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Abstract

This paper presents a Neural Aggregation Network

(NAN) for video face recognition. The network takes a face

video or face image set of a person with a variable num-

ber of face images as its input, and produces a compact,

fixed-dimension feature representation for recognition. The

whole network is composed of two modules. The feature

embedding module is a deep Convolutional Neural Network

(CNN) which maps each face image to a feature vector. The

aggregation module consists of two attention blocks which

adaptively aggregate the feature vectors to form a single

feature inside the convex hull spanned by them. Due to the

attention mechanism, the aggregation is invariant to the im-

age order. Our NAN is trained with a standard classifica-

tion or verification loss without any extra supervision sig-

nal, and we found that it automatically learns to advocate

high-quality face images while repelling low-quality ones

such as blurred, occluded and improperly exposed faces.

The experiments on IJB-A, YouTube Face, Celebrity-1000

video face recognition benchmarks show that it consistently

outperforms naive aggregation methods and achieves the

state-of-the-art accuracy.

1. Introduction

Video face recognition has caught more and more atten-

tion from the community in recent years [42, 20, 43, 11,

25, 21, 22, 27, 14, 35, 31, 10]. Compared to image-based

face recognition, more information of the subjects can be

exploited from the input videos, which naturally incorpo-

rate faces of the same subject in varying poses and illumi-

nation conditions. The key issue in video face recognition

is to build an appropriate representation of the video face,

such that it can effectively integrate the information across

different frames together, maintaining beneficial while dis-

carding noisy information.

∗Part of this work was done when J. Yang was an intern at MSR super-

vised by G. Hua.
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Figure 1. Our network architecture for video face recognition. All

input face images {xk} are processed by a feature embedding

module with a deep CNN, yielding a set of feature vectors {fk}.

These features are passed to the aggregation module, producing a

single 128-dimensional vector r1 to represent the input faces im-

ages. This compact representation is used for recognition.

One naive approach would be representing a video face

as a set of frame-level face features such as those extracted

from deep neural networks [35, 31], which have dominated

face recognition recently [35, 28, 33, 31, 23, 41]. Such a

representation comprehensively maintains the information

across all frames. However, to compare two video faces,

one needs to fuse the matching results across all pairs of

frames between the two face videos. Let n be the average

number of video frames, then the computational complex-

ity is O(n2) per match operation, which is not desirable

especially for large-scale recognition. Besides, such a set-

based representation would incur O(n) space complexity

per video face example, which demands a lot of memory

storage and confronts efficient indexing.

We argue that it is more desirable to come with a com-

pact, fixed-size feature representation at the video level, irre-

spective of the varied length of the videos. Such a represen-

tation would allow direct, constant-time computation of the

similarity or distance without the need for frame-to-frame

matching. A straightforward solution might be extracting

a feature at each frame and then conducting a certain type

of pooling to aggregate the frame-level features together to

form a video-level representation.
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The most commonly adopted pooling strategies may be

average and max pooling [28, 21, 7, 9]. While these naive

pooling strategies were shown to be effective in the previ-

ous works, we believe that a good pooling or aggregation

strategy should adaptively weigh and combine the frame-

level features across all frames. The intuition is simple: a

video (especially a long video sequence) or an image set

may contain face images captured at various conditions of

lighting, resolution, head pose etc., and a smart algorithm

should favor face images that are more discriminative (or

more “memorizable”) and prevent poor face images from

jeopardizing the recognition.

To this end, we look for an adaptive weighting scheme

to linearly combine all frame-level features from a video to-

gether to form a compact and discriminative face represen-

tation. Different from the previous methods, we neither fix

the weights nor rely on any particular heuristics to set them.

Instead, we designed a neural network to adaptively calcu-

late the weights. We named our network the Neural Aggre-

gation Network (NAN), whose coefficients can be trained

through supervised learning in a normal face recognition

training task without the need for extra supervision signals.

The proposed NAN is composed of two major modules

that could be trained end-to-end or one by one separately.

The first one is a feature embedding module which serves

as a frame-level feature extractor using a deep CNN model.

The other is the aggregation module that adaptively fuses

the feature vectors of all the video frames together.

