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Abstract

Zero-shot learning, a special case of unsupervised do-

main adaptation where the source and target domains have

disjoint label spaces, has become increasingly popular in

the computer vision community. In this paper, we propose

a novel zero-shot learning method based on discriminative

sparse non-negative matrix factorization. The proposed ap-

proach aims to identify a set of common high-level seman-

tic components across the two domains via non-negative

sparse matrix factorization, while enforcing the representa-

tion vectors of the images in this common component-based

space to be discriminatively aligned with the attribute-

based label representation vectors. To fully exploit the

aligned semantic information contained in the learned rep-

resentation vectors of the instances, we develop a label

propagation based testing procedure to classify the unla-

beled instances from the unseen classes in the target do-

main. We conduct experiments on four standard zero-shot

learning image datasets, by comparing the proposed ap-

proach to the state-of-the-art zero-shot learning methods.

The empirical results demonstrate the efficacy of the pro-

posed approach.

1. Introduction

With the rapid increase of image collections, the class

categories involved also expand quickly. The popular stan-

dard image classification models such as deep neural net-

works [15, 28] however require a massive amount of la-

beled training data from all classes to function properly. To

cope with the expensive and sometimes impractical annota-

tion needs required for building prediction systems over the

newly appeared classes, zero-shot learning (ZSL), which

transfers information from the seen classes with labeled in-

stances to recognize the new classes that have not been seen

in the labeled training data, has recently received increas-

ing attention in the research community. ZSL has already

been investigated on various computer vision tasks, includ-

ing image categorization [17, 7, 2, 18, 14], event detection

[32] and action recognition [10, 19, 5].

ZSL can be viewed as a special case of unsupervised

domain adaptation, where the source domain (labeled data

from the seen classes) and the target domain (unlabeled

data from the unseen classes) have completely disjoint la-

bel spaces. Hence additional side information has typi-

cally been required to build inter-class connections to fa-

cilitate the information adaptation across class categories.

Attributes, which denote high-level visual entities or visual

characteristics, have been one most common type of side in-

formation exploited in zero shot learning. High-level visual

attributes have been exploited in the literature to improve

image classification performance [6, 31, 27]. In ZSL, such

attributes have been primarily used to provide high-level se-

mantic representations for the class labels. For example,

in the Animal with Attributes (AwA) dataset [16], each an-

imal class category has been described as a prototype vec-

tor of attributes such as ‘black’, ‘stripes’, ‘four legs’, etc.

By mapping both seen classes and unseen classes into the

semantic space based on the same set of attributes, infor-

mation adaptation can be achieved for zero-shot categoriza-

tion [23, 16, 17]. Besides attributes, word embeddings have

also been used to produce semantic label representations,

i.e., prototype label vectors, and build the inter-class con-

nections in some ZSL works [7, 22, 29, 2]. Some other

works have also exploited the class taxonomy structures to

infer label relationships for ZSL [25, 12, 3].

From the methodology perspective, many ZSL methods

have been developed in the literature. They can be roughly

grouped into the following three types: (1) visual feature

projection methods; (2) semantic similarity matching meth-

ods; and (3) sparse coding methods. The visual feature pro-

jection methods first project an instance (visual feature vec-

tor of the image) into the same semantic space as the proto-

type label vectors, and then assign a prediction label to it by

comparing its similarity with all the prototypes of unseen

classes [17, 1, 2, 7, 26]. The semantic similarity matching

methods work in a different way [17, 22, 34]. Their train-

ing part remain the same as conventional image classifica-

tion problem, i.e., a classifier is trained on the seen classes.
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When a test instance comes, they use the trained classifier to

acquire prediction scores of the instance belonging to each

of the seen classes. Finally, the scores are combined with

the semantic similarities between each pair of seen and un-

seen classes to derive the prediction scores on the target

unseen classes. The sparse coding methods on the other

hand are kind of a combination of the previous two types

of methods [12, 14]. They transform instances into the la-

bel embedding space by exploiting the sparse coding tech-

niques, while assigning each test instance into the unseen

class that has the closest semantic embedding. However,

most of these ZSL methods fail to exploit the unlabeled

instances from the unseen classes in the same way as the

labeled instances from the seen classes during the training

phase, which makes them prone to domain shift and leads

to overfitting to the seen classes.

