro-

posed method consumes less energy than BWN [15].

BWN uses an AlexNet-like architecture with binarized

weights, which only reduces the weight-related and
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Table 1. Performance metrics of various dense and pruned models.

Model
Top-5

Accuracy

# of Non-zero

Weights (×10
6)

# of Non-skipped

MACs (×10
8)1

Normalized

Energy (×10
9)1,2

AlexNet (Original) 80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)

AlexNet ([8]) 80.37% 6.79 (11%) 1.79 (48%) 1.85 (47%)

AlexNet (Energy-Aware Pruning) 79.56% 5.73 (9%) 0.56 (15%) 1.06 (27%)

GoogLeNet (Original) 88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)

GoogLeNet (Energy-Aware Pruning) 87.28% 2.37 (34%) 2.16 (29%) 4.76 (62%)

SqueezeNet (Original) 80.61% 1.24 (100%) 4.51 (100%) 5.28 (100%)

SqueezeNet ([8]) 81.47% 0.42 (33%) 3.30 (73%) 4.61 (87%)

SqueezeNet (Energy-Aware Pruning) 80.47% 0.35 (28%) 1.93 (43%) 3.99 (76%)

1 Per image.
2 The unit of energy is normalized in terms of the energy for a MAC operation (i.e., 102 = energy of 100 MACs).
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Figure 3. Accuracy versus energy trade-off of popular CNN models. Models pruned with the energy-aware pruning provide a better

accuracy versus energy trade-off (steeper slope).

Table 2. Compression ratio1 of each layer in AlexNet.

[8] This Work

# of

Classes
1000 1000 100

10

(Random)

10

(Dog)

CONV1 16% 83% 86% 89% 89%

CONV2 62% 92% 97% 97% 96%

CONV3 65% 91% 97% 98% 97%

CONV4 63% 81% 88% 97% 95%

CONV5 63% 74% 79% 98% 98%

FC1 91% 92% 93% ∼100% ∼100%

FC2 91% 91% 94% ∼100% ∼100%

FC3 74% 78% 78% ∼100% ∼100%

1 The number of removed weights divided by the number of

total weights. The higher, the better.

computation-related energy consumption. However,

pruning reduces the energy of both weight and feature

map movement, as well as computation. In addition, the

weights in CONV1 and FC3 of BWN are not binarized

to preserve the accuracy; thus BWN does not reduce the

energy consumption of CONV1 and FC3. Moreover,

to compensate for the accuracy loss of binarizing the

weights, CONV2, CONV4 and CONV5 layers in BWN

use 2× the number of weights in the corresponding lay-
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Weight Movement
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Figure 4. Energy consumption breakdown of different AlexNets in

terms of the computation and the data movement of input feature

maps, output feature maps and filter weights. From left to right:

original AlexNet, AlexNet pruned by [8], AlexNet pruned by the

proposed energy-aware pruning.

ers of the original AlexNet, which increases the energy

consumption.

• A lower number of MACs does not necessarily lead

to lower energy consumption. For example, the pruned

GoogleNet has a fewer MACs but consumes more en-

ergy than the SqueezeNet pruned by [8]. That is because

they have different data reuse, which is determined by the

shape configurations, as discussed in Sec. 2.1.
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Figure 5. The impact of reducing the number of target classes on

the three metrics. The x-axis is the number of target classes. 10R

and 10D denote the 10-random-class model and the 10-dog-class

model, respectively.
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Figure 6. The energy breakdown of models with different numbers

of target classes.

From Fig. 3, we also observe that the energy consump-

tion scales exponentially with linear increase in accuracy.

For instance, GoogLeNet consumes 2× energy of AlexNet

for 8% accuracy improvement, and ResNet-50 consumes

3.3× energy of GoogLeNet for 3% accuracy improvement.

In summary, the model size (i.e., the number of weights

× the bitwidth) and the number of MACs do not directly

reflect the energy consumption of a layer or a network.

There are other factors like the data movement of the fea-

ture maps, which are often overlooked. Therefore, with the

proposed energy estimation methodology, researchers can

have a clearer view of CNNs and more effectively design

low-energy-consumption networks.

5.3. Number of Target Class Reduction

In many applications, the number of classes can be sig-

nificantly fewer than 1000. We study the influence of re-

ducing the number of target classes by pruning weights on

the three metrics. AlexNet is used as the starting point. The

number of target classes is reduced from 1000 to 100 to 10.

The target classes of the 100-class model and one of the

10-class models are randomly picked, and that of another

10-class model are different dog breeds. These models are

pruned with less than 1% top-5 accuracy loss for the 100-

class model and less than 1% top-1 accuracy loss for the

two 10-class models.

Fig. 5 shows that as the number of target classes reduces,

the number of weights and MACs and the estimated energy

consumption decrease. However, they reduce at different

rates with the model size dropping the fastest, followed by

the number of MACs the second, and the estimated energy

reduces the slowest.

According to Table 2, for the 10-class models, almost

all the weights in the FC layers are pruned, which leads to

a very small model size. Because the FC layers work as

classifiers, most of the weights that are responsible for clas-

sifying the removed classes are pruned. The higher-level

CONV layers, such as CONV4 and CONV5, which contain

filters for extracting more specialized features of objects,

are also significantly pruned. CONV1 is pruned less since it

extracts basic features that are shared among all classes. As

a result, the number of MACs and the energy consumption

do not reduce as rapidly as the number of weights. Thus, we

hypothesize that the layers closer to the output of a network

shrink more rapidly with the number of classes.

As the number of classes reduces, the energy consump-

tion becomes less sensitive to the filter sparsity. From the

energy breakdown (Fig. 6), the energy consumption of fea-

ture maps gradually saturates due to data reuse and the

memory hierarchy. For example, each time one input activa-

tion is loaded from the DRAM onto the chip, it is used mul-

tiple times by several weights. If any one of these weights

is not pruned, the activation still needs to be fetched from

the DRAM. Moreover, we observe that sometimes the spar-

sity of feature maps decreases after we reduce the number

of target classes, which causes higher energy consumption

for moving the feature maps.

Table 2 and Fig. 5 and 6 show that the compression ratios

and the performance of the two 10-class models are simi-

lar. Hence, we hypothesize that the pruning performance

mainly depends on the number of target classes, and the

type of the preserved classes is less influential.

6. Conclusion

This work presents an energy-aware pruning algorithm

that directly uses the energy consumption of a CNN to

guide the pruning process in order to optimize for the best

energy-efficiency. The energy of a CNN is estimated by

a methodology that models the computation and memory

accesses of a CNN and uses energy numbers extrapolated

from actual hardware measurements. It enables more ac-

curate energy consumption estimation compared to just us-

ing the model size or the number of MACs. With the esti-

mated energy for each layer in a CNN model, the algorithm

performs layer-by-layer pruning, starting from the layers

with the highest energy consumption to the layers with the

lowest energy consumption. For pruning each layer, it re-

moves the weights that have the smallest joint impact on the

output feature maps. The experiments show that the pro-

posed pruning method reduces the energy consumption of

AlexNet and GoogLeNet, by 3.7× and 1.6×, respectively,

compared to their original dense models. The influence of

pruning the AlexNet with the number of target classes re-

duced is explored and discussed. The results show that by

reducing the number of target classes, the model size can be

greatly reduced but the energy reduction is limited.
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