Our neural aggregation network is designed to inherit

the main advantages of pooling techniques, including the

ability to handle arbitrary input size and producing order-

invariant representations. The key component of this net-

work is inspired by the Neural Turing Machine [12] and the

work of [38], both of which applied an attention mechanism

to organize the input through accessing an external memory.

This mechanism can take an input of arbitrary size and work

as a tailor emphasizing or suppressing each input element

just via a weighted averaging, and very importantly it is or-

der independent and has trainable parameters. In this work,

we design a simple network structure of two cascaded at-

tention blocks associated with this attention mechanism for

face feature aggregation.

Apart from building a video-level representation, the

neural aggregation network can also serve as a subject level

feature extractor to fuse multiple data sources. For exam-

ple, one can feed it with all available images and videos, or

the aggregated video-level features of multiple videos from

the same subject, to obtain a single feature representation

with fixed size. In this way, the face recognition system not

only enjoys the time and memory efficiency due to the com-

pact representation, but also exhibits superior performance,

as we will show in our experiments.

We evaluated the proposed NAN for both the tasks of

video face verification and identification. We observed con-

sistent margins in three challenging datasets, including the

YouTube Face dataset [42], the IJB-A dataset [18], and

the Celebrity-1000 dataset [22], compared to the baseline

strategies and other competing methods.

Last but not least, we shall point out that our proposed

NAN can serve as a general framework for learning content-

adaptive pooling. Therefore, it may also serve as a feature

aggregation scheme for other computer vision tasks.

1.1. Related Works

Face recognition based on videos or image sets has been

actively studied in the past. This paper is concerned with

the input being an orderless set of face images. Existing

methods exploiting temporal dynamics will not be consid-

ered here. For set based face recognition, many previous

methods have attempted to represent the set of face im-

ages with appearance subspaces or manifolds and perform

recognition via computing manifold similarity or distance

[19, 2, 17, 40, 37]. These traditional methods may work

well under constrained settings but usually cannot handle

the challenging unconstrained scenarios where large ap-

pearance variations are present.

Along a different axis, some methods build video feature

representation based on local features [20, 21, 27]. For ex-

ample, the PEP methods [20, 21] take a part-based represen-

tation by extracting and clustering local features. The Video

Fisher Vector Faces (VF2) descriptor [27] uses Fisher Vec-

tor coding to aggregate local features across different video

frames together to form a video-level representation.

Recently, state-of-the-art face recognition methods has

been dominated by deep convolution neural networks [35,

31, 28, 7, 9]. For video face recognition, most of these

methods either use pairwise frame feature similarity com-

putation [35, 31] or naive (average/max) frame feature pool-

ing [28, 7, 9]. This motivated us to seek for an adaptive

aggregation approach.

As previously mentioned, this work is also related to the

Neural Turing Machine [12] and the work of [38]. How-

ever, it is worth noting that while they use Recurrent Neural

Networks (RNN) to handle sequential inputs/outputs, there

is no RNN structure in our method. We only borrow their

differentiable memory addressing/attention scheme for our

feature aggregation.

2. Neural Aggregation Network

As shown in Fig. 1, the NAN network takes a set of face

images of a person as input and outputs a single feature vec-

tor as its representation for the recognition task. It is built

upon a modern deep CNN model for frame feature embed-

ding, and becomes more powerful for video face recogni-

tion by adaptively aggregating all frames in the video into a

compact vector representation.
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Figure 2. Face images in the IJB-A dataset, sorted by their scores (values of e in Eq. 2) from a single attention block trained in the face

recognition task. The faces in the top, middle and bottom rows are sampled from the faces with scores in the highest 5%, a 10% window

centered at the median, and the lowest 5%, respectively.

2.1. Feature embedding module

The image embedding module of our NAN is a deep

Convolution Neural Network (CNN), which embeds each

frame of a video to a face feature representation. To lever-

age modern deep CNN networks with high-end perfor-

mances, in this paper we adopt the GoogLeNet [34] with

the Batch Normalization (BN) technique [16]. Certainly,

other network architectures are equally applicable here as

well. The GoogLeNet produces 128-dimension image fea-

tures, which are first normalized to be unit vectors then fed

into the aggregation module. In the rest of this paper, we

will simply refer to the employed GoogLeNet-BN network

as CNN.