In this paper we propose a novel zero-shot learning

method based on sparse non-negative matrix factorization,

which can be categorized into the sparse coding group. We

treat the labeled data from the seen classes as the source

domain and the unlabeled data from the unseen classes as

the target domain, and consider ZSL as a special case of

unsupervised domain adaptation. To bridge the divergence

across domains and enable information transfer across la-

bel categories, we perform sparse non-negative matrix fac-

torization on the data in both domains to induce a com-

mon dictionary across the two domains that contains com-

ponents for an expanded set of high-level semantic visual

attributes, while representing the instances across the two

domains in this common semantic dictionary space. More-

over, we simultaneously align the relevant part of the se-

mantic representation vectors of the labeled instances to its

attribute-based class label vectors under a discriminative

hinge loss. We formulate the overall learning process as

a semi-supervised sparse non-negative matrix factorization

problem and propose an iterative optimization algorithm

based on projected gradient descent to solve it. In addition,

we propose to further exploit the learned semantic repre-

sentations and use a label propagation technique to perform

test instance classification in the target domain. Compar-

ing to previous works, the proposed approach simultane-

ously learns discriminative semantic representations of the

instances from both the seen and unseen classes, which can

avoid the potential domain shift problem and naturally en-

able cross-domain information transfer. We conduct exper-

iments on four standard ZSL datasets and the empirical re-

sults show that the proposed approach can outperform the

state-of-the-art ZSL methods.

2. Related Work

Visual Feature Projection. Many ZSL methods explore

semantic relations between seen classes and unseen classes

to achieve the goal of automatically categorizing instances

into unseen classes. The visual feature projection methods

first train a projection model based on the training instances

and the attribute vectors (or semantic embeddings) of the

training classes. Then given a test instance, they project the

instance onto the semantic space and assign it into one of

the unseen classes by comparing the semantic output with

the prototypes of unseen classes. Many different projection

strategies have been adopted in the literature, including at-

tribute direct prediction [16, 17], linear mapping [1, 2], con-

volutional neural networks [7], and simple two layer linear

networks [26]. These methods however fail to take the unla-

beled instances from the unseen classes into account during

the projection function learning process.

Semantic Similarity Matching. Instead of projecting vi-

sual feature into the semantic space like the visual fea-

ture projection approaches, the semantic similarity match-

ing methods train a classic classifier on the training data

over the seen classes. In the test phase, they first apply the

learned classifier to categorize the test instance in terms of

the seen classes, and then use the semantic similarity match-

ing between the seen classes and unseen classes to further

assign it into the unseen classes. For example, the Indirect

Attribute Prediction (IAP) method [16] trains a probabilis-

tic classifier on seen classes. In the test phase, the predic-

tion scores on seen classes are used to predict an attribute

distribution, which is further used to predict unseen class

distribution. In [22] the authors used a convolutional neural

network to directly predict the seen class label of an im-

age, and then use the convex combination of the seen class

word embeddings [20] to match with unseen class embed-

dings. The Semantic Similarity Embedding (SSE) method

[34] proposes to represent each unseen class as a distribu-

tion/histogram of seen classes. Non-linear embedding func-

tions are learned to map instances into this space to com-

pare with those unseen classes. More recently, the work

in [4] introduces phantom classes and proposes to train

phantom classifiers as bases for synthesizing classifiers for

real classes. These methods fail to exploit the unlabeled

data from the target domain in the training process as well.

Sparse Coding. There is a large amount of work in sparse

coding and dictionary learning, but very few have tackled

ZSL. The work in [12] proposes to represent each cate-

gory as its supercategory plus a combination of attributes.

Since each category only contains several attributes, they

learn a sparse projection matrix to embed seen/unseen cat-

egories. They also require the hierarchical category infor-

mation from WordNet. Another work in [14] proposes to

first learn a dictionary on the source data with sparse cod-

ing, and then learn the target domain dictionary and target

data semantic labels by minimizing the reconstruction error.

They also exploited adaptation regularisation constraint

and visual-semantic similarity constraint (VSS). This work

is different from ours in that it separately learns two dic-
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tionaries for the source and target domains, while we learn

a unified semantic dictionary for both domains. Recently,

[35] proposes a novel Joint Latent Similarity Embedding

(JLSE) method for ZSL. They proposed to learn a joint la-

tent space which is insensitive to noises and can fit source

and target instances very well. They have reported great

improvements over previous state-of-the-art. We hence will

compare our proposed approach to this work.