2.2. Aggregation module

Consider the video face recognition task on n pairs of

video face data (X i, yi)
n
i=1, where X i is a face video se-

quence or a image set with varying image number Ki, i.e.

X i = {xi
1,x

i
2, ...,x

i
Ki

} in which xi
k, k = 1, ...,Ki is the

k-th frame in the video, and yi is the corresponding subject

ID of X i. Each frame xi
k has a corresponding normalized

feature representation f ik extracted from the feature embed-

ding module. For better readability, we omit the upper in-

dex where appropriate in the remaining text. Our goal is

to utilize all feature vectors from a video to generate a set

of linear weights {ak}
K
k=1

, so that the aggregated feature

representation becomes

r =
∑

k

akfk. (1)

In this way, the aggregated feature vector has the same size

as a single face image feature extracted by the CNN.

Obviously, the key of Eq. 1 is its weights {ak}. If

ak ≡ 1

K
, Eq. 1 will degrades to naive averaging, which

is usually non-optimal as we will show in our experiments.

We instead try to design a better weighting scheme.

Three main principles have been considered in designing

our aggregation module. First, the module should be able to

process different numbers of images (i.e. different Ki’s), as

the video data source varies from person to person. Second,

the aggregation should be invariant to the image order – we

prefer the result unchanged when the image sequence are

reversed or reshuffled. This way, the aggregation module

can handle an arbitrary set of image or video faces without

temporal information (e.g. that collected from different In-

ternet locations). Third, the module should be adaptive to

the input faces and has parameters trainable through super-

vised learning in a standard face recognition training task.

Our solution is inspired by the memory attention mecha-

nism described in [12, 32, 38]. The idea therein is to use a

neural model to read external memories through a differen-

tiable addressing/attention scheme. Such models are often

coupled with Recurrent Neural Networks (RNN) to handle

sequential inputs/outputs [12, 32, 38]. Although an RNN

structure is not needed for our purpose, its memory atten-

tion mechanism is applicable to our aggregation task. In

this work, we treat the face features as the memory and cast

feature weighting as a memory addressing procedure. We

employ in the aggregation module the “attention blocks”, to

be described as follows.

2.2.1 Attention blocks

An attention block reads all feature vectors from the feature

embedding module, and generate linear weights for them.

Specifically, let {fk} be the face feature vectors, then an

attention block filters them with a kernel q via dot product,

yielding a set of corresponding significances {ek}. They

are then passed to a softmax operator to generate positive
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Table 1. Performance comparison on the IJB-A dataset.

TAR/FAR: True/False Accept Rate for verification. TPIR/FPIR:

True/False Positive Identification Rate for identification.

1:1 Verification 1:N Identification

TAR@FAR of: TPIR@FPIR of:

Method 0.001 0.01 0.01 0.1

CNN+AvgPool 0.771 0.913 0.634 0.879

NAN single attention 0.847 0.927 0.778 0.902

NAN cascaded attention 0.860 0.933 0.804 0.909

weights {ak} with
∑

k ak = 1. These two operations can

be described by the following equations, respectively:

ek = qT fk (2)

ak =
exp(ek)∑
j exp(ej)

. (3)

It can be seen that our algorithm essentially selects one

point inside of the convex hull spanned by all the feature

vectors. One related work is [3] where each face image set

is approximated with a convex hull and set similarities are

defined as the shortest path between two convex hulls.

In this way, the number of inputs {fk} does not affect the

size of aggregation r, which is of the same dimension as a

single feature fk. Besides, the aggregation result is invari-

ant to the input order of fk: according to Eq. 1, 2, and 3,

permuting fk and fk′ has no effects on the aggregated rep-

resentation r. Furthermore, an attention block is modulated

by the filter kernel q, which is trainable through standard

backpropagation and gradient descent.

Single attention block – Universal face feature quality

measurement. We first try using one attention block for

aggregation. In this case, vector q is the parameter to learn.

It has the same size as a single feature f and serves as a

universal prior measuring the face feature quality.

We train the network to perform video face verification

(see Section 2.3 and Section 3 for details) in the IJB-A

dataset [18] on the extracted face features, and Figure 2

shows the sorted scores of all the faces images in the dataset.

It can be seen that after training, the network favors high-

quality face images, such as those of high resolutions and

with relatively simple backgrounds. It down-weights face

images with blur, occlusion, improper exposure and ex-

treme poses. Table 1 shows that the network achieves higher

accuracy than the average pooling baseline in the verifica-

tion and identification tasks.

Cascaded two attention blocks – Content-aware aggre-

gation. We believe a content-aware aggregation can per-

form even better. The intuition behind is that face im-

age variation may be expressed differently at different geo-
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0.074 0.062 0.057 0.048 0.020
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High weight                                                                           Low weight 

Samples from a video/image set All

weights

Figure 3. Typical examples showing the weights of the images

in the image sets computed by our NAN. In each row, five faces

images are sampled from an image set and sorted based on their

weights (numbers in the rectangles); the rightmost bar chart shows

the sorted weights of all the images in the set (heights scaled).

graphic locations in the feature space (i.e. for different per-

sons), and content-aware aggregation can learn to select fea-

tures that are more discriminative for the identity of the in-

put image set. To this end, we employ two attention blocks

in a cascaded and end-to-end fashion described as follows.

Let q0 be the kernel of the first attention block, and r0 be

the aggregated feature with q0. We adaptively compute q1,

the kernel of the second attention block, through a transfer

layer taking r0 as the input:

q1 = tanh(Wr0 + b) (4)

where W and b are the weight matrix and bias vector of the

neurons respectively, and tanh(x) = ex−e−x

ex+e−x imposes the

hyperbolic tangent nonlinearity. The feature vector r1 gen-

erated by q1 will be the final aggregation results. Therefore,

(q0,W,b) are now the trainable parameters of the aggrega-

tion module.
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We train the network on the IJB-A dataset again, and

Table 1 shows that the network obtained better results than

using single attention block. Figure 3 shows some typical

examples of the weights computed by the trained network

for different videos or image sets.

Our current full solution of NAN, based on which all the

remaining experimental results are obtained, adopts such a

cascaded two attention block design (as per Fig. 1).

2.3. Network training

The NAN network can be trained either for face verifica-

tion and identification tasks with standard configurations.

2.3.1 Training loss

For verification, we build a siamese neural aggregation net-

work structure [8] with two NANs sharing weights, and

minimize the average contrastive loss [13]: li,j = yi,j ||r
1
i −

r1j ||
2
2 + (1−yi,j)max(0,m − ||r1i − r1j ||

2
2), where yi,j =1

if the pair (i, j) is from the same identity and yi,j=0 other-

wise. The constant m is set to 2 in all our experiments.

For identification, we add on top of NAN a fully-

connected layer followed by a softmax and minimize the

average classification loss.

2.3.2 Module training

The two modules can be trained either simultaneously in

an end-to-end fashion, or separately one by one. The latter

option is chosen in this work. Specifically, we first train the

CNN on single images with the identification task, then we

train the aggregation module on top of the features extracted

by CNN. More details can be found in Section 3.1.

We chose this separate training strategy mainly for two

reasons. First, in this work we would like to focus on ana-

lyzing the effectiveness and performance of the aggregation

module with the attention mechanism. Despite the huge

success of applying deep CNN in image-based face recogni-

tion task, little attention has been drawn to CNN feature ag-

gregation to our knowledge. Second, training a deep CNN

usually necessitates a large volume of labeled data. While

millions of still images can be obtained for training nowa-

days [35, 28, 31], it appears not practical to collect such

amount of distinctive face videos or sets. We leave an end-

to-end training of the NAN as our future work.

3. Experiments

This section evaluates the performance of the proposed

NAN network. We will begin with introducing our train-

ing details and the baseline methods, followed by report-

ing the results on three video face recognition datasets:

the IARPA Janus Benchmark A (IJB-A) [18], the YouTube

Face dataset [42], and the Celebrity-1000 dataset [22].

3.1. Training details

As mentioned in Section 2.3, two networks are trained

separately in this work. To train the CNN, we use about

3M face images of 50K identities crawled from the Inter-

net to perform image-based identification. The faces are

detected using the JDA method [5], and aligned with the

LBF method [29]. The input image size is 224x224. After

training, the CNN is fixed and we focus on analyzing the

effectiveness of the neural aggregation module.