3. Approach

3.1. Problem Formulation

We consider ZSL in the following unsupervised domain

adaptation setting. We have ns labeled images (Xs, Y s)
from Ks seen classes Ys = {1, 2, ...,Ks} in the source

domain, and a set of nu unlabeled images Xu from Ku

unseen classes Yu = {Ks+1, · · · ,K} with K = Ks+Ku

in the target domain. Here Xs ∈ IRns×d and Xu ∈ IRnu×d

are the input feature matrices, and Y s ∈ {0, 1}ns×K is

a class membership indicator matrix, which contains a

single 1 in the first Ks columns of each row. We use

X = [Xs;Xu] ∈ IRn×d to denote all the input images

represented as d-dimensional row vectors. We also assume

the attribute-based prototype vectors for all the K classes

are available in the form of a label representation matrix

M ∈ IRK×m, where the k-th row of M represents the

semantic prototype vector for the k-th class and is typically

sparse. The problem of ZSL is to transfer information from

the source domain to accurately categorize the unlabeled

images Xu into the right unseen class from Yu in the target

domain.

Notation. The following notations are used in the remain-

ing of the paper. We use In to denote an identity matrix of

size n × n, and use 0r,c to denote a r × c matrix with all

0s. We use 1 to denote a column vector with all 1s, and use

1k to denote a column zero vector with a single 1 at its k-th

entry, assuming the vector length can be determined from

the context. We use Xi to denote the i-th row of the matrix

X , use Xij to denote the entry of X at its i-th row and j-th

column. We use ‖Xi‖ to denote the Euclidean norm of the

vector Xi, and use ‖X‖F and ‖X‖1 to denote the Frobenius

norm and the entrywise ℓ1 norm of matrix X respectively.

We use λmax(X) to denote the largest eigenvalue of X in

terms of magnitude.

3.2. Sparse NonNegative Matrix Factorization

Previous ZSL works typically identify a projection func-

tion that maps the input instances into the semantic la-

bel prototype space based on the labeled data in the seen

classes, while either ignoring the unlabeled data in the un-

seen classes or handling them in separate steps. A poten-

tial problem is that such projection functions identified may

overfit the seen classes and do not work well on the unla-

beled data in the unseen classes, which can eventually hurt

the ZSL performance. This inspires us to jointly identify

the high level latent representations of both the labeled and

unlabeled images from the seen and unseen classes in the

same semantic space. From the unsupervised domain adap-

tation perspective, we are also motivated to learn transfer-

able latent representations of the data to address the domain

divergence problem [9, 21]. We hence propose to learn la-

tent intermediate representations of the images from both

the seen and unseen classes by performing the following

unified sparse non-negative matrix factorization (NMF) on

X with a common set of non-negative basis components:

min
Z≥0,Φ≥0

1

2
‖X − ZΦ‖2F + µ‖Φ‖1 + ρ‖Z‖1 (1)

where Φ ∈ IRa×d is the component matrix (i.e., dictionary)

that contains a basis vectors as its rows; Z ∈ IRn×a is

the latent representation matrix that contains the coefficient

vectors as its rows; and ℓ1 norm regularizers are used to in-

duce entrywise sparsity in Φ and Z. It has been shown in

the literature, sparse NMF can allow one to discover qual-

itatively better parts-based representations than the regular

NMF on images [11]. Here by using sparse NMF, we aim

to discover latent representations that can help adapt predic-

tion information across the class boundaries.

3.3. MaxMargin Semantic Alignment with Label
Representations

To enable the label information transfer from the seen

classes to the unseen classes and achieve effective ZSL, it

is desirable that the sparse NMF above can map the im-

ages into latent representation vectors in the same semantic

space as the label prototype vectors; i.e., the components in

the dictionary Φ should be corresponding to the attributes

that describe the class labels. Moreover, we will also need

to ensure the latent image representations obtained in Z can

be discriminative for their class labels. Towards this goal,

we propose to align the latent representation vectors of the

labeled images in Z with their corresponding label proto-

type vectors by enforcing each image to have the smallest

distance to the prototype vector of its corresponding class

label, such that ‖Zi − Y s
i M‖2 ≤ ‖Zi −Mk‖

2, ∀k ∈ Ys.

Restricting the dictionary components to the attributes

involved in the class label vectors however requires the at-

tribute set to be broad enough to cover all the contents in the

image data X , which is typically not true. Hence we further

propose to introduce an additional set of b latent compo-

nents into the sparse NMF model, such that a = m + b.

These additional components can capture the background

content in the images to help the accurate discovery of the

m attribute-based components by minimizing the recon-

struction error in Eq.(1). Without loss of generality, we

assume the first m components in Φ correspond to the la-
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Algorithm 1 Projected Subgradient Descent Algorithm

Input: Xi, Zi,Φ, Y s, M , B

Initialization: τ = 2
λmax(ΦΦ⊤)

.