The aggregation module is trained on each video face

dataset we tested on with standard backpropagation and an

RMSProp solver [36]. An all-zero parameter initialization

is used, i.e., we start from average pooling. The batch size,

learning rate, and iteration are tuned for each dataset. As

the network is quite simple and image features are compact

(128-d), the training process is quite efficient: training on

5K video pairs with ∼1M images in total only takes less

than 2 minutes on a CPU of a desktop PC.

3.2. Baseline methods

Since our goal is compact video face representation, we

compare the results with simple aggregation strategies such

as average pooling. We also compare with some set-to-

set similarity measurements leveraging pairwise compari-

son on the image level. To keep it simple, we simply use

the L2 feature distances for face recognition (all features

are normalized), although it is possible to combine with an

extra metric learning or template adaption technique [10] to

further boost the performance on each dataset.

In the baseline methods, CNN+Min L2, CNN+Max L2,

CNN+Mean L2 and CNN+SoftMin L2 measure the simi-

larity of two video faces based on the L2 feature distances

of all frame pairs. They necessitate storing all image fea-

tures of a video, i.e., with O(n) space complexity. The first

three use the minimum, maximum and mean pairwise dis-

tance respectively, thus having O(n2) complexity for sim-

ilarity computation. CNN+SoftMin L2 corresponds to the

SoftMax similarity score advocated in some works such as

[23, 24, 1]. It has O(m·n2) complexity for computation1.

CNN+MaxPool and CNN+AvePool are respectively

max-pooling and average-pooling along each feature di-

mension for aggregation. These two methods as well as our

NAN produce a 128-d feature representation for each video

and compute the similarity in O(1) time.

3.3. Results on IJB­A dataset

The IJB-A dataset [18] contains face images and videos

captured from unconstrained environments. It features full

pose variation and wide variations in imaging conditions

1m is the number of scaling factor β used (see [24] for details). We

tested 20 combinations of (negative) β’s, including single [1] or multiple

values [23, 24] and report the best results obtained.
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Table 2. Performance evaluation on the IJB-A dataset. For verification, the true accept rates (TAR) vs. false positive rates (FAR) are re-

ported. For identification, the true positive identification rate (TPIR) vs. false positive identification rate (TPIR) and the Rank-N accuracies

are presented. (†: first aggregating the images in each media then aggregate the media features in a template. ∗: results cited from [10].)

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

B-CNN [9] – – – 0.143 ± 0.027 0.341 ± 0.032 0.588 ± 0.020 0.796 ± 0.017 –

LSFS [39] 0.514 ± 0.060 0.733 ± 0.034 0.895 ± 0.013 0.383 ± 0.063 0.613 ± 0.032 0.820 ± 0.024 0.929 ± 0.013 –

DCNNmanual+metric[7] – 0.787 ± 0.043 0.947 ± 0.011 – – 0.852 ± 0.018 0.937 ± 0.010 0.954 ± 0.007

Triplet Similarity [30] 0.590 ± 0.050 0.790 ± 0.030 0.945 ± 0.002 0.556±0.065∗ 0.754±0.014∗ 0.880±0.015∗ 0.95 ± 0.007 0.974±0.005∗

Pose-Aware Models [23] 0.652 ± 0.037 0.826 ± 0.018 – – – 0.840 ± 0.012 0.925 ± 0.008 0.946 ± 0.007

Deep Milti-Pose [1] – 0.876 0.954 0.52∗ 0.75∗ 0.846 0.927 0.947

DCNNfusion [6] – 0.838 ± 0.042 0.967 ± 0.009 0.577±0.094∗ 0.790±0.033∗ 0.903 ± 0.012 0.965 ± 0.008 0.977 ± 0.007

Masi et al. [24] 0.725 0.886 – – – 0.906 0.962 0.977

Triplet Embedding [30] 0.813 ± 0.02 0.90 ± 0.01 0.964 ± 0.005 0.753 ± 0.03 0.863 ± 0.014 0.932 ± 0.01 – 0.977 ± 0.005

VGG-Face [28] – 0.805±0.030∗ – 0.461±0.077∗ 0.670±0.031∗ 0.913±0.011∗ – 0.981±0.005∗

Template Adaptation[10] 0.836 ± 0.027 0.939 ± 0.013 0.979 ± 0.004 0.774 ± 0.049 0.882 ± 0.016 0.928 ± 0.010 0.977 ± 0.004 0.986 ± 0.003

CNN+Max L2 0.202 ± 0.029 0.345 ± 0.025 0.601 ± 0.024 0.149 ± 0.033 0.258 ± 0.026 0.429 ± 0.026 0.632 ± 0.033 0.722 ± 0.030

CNN+Min L2 0.038 ± 0.008 0.144 ± 0.073 0.972 ± 0.006 0.026 ± 0.009 0.293 ± 0.175 0.853 ± 0.012 0.903 ± 0.010 0.924 ± 0.009

CNN+Mean L2 0.688 ± 0.080 0.895 ± 0.016 0.978 ± 0.004 0.514 ± 0.116 0.821 ± 0.040 0.916 ± 0.012 0.973 ± 0.005 0.980 ± 0.004

CNN+SoftMin L2 0.697 ± 0.085 0.904 ± 0.015 0.978 ± 0.004 0.500 ± 0.134 0.831 ± 0.039 0.919 ± 0.010 0.973 ± 0.005 0.981 ± 0.004

CNN+MaxPool 0.202 ± 0.029 0.345 ± 0.025 0.601 ± 0.024 0.079 ± 0.005 0.179 ± 0.020 0.757 ± 0.025 0.911 ± 0.013 0.945 ± 0.009

CNN+AvePool 0.771 ± 0.064 0.913 ± 0.014 0.977 ± 0.004 0.634 ± 0.109 0.879 ± 0.023 0.931 ± 0.011 0.972 ± 0.005 0.979 ± 0.004

CNN+AvePool† 0.856 ± 0.021 0.935 ± 0.010 0.978 ± 0.004 0.793 ± 0.044 0.909 ± 0.011 0.951 ± 0.005 0.976 ± 0.004 0.984 ± 0.004

NAN 0.860 ± 0.012 0.933 ± 0.009 0.979 ± 0.004 0.804 ± 0.036 0.909 ± 0.013 0.954 ± 0.007 0.978 ± 0.004 0.984 ± 0.003

NAN† 0.881 ± 0.011 0.941 ± 0.008 0.978 ± 0.003 0.817 ± 0.041 0.917 ± 0.009 0.958 ± 0.005 0.980 ± 0.005 0.986 ± 0.003
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Figure 4. Average ROC (Left), CMC (Middle) and DET (Right) curves of the NAN and the baselines on the IJB-A dataset over 10 splits.

thus is very challenging. There are 500 subjects with 5,397

images and 2,042 videos in total and 11.4 images and 4.2

videos per subject on average. We detect the faces with

landmarks using STN [4] face detector, and then align the

face image with similarity transformation.

In this dataset, each training and testing instance is called

a ‘template’, which comprises 1 to 190 mixed still images

and video frames. Since one template may contain multiple

medias and the dataset provides the media id for each im-

age, another possible aggregation strategy is first aggregat-

ing the frame features in each media then the media features

in the template [10, 30]. This strategy is also tested in this

work with CNN+AvePool and our NAN. Note that media id

may not be always available in practice.

We test the proposed method on both the ‘compare’ pro-

tocol for 1:1 face verification and the ‘search’ protocol for

1:N face identification. For verification, the true accept

rates (TAR) vs. false positive rates (FAR) are reported. For

identification, the true positive identification rate (TPIR) vs.

false positive identification rate (TPIR) and the Rank-N ac-

curacies are reported. Table 2 presents the numerical results

of different methods, and Figure 4 shows the receiver oper-

ating characteristics (ROC) curves for verification as well

as the cumulative match characteristic (CMC) and decision

error trade-off (DET) curves for identification. The metrics

are calculated according to [18, 26] on the 10 splits.