Repeat

1. subgradient descent Zi = Zi − τ∂g(Zi)
2. projection: Zi = max(Zi, 0)
Until Converge

bel attributes, while the last b components are the additional

latent ones. Let B = [Im;0d,m] be a column selection ma-

trix for Z, such that ZB contains the first m columns of

Z. We then need to align ZB with the corresponding label

prototype representation vectors in M . By incorporating

this semantic alignment into the sparse NMF model using

a max-margin hinge loss, we formulate the following dis-

criminative learning model in the form of semi-supervised

sparse NMF:

min
Z≥0,Φ≥0

1

2
‖X−ZΦ‖2F + γ

ns
∑

i=1

ξi + µ‖Φ‖1 + ρ‖Z‖1 (2)

where the alignment hinge loss is defined as ξ
i

=

maxk∈Ys

(

∆(Yi1k = 0)− ‖ZiB −Mk‖
2 + ‖ZiB − Y s

i M‖2
)

+
;

the indicator function ∆(c) has value 1 if and only if the

condition c is true, and the capped operator is defined as

(·)+ = max(·, 0).
Note Z can be separated into two parts, Z = [Zs;Zu],

where Zs ∈ IRns×a and Zu ∈ IRnu×a contain the latent

representation vectors for the images from the seen classes

and unseen classes respectively. The hinge loss in the dis-

criminative semi-supervised NMF model above can push

the latent representation vectors ZsB to align with their

corresponding class label representation vectors, and hence

ZuB, expressed in the same space as ZsB, can be used to

determine the class labels of each unlabeled image from Xu

in the following way:

Y u
i = 1

⊤
k∗ , with k∗ = argmin

k∈Yu

‖Zu
i B −Mk‖

2. (3)

3.4. Optimization Algorithm

To solve the learning problem in Eq.(2), we propose to

use an iterative alternating optimization algorithm. In each

iteration, it alternatively learns the latent representation ma-

trix Z and the component matrix Φ in two steps.

(i) Learning Z by fixing Φ: The learning problem over Z

can be decomposed into a set of n independent subprob-

lems, one for each row of Z. For the i-th row of Z, the

subproblem can be written as:

min
Zi≥0

g(Zi)=
1

2
‖Xi−ZiΦ‖

2+γ∆(i ≤ ns)ξi+ρZi1 (4)

Since the hinge loss function ξi is non-smooth, we use a

projected subgradient descent algorithm, presented in Al-

gorithm 1, to perform minimization, where the subgradient

can be computed as:

∂g(Zi)=







ZiΦΦ
⊤−XiΦ

⊤ if ∆(i ≤ ns)ξi = 0;
(

ZiΦΦ
⊤−XiΦ

⊤+
2γ(Mk∗−Y s

i M)B⊤

)

otherwise;
(5)

with k∗ = argmax
k∈Ys (∆(Yi1k = 0) +D(i, k))

+
and

D(i, k) = ‖ZiB − Y s

i M‖2 − ‖ZiB − Mk‖
2. Let h(·) =

I(·)−τ∂g(·) be the gradient descent operator in the step 1 of

Algorithm 1. We choose the step-size parameter τ to ensure

h(·) is non-expansive, i.e., ‖h(Zi)−h(Z ′
i)‖ ≤ ‖Zi−Z ′

i‖ for

any feasible Zi and Z ′
i, which guarantees the convergence

of the algorithm [33]. This leads to 0 < τ ≤ 2
λmax(ΦΦ⊤)

.

(ii) Learning Φ by fixing Z: The minimization over Φ can

be written as:

min
Φ≥0

g(Φ) =
1

2
‖X − ZΦ‖2F + µtr(E⊤Φ) (6)

where E is a a × d matrix with all 1s. We use a projected

gradient descent algorithm to solve this linear constrained

quadratic programming problem. The projected gradient

descent algorithm has the same procedure as the Algorithm

1, except we work on Φ and use the following gradient in-

stead of subgradient:

∇g(Φ) = Z⊤ZΦ− Z⊤X + µE (7)

The step size τ is chosen in the same principle as stated

above to ensure the convergence of the algorithm. In this

case, it will be τ = 2
λmax(Z⊤Z)

.