In general, the CNN+MaxL2, CNN+MinL2 and

CNN+MaxPool perform worst among the baseline meth-

ods. CNN+SoftMinL2 performs slightly better than

CNN+MaxPool. The use of media id significantly improves
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Table 3. Verification accuracy comparison of state-of-the-art meth-

ods, our baselines and NAN network on the YTF dataset.

Method Accuracy (%) AUC

LM3L [15] 81.3 ± 1.2 89.3

DDML(combined)[14] 82.3 ± 1.5 90.1

EigenPEP [21] 84.8 ± 1.4 92.6

DeepFace-single [35] 91.4 ± 1.1 96.3

DeepID2+ [33] 93.2 ± 0.2 –

Wen et al. [41] 94.9 –

FaceNet [31] 95.12 ± 0.39 –

VGG-Face [28] 97.3 –

CNN+Max. L2 91.96 ± 1.1 97.4

CNN+Min. L2 94.96 ± 0.79 98.5

CNN+Mean L2 95.30 ± 0.74 98.7

CNN+SoftMin L2 95.36 ± 0.77 98.7

CNN+MaxPool 88.36 ± 1.4 95.0

CNN+AvePool 95.20 ± 0.76 98.7

NAN 95.72 ± 0.64 98.8

the performance of CNN+AvePool, but gives a relatively

small boost to NAN. We believe NAN already has the ro-

bustness to templates dominated by poor images from a few

media. Without the media aggregation, NAN outperforms

all its baselines by appreciable margins, especially on the

low FAR cases. For example, in the verification task, the

TARs of our NAN at FARs of 0.001 and 0.01 are respec-

tively 0.860 and 0.933, reducing the errors of the best results

from its baselines by about 39% and 23%, respectively.

To our knowledge, with the media aggregation our NAN

achieves top performances compared to previous methods.

It has a same verification TAR at FAR=0.1 and identifica-

tion Rank-10 CMC as the state-of-the-art method of [10],

but outperforms it on all other metrics (e.g. 0.881 vs. 0.836

TARs at FAR=0.01, 0.817 vs. 0.774 TPIRs at FPIR=0.01

and 0.958 vs. 0.928 Rank-1 accuracy).

Figure 3 has shown some typical examples of the weight-

ing results. NAN exhibits the ability to choose high-quality

and more discriminative face images while repelling poor

face images.

3.4. Results on YouTube Face dataset

We then test our method on the YouTube Face (YTF)

dataset [42] which is designed for unconstrained face verifi-

cation in videos. It contains 3,425 videos of 1,595 different

people, and the video lengths vary from 48 to 6,070 frames

with an average length of 181.3 frames. Ten folds of 500

video pairs are available, and we follow the standard veri-

fication protocol to report the average accuracy with cross-

validation. We again use the STN and similarity transfor-

mation to align the face images.

The results of our NAN, its baselines, and other methods

are presented in Table 3, with their ROC curves shown in

Fig. 5. It can be seen that the NAN again outperforms all its
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Figure 5. Average ROC curves of different methods and our NAN

on the YTF dataset over the 10 splits.
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Figure 6. Typical examples on the YTF dataset showing the

weights of the video frames computed by our NAN. In each row,

five frames are sampled from a video and sorted based on their

weights (numbers in the rectangles); the rightmost bar chart shows

the sorted weights of all the frames (heights scaled).

baselines. The gaps between NAN and the best-performing

baselines are smaller compared to the results on IJB-A. This

is because the face variations in this dataset are relatively

small (compare the examples in Fig. 6 and Fig. 3), thus no

much beneficial information can be extracted compared to

naive average pooling or computing mean L2 distances.

Compared to previous methods, our NAN achieves a

mean accuracy of 95.72%, reducing the error of FaceNet

by 12.3%. Note that FaceNet is also based on a GoogLeNet

style network, and the average similarity of all pairs of 100

frames in each video (i.e., 10K pairs) was used [31]. To

our knowledge, only the VGG-Face [28] achieves an accu-

racy (97.3%) higher than ours. However, that result is based

on a further discriminative metric learning on YTF, without

which the accuracy is only 91.5% [28].
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Table 4. Identification performance (rank-1 accuracies, %) on the

Celebrity-1000 dataset for the close-set tests.