4. Prediction with Label Propagation

The semantic representations, ZuB, obtained by our

proposed model can be viewed as signatures of the unla-

beled instances in the attribute-based label representation

space. They contain rich information that can be used

beyond the ZSL prediction procedure in Eq.(3), includ-

ing computing the matching degree scores between the in-

stances and the class labels, and calculating the affinities

between instances in the discriminative semantic space. We

hence propose to use a label propagation methodology to

classify the unlabeled instances into the unseen classes by

exploiting such rich information.

We first compute the matching scores of each unlabeled

instance with the unseen classes and use these scores as the

prediction confidence values to initialize a predicted label

matrix Y ∈ IRnu×Ku

; i.e., we set Yij = κ(Zu
i B,Mu

j ),
where Mu denotes a submatrix that contains the last Ku

rows of M , and κ(·, ·) denotes a cosine similarity function.

Next we construct a k-nearest neighbor (k-NN) graph

on the nu unlabeled test instances. We propose to use
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the learned representation matrix ZuB to complement the

original feature matrix Xu to represent the nu instances.

Moreover, in order to give equal weights to the two types

of features, we first perform PCA dimensionality reduc-

tion on Xu to reduce its dimension to the same size as

the ZuB part, and then normalize each row of the di-

mension reduced Xu and ZuB separately using their Eu-

clidean norms to obtain the normalized X̂u and ˆZuB re-

spectively. Finally we use S = [X̂u, ˆZuB] as the feature

matrix for the nu instances. After computing the squared

Euclidean distance between each pair of instances, such that

d(Si, Sj) = ‖Si − Sj‖
2, we can construct the k-NN graph

by computing the RBF kernel based affinity matrix W in

the following way:

Wij=

{

exp
(

−d(Si,Sj)
2σ2

)

, if i∈KNN(j) or j∈KNN(i)

0, otherwise

where KNN(i) denotes the k-nearest neighbors of the i-th

instance. Given this affinity matrix W , a normalized Lapla-

cian matrix L can be computed as L = Q−1/2WQ−1/2,

where Q is a diagonal matrix with Qii =
∑

j Wij . Finally

we can perform standard regularized label propagation [8],

which provides the following prediction score matrix:

Y ∗ = (Inu − αL)−1 × Y (8)

where α ∈ [0, 1] is a regularization trade-off parameter.

Then the label matrix Y u can be produced by setting

Y u
i = 1

⊤
k∗ , with k∗ = argmax

k∈Yu:j=k−Ks

Y ∗
ij (9)

5. Experiments

5.1. Experimental Setting

Datasets. We conducted experiments on four standard ZSL

datasets: (1) attribute-Pascal-Yahoo (aPY) [6]; (2) Animal

with Attribute (AwA) [16]; (3) Caltech-UCSD Bird 200-

2011 (CUB) [30]; and (4) SUN-Attribute (SUN) [24]. The

aPY dataset contains 12,695 images over 20 classes from

the Pascal dataset and 2,644 images over 12 classes col-

lected from Yahoo. Each image in this dataset is labeled

with a 64-dim binary vector to denote the attributes. The

AwA dataset contains 30,475 images from 50 classes of an-

imals. Each class is associated with a 85-dim attribute vec-

tor. CUB is a dataset for fine-grained classification. It con-

tains 11,788 images and 200 class categories. Each image

is labeled with a 312-dim vector with continuous values.

The SUN-Attribute dataset contains 717 categories with 20

images in each category, which ends up 14,140 images in

total, each annotated with a class label and a 102-dim at-

tribute vector. In our experiments we only use class-level

attribute vectors if provided, otherwise all the attribute vec-

tors of the images belong to the same class are averaged to

Table 1: Statistics of the four datasets used in the experi-

ments, represented in source/target format. The class splits

are provided in the first two datasets. We follow [1] to use

the same 50 test classes for the CUB dataset. For the SUN

dataset, we use the same 10 test classes as in [13].

Dataset # instances # classes # attributes

aPY 12695/2644 20/12 64

AwA 24295/6180 40/10 85

CUB 8855/2933 150/50 312

SUN 14140/200 707/10 102

serve as the class-level attribute vector. The overall statistic

information of the four datasets are summarized in Table 1.

Image Features. Features extracted from Convolutional

Neural Networks (CNN) have been well generalized for

different kinds of tasks. To take advantage of deep net-

works for better ZSL performance, we used the same CNN

features, 4096-dim vectors extracted from the verydeep-19

network [28], as adopted in previous ZSL works [34].

Parameter Selection. In our model there are three

hyper-parameters γ, µ and ρ. We conducted parameter

selection using the data in the seen classes for each

dataset. Given a dataset with Ks seen classes and Ku

target unseen classes, we further split the seen classes

into Ktrain = ⌊Ks × Ks

Ks+Ku ⌋ training classes and

Kval = Ks − Ktrain validation classes. We performed

ZSL to conduct parameter selection by using the Ktrain

classes as the seen classes and the Kval classes as the

unseen test classes. All the three parameters are selected

from the range {10a|a = −3,−2, ..., 2, 3}. After parameter

selection, we used the selected parameters to perform ZSL

with the original seen and unseen classes.

Model Initialization. The iterative training of the pro-

posed model needs to start at a good initialization of the

two model parameter matrices, the representation matrix

Z = [Zs;Zu] and the dictionary matrix Φ. Simple random

initialization can lead to very poor solutions. In this work,

we adopted an informative initialization procedure. First,

we can directly initialize the latent representation of the

labeled instances Zs as the corresponding class prototype

vectors; i.e., Zs = Y sMB⊤. Then, we solve the follow-

ing matrix factorization problem on the labeled data based

on the initial Zs: minΦm ‖Xs − Y sMΦm‖2F , which has a

closed-form solution and yields Φm = (M⊤Y s⊤Y sM +
ǫI)−1M⊤Y s⊤Xs, where the small constant ǫ is added to

avoid numerical problem. This solution Φm can be used as

the initialization for the first m rows of dictionary Φ, which

are corresponding to the m attributes. The rest b rows of
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Φ can be randomly initialized. Finally, given the initial-

ized Φ, we can pursue an initialization of Zu by solving

a matrix factorization problem on the unlabeled test data:

minZu ‖Xu − ZuΦ‖2F , which provides the initialization

Zu = XuΦ⊤(ΦΦ⊤ + ǫI)−1. Although these initialization

values are out of the feasible region, i.e., they do not satisfy

the non-negative constraints, they can greatly incorporate

information retrieved from the data and labels. Moreover,

in the iterative training procedure, Z and Φ will be immedi-

ately pushed into the feasible region after one iteration. In

our experiments, we found such an initialization procedure

can lead to better results than either random initialization or

feasible initialization.

5.2. ZeroShot Classification

We compared the proposed approach with a baseline

IAP [16] with CNN features and a few state-of-the-art ZSL

methods recently developed in the literature and reported

the results in Table 2. We tested two different versions of

the proposed discriminative semantic representation learn-

ing (DSRL) approach. The first version directly performs

prediction by comparing the learned semantic vectors ZuB

with the class label prototype vectors as shown in Eq.(3).

We denote this version as DSRL. The second version uses

the label propagation technique to classify the test instances

in the unseen classes. We denote this version as DSRL-LP.

The number of additional latent semantic components in our

model was set to b = 10 on all the datasets. For label prop-

agation, we used k = 10 to build the k-NN graph, while σ

was computed as the mean of distances in the k-NN graph,

and α was set to 0.5 for equal preference over the initial

prediction and the propagation factor. We repeat each ex-

periment five times with different model initializations and

reported the average multi-class classification accuracy re-

sults and the standard deviations. Among the comparison

methods, UDA-ZSL [14] is most relevant to our proposed

approach as it also adopted a sparse coding framework and

treated ZSL as unsupervised domain adaptation to bridge

the domain shift. However in their model, the source dictio-

nary and target dictionary are learnt separately. They con-

ducted experiments in several different settings. We com-

pared to their results produced in the same experimental

setting as other methods, i.e., using CNN features and la-

bel attributes. SSE-INT and SSE-ReLU are two variants of

the semantic similarity matching method proposed in [34].

JLSE is a more recently developed state-of-the-art method

[35], which uses dictionary learning for joint latent similar-

ity embedding.

From Table 2, we can see that the proposed DSRL-LP

method consistently outperforms all the comparison meth-

ods on all the four datasets, with substantial margins on

some datasets. In particular, on the CUB dataset, the pro-

posed DSRL-LP outperforms the best comparison method

JLSE by 15.36%. The CUB dataset is for fine-grained

classification which is quite challenging for general ZSL

methods. Most attributes in this dataset are designed as

‘color’ and ‘shape’ of birds, e.g. ‘wing color’, ‘back color’,

‘eye color’, ‘wing shape’, etc. There is a clear correspon-

dence between the attribute vector and the visual appear-

ance of an image. Our discriminative NMF framework

can nicely catch such attributes as visual components and

achieve a good alignment between the latent representation

vectors of the images and the attribute-based class proto-

type vectors, while effectively transferring prediction infor-

mation based on the visual knowledge from the source to

the target domain. Nevertheless, even if the datasets, e.g.,

AwA and SUN, contain some attributes that are not de-

signed specifically for visual component identification, the

proposed approach still can achieve a consistent mapping

from the visual components to the attribute concepts and

produce useful semantic instance representations for ZSL;

on AwA and SUN, DSRL-LP outperforms the best compar-

ison results by 8.10% and 1.57% respectively.