Number of Subjects

Method 100 200 500 1000

MTJSR [22] 50.60 40.80 35.46 30.04

Eigen-PEP [21] 50.60 45.02 39.97 31.94

CNN+Mean L2 85.26 77.59 74.57 67.91

CNN+AvePool - VideoAggr 86.06 82.38 80.48 74.26

CNN+AvePool - SubjectAggr 84.46 78.93 77.68 73.41

NAN - VideoAggr 88.04 82.95 82.27 76.24

NAN - SubjectAggr 90.44 83.33 82.27 77.17

3.5. Results on Celebrity­1000 dataset

The Celebrity-1000 dataset [22] is designed to study the

unconstrained video-based face identification problem. It

contains 159,726 video sequences of 1,000 human subjects,

with 2.4M frames in total (∼15 frames per sequence). We

use the provided 5 facial landmarks to align the face images.

Two types of protocols – open-set and close-set - exist on

this dataset. More details about the protocols and the dataset

can be found in [22].

Close-set tests. For the close-set protocol, we first train

the network on the video sequences with the identification

loss. We take the FC layer output values as the scores and

the subject with the maximum score as the result. We also

train a linear classifier for CNN+AvePool to classify each

video feature. As the features are built on video sequences,

we call this approach ‘VideoAggr’ to distinguish it from an-

other approach to be described next. Each subject in the

dataset has multiple video sequences, thus we can build a

single representation for a subject by aggregating all avail-

able images in all the training (gallery) video sequences. We

call this approach ‘SubjectAggr’. This way, the linear clas-

sifier can be bypassed, and identification can be achieved

simply by comparing the feature L2 distances.

The results are presented in Table 4. Note that [22] and

[21] are not using deep learning and no deep network based

method reported result on this dataset. So we mainly com-

pare with our baselines in the following. It can be seen

from Table 4 and Fig. 7 (a) that NAN consistently outper-

forms the baseline methods for both ‘VideoAggr’ and ‘Sub-

jectAggr’. Significant improvements upon the baseline are

achieved for the ‘SubjectAggr’ approach. It is interesting

to see that, ‘SubjectAggr’ leads to a clear performance drop

for CNN+AvePool compared to its ‘VideoAggr’. This in-

dicates that the naive aggregation gets even worse when

applied on the subject level with multiple videos. How-

ever, our NAN can benefit from ‘SubjectAggr’, yielding re-

sults consistently better than or on par with the ‘VideoAggr’

approach and delivers a considerable accuracy boost com-

pared to the baseline. This suggests our NAN works quite

well on handling large data variations.

Table 5. Identification performance (rank-1 accuracies, %) on the

Celebrity-1000 dataset for the open-set tests.

Number of Subjects

Method 100 200 400 800

MTJSR [22] 46.12 39.84 37.51 33.50

Eigen-PEP [21] 51.55 46.15 42.33 35.90

CNN+Mean L2 84.88 79.88 76.76 70.67

CNN+AvePool - SubjectAggr 84.11 79.09 78.40 75.12

NAN - SubjectAggr 88.76 85.21 82.74 79.87
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Figure 7. The CMC curves of different methods on Celebrity 1000.

Open-set tests. We then test our NAN with the close-set

protocol. We first train the network on the provided training

video sequences. In the testing stage, we take the ‘Subjec-

tAggr’ approach described before to build a highly-compact

face representation for each gallery subject. Identification is

perform simply by comparing the L2 distances between ag-

gregated face representations.

The results in both Table 5 and Fig. 7 (b) show that

our NAN significantly reduces the error of the baseline

CNN+AvePool. This again suggests that in the presence

of large face variances, the widely used strategies such as

average-pooling aggregation and the pairwise distance com-

putation are far from optimal. In such cases, our learned

NAN model is clearly more powerful, and the aggregated

feature representation by it is more favorable for the video

face recognition task.

4. Conclusions

We have presented a Neural Aggregation Network for

video face representation and recognition. It fuses all input

frames with a set of content adaptive weights, resulting in

a compact representation that is invariant to the input frame

order. The aggregation scheme is simple with small compu-

tation and memory footprints, but can generate quality face

representations after training. The proposed NAN can be

used for general video or set representation, and we plan to

apply it to other vision tasks in our future work.
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