Between the two variants of the proposed approach,

DSRL-LP and DSRL, we can see with label propagation,

DSRL-LP can boost the performance substantially on three

out of the four datasets, and outperforms DSRL by 9.84%,

6.88% and 3.40% on AwA, CUB and SUN respectively.

This suggests that the rich semantic information from Zu

is useful for ZSL. However, we do observe a performance

drop on the aPY dataset. To investigate the reason, we pro-

duced the confusion matrices for the DSRL prediction re-

sults without label propagation on the four datasets, which

are presented in Figure 1. We can see that the confusion

matrix on the aPY dataset contains more noise than on the

other datasets, which suggests large prediction uncertain-

ties. In such case, label propagation can lead to a propaga-

tion of the noise and degrade the prediction performance.

But it is worth to notice that without label propagation, the

proposed DSLR outperforms the best comparison method,

JLSE, by 5.94% on aPY.

5.3. Study of the Semantic Representations

As mentioned before, the matrix Z in our model serves

as a high-level semantic representation of the instances,

whose submatrix ZB should be well aligned with the class

prototype vectors. To catch a glimpse of of the quality of

the learned Z representation for class separation, we com-

puted the inter-class cosine similarity matrix for the 12 un-

seen classes of the aPY dataset by using the average of the

in-class instance representations in Zu or ZuB as the class

representation vectors. We also compared to the results ob-

tained by using the average of the original input instances

within each class as the class representation vector, and us-

ing the attribute-based class prototype vector directly. We

visualized the inter-class similarity scores based on these
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Table 2: Zero-shot classification results in terms of multi-class classification accuracy on the four ZSL datasets. “-” indicates

results not reported.

Method aPY AwA CUB SUN Avg.

IAP [16] 21.14 49.16 25.43 48.50 36.06

UDA-ZSL [14] - 73.2 39.5 - -

SSE-INT [34] 44.15±0.34 71.52±0.79 30.19±0.59 82.17±0.76 57.01±0.62

SSE-ReLU [34] 46.23±0.53 76.33±0.83 30.41±0.20 82.50±1.32 58.87±0.72

JLSE [35] 50.35±2.97 79.12±0.53 41.78±0.52 83.83±0.29 63.77±1.08

DSRL 56.29±0.44 77.38±0.06 50.26±0.04 82.00±0.00 66.48±0.14

DSRL-LP 51.29±1.42 87.22±0.27 57.14±0.07 85.40±0.22 70.26±0.50
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Figure 1: Visualization of confusion matrix from the DSRL prediction results on the four datasets. Brighter color stands for

higher value.
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Figure 2: Visualization of cosine similarity values between 12 unseen classes in the aPY dataset. Each class is represented as

average of the following types of data within the class: (a) Verydeep-19 features Xu, (b) attribute vectors in M , (c) the learned

semantic representation ZuB that are aligned with the label attribute vectors, and (d) the learned semantic representation Zu.

four different class representations and presented the results

in Figure 2. We can see that the two figures produced by us-

ing the learned semantic representations, Zu or ZuB, have

less off-diagonal noise than the figure produced by using

the original feature Xu, which suggests better class separa-

tion ability. We further computed the simple average of the

off-diagonal values in each similarity matrix to evaluate its

quality, and smaller off-diagonal values indicate better rep-

resentation and stronger discriminative power. We obtained

an average off-diagonal value of 0.4131 from the similarity

matrix computed with original features Xu, and obtained

much smaller average values of 0.2300 and 0.2265 from the

similarity matrices produced by using our learned represen-

tations Zu and ZuB respectively. Even with the expert-

provided attribute-based class prototypes, the average off-

diagonal value on the inter-class similarity matrix is 0.3301,

which is larger than our values. These results show that

the latent semantic representations of the instances learned

by our proposed model have great discriminative power for

class separation.

Moreover, one important function of our model in sup-

porting ZSL lies in aligning the semantic representations

ZB of the instances with the corresponding attribute-based

class prototype vectors. For effective alignment, we expect

that each feature column in ZB corresponds to one seman-

tic attribute concept, while the corresponding component in

Φ becomes the visual description of the attribute. To ver-

ify whether an effective discriminative representation has
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Table 3: Similar attribute pairs computed from visual com-

ponent features: 〈 a1, a2 〉 denote a pair of attributes.

aPY
〈face, nose〉, 〈face, hair〉,

〈pot, leaf〉, 〈Jet Engine, Propeller〉
AwA 〈ocean, plankton〉, 〈black, white〉

CUB

〈wing color blue, upperpart color blue〉
〈wing color rufous, upperpart color rufous〉
〈underpart color rufous, breast color rufous〉
〈underpart color green, breast color green〉

SUN
〈open area, natural light〉, 〈sailing, diving〉,
〈hiking, rugged scene〉, 〈diving, scary〉

been produced by our model, we hence compare the se-

mantic attributes with their visual description components

in Φ. Our intuition is that if two attributes are visible and

have similar appearance, we expect their corresponding vi-

sual description components in Φ can reflect this closeness,

and vice versa. We thus computed the similarity value be-

tween each pair of attributes using their visual description

vectors in Φ. In Table 3 we present some meaningful pairs

we find from the ones with top similarity values. We can

see that the visual component description vectors learned in

the dictionary Φ can really reflect the semantic concepts of

the attributes. For example in the aPY dataset, ‘face’ and

‘nose’ are visually similar and conceptually related, so are

‘Jet Engine’ and ‘Propeller’. In SUN dataset, ‘sailing’ and

‘diving’ are very similar. It is even more interesting on the

fine-grained CUB dataset where most of the attributes are

related to color and shape. Here we can see that the learned

visual components correctly relate different parts of a bird

with the same color to each other; e.g. ‘wing color rufous’

vs. ‘upperpart color rufous’. This suggests the latent fea-

ture representations produced in our model are well aligned

with the class attributes.

5.4. Latent Dictionary Components

In the proposed model, in addition to the class attribute

components, we have also considered b additional latent

components. Our assumption is that the additional latent

components can increase the capacity of the model on han-

dling various background noise or content that is not cov-

ered by the existing attributes and hence help the accurate

discovery of the attribute-based components under the mini-

mization of the NMF reconstruction error. But do we really

need these additional latent components? How does the b

value affect the performance of the proposed approach? To

answer these questions, we conducted experiments on two

datasets, AwA and CUB, with a set of different b values

from the range of {0, 5, 10, 15, 20}. For each b value, the

experiments are conducted in the same way as before. The

results with different b values are presented in Figure 3.
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Figure 3: Performance with different b values. The worst

performance is gained when b = 0.

We can see that on both datasets, the worst performance

is produced when b = 0, i.e., no additional latent compo-

nents. Moreover, the gap between the test accuracy when

b = 0 and the best accuracy is substantially large on both

datasets. This result clearly suggests that the additional la-

tent components are useful and play a critical role in the pro-

posed ZSL model. The results also intuitively make sense

since when b = 0, under the reconstruction error, all the

background noise will be pushed into the components for

the class attributes, which will negatively affect the learn-

ing of the attribute dictionary and hence the ZSL.

With the increase of the b value, the performance of the

proposed approach improves substantially, especially when

b value is small. However, when b value gets too large,

e.g, b = 20 on CUB, it can harm the accurate learning of

the existing attribute components and hence the ZSL perfor-

mance. Nevertheless, within a reasonable value range, e.g.,

between 10 and 15, the performance change is very small

and the proposed approach achieves great performance.

6. Conclusion

In this paper we proposed a novel zero-shot method to

simultaneously learn latent representations for images from

both the seen and unseen classes based on a common dic-

tionary that contains basis components for an expanded set

of semantic attributes. By aligning the relevant part of the

semantic representation vectors of the labeled instances to

its attribute-based class label vectors under a discriminative

max-margin hinge loss, the learned instance representation

vectors can naturally reveal their relevance to different class

categories. We formulated the overall learning process as

a semi-supervised sparse non-negative matrix factorization

problem and proposed an iterative optimization algorithm

based on projected gradient descent to solve it. We have

also adopted the label propagation methodology to fully ex-

ploit the semantic instance representation vectors produced

by our model and perform test instance classification over

the unseen classes. We conducted experiments on four stan-

dard ZSL datasets and showed that the proposed approach

can outperform the state-of-the-art ZSL methods.
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