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Abstract

This paper proposes a new high dimensional regression

method by merging Gaussian process regression into a vari-

ational autoencoder framework. In contrast to other re-

gression methods, the proposed method focuses on the case

where output responses are on a complex high dimensional

manifold, such as images. Our contributions are summa-

rized as follows: (i) A new regression method estimating

high dimensional image responses, which is not handled by

existing regression algorithms, is proposed. (ii) The pro-

posed regression method introduces a strategy to learn the

latent space as well as the encoder and decoder so that the

result of the regressed response in the latent space coincide

with the corresponding response in the data space. (iii) The

proposed regression is embedded into a generative model,

and the whole procedure is developed by the variational au-

toencoder framework. We demonstrate the robustness and

effectiveness of our method through a number of experi-

ments on various visual data regression problems.

1. Introduction

Regression of paired input and output data with an un-

known relationship is one of the most crucial challenges in

data analysis. In diverse research fields, such as trajectory

analysis, robotics, the stock market, etc. [15, 44, 44, 28, 22],

target phenomena are interpreted as a form of paired input /

output data. In these applications, a regression algorithm is

usually used to estimate the unknown response for a given

input by using the information obtained from the observed

data pairs. Many vision applications can also be expressed

as such input / output data pairs. For example, in Fig. 1 (a),

the sequence of the motion images can be described by in-

put / output paired data, where the input can be defined as

the relative order and the output response is defined as the
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(b) Joint-Pose Data

?݂: ܺ → ܻ
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Figure 1. Examples of paired data in vision applications. (a) For

the image sequence, the domain can be defined by the space repre-

senting relative orders of image sequences. (b) For joint-pose data

pairs, the joint vector space can be a possible domain.

corresponding image. The motion capture data and their

corresponding images in Fig. 1 (b) are another example.

The input data are 3D joint positions, and their responses

will be the corresponding posture images. If we can model

the implicit function representing the given image data pairs

via regression, we can estimate unobserved images that cor-

respond to the input data.

However, applying existing multiple output regression

algorithms [1, 3, 2, 39] to these kinds of visual data ap-

plications is not straightforward, because the visual data are

usually represented in high dimensional spaces. In general,

high dimensional visual data (such as image sequences) are

difficult to be analyzed with classical probabilistic methods

because of their limited modeling capacity [17, 18]. Thus,

regression of visual data to estimate visual responses re-

quires a novel approach.

In handling high dimensional complex data, recent at-
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tempts [12, 27, 37, 24, 36] using a deep generative net-

work, such as the variational autoencoder (VAE) [24], have

achieved significant success in reconstructing images. In

VAE, a latent variable is defined to embed the compressed

information of the data, and an encoder is trained to map a

data space into its corresponding latent space. A decoder is

also trained to reconstruct images from a sampled point in

the latent space. The projection for the input data into the

latent space (via the encoder) captures the essential charac-

teristics of the data and allows execution of the regression

task using a much lower dimensional space. The regression

in the latent space is done together with the training of the

encoder and decoder. However, a naive combination of re-

gression and the VAE is not particularly effective because

the decoder and the latent space are not designed in a way

that permits the result of the regressed response in latent

space, and the corresponding response in data space, to co-

incide. Therefore, a new method to simultaneously train the

latent space and the encoder/decoder is required to achieve

coincidence between the regressed latent vector and the re-

constructed image.

In this paper, we solve this problem by combining the

VAE [24] and Gaussian process regression [35]. The key

idea of this work is to do regression in the latent space in-

stead of the high-dimensional image space. The proposed

algorithm generates the latent space that compresses the in-

formation of both the domain and output image using the

VAE, and projects the data pairs to the latent space. Then,

regression is conducted for the projected data pairs in latent

space, and the decoder is trained so that the regression in

latent space and image space coincide. To the best of our

knowledge, it is the first attempt to apply the VAE frame-

work to solve the regression problem. The whole process,

including the loss function, is designed as the generative

model, and a new mini-batch composition method is pre-

sented for training the decoder to satisfy our purpose.

All connection parameters of the encoder / decoder

are inferred by the end-to-end stochastic gradient descent

method as described in [23]. The proposed regression

method is validated with two different examples: sports se-

quences and motion image sequences with skeletons. The

first example presents a regression case of simple domain

to complex codomain, and the second example presents the

complex domain to complex codomain case.

2. Related Work

Deep Generative Network: Classical probabilistic gen-

erative models [34, 8, 42, 19, 29, 40, 5] have proven to

be successful in understanding diverse unsupervised data,

but their descriptive ability is insufficient to fully explain

complex data such as images [18]. Recently, as in other

works in the vision area [16, 31], deep layered architec-

tures have been successfully applied to solve this problem

with powerful data generation performance. Among these

architectures, generative adversarial network (GAN) [12]

and generative moment matching networks (GMMN) [27]

directly learn the generator that maps latent space to data

space. Meanwhile, the variants of the restricted Boltzman

machine (RBM) [17, 18, 38, 37] and probabilistic autoen-

coders [24, 30, 11] learn the encoder that defines the map

from data to latent space and the generator (decoder) simul-

taneously. The former methods, and especially variants of

GAN [12, 9, 33], are reported to describe the edges of gen-

erated images more sharply than the latter methods. How-

ever, the applicability of these methods is restricted due to

the difficulty of discovering the relationships between data

and latent space. This innate nature makes it difficult to use

adversarial networks for designing the regression. There-

fore, this paper adopts the variational autoencoder frame-

work [24], which is also more suitable than RBM families

to expand the regression model.

Variational Autoencoder: Since Kingma et al. [24]

first published the variational autoencoder (VAE), numer-

ous applications [32, 43] have been presented to solve

various problems. Yan et al. [43] proposed conditional

VAE in order to generate the image conditioned on the at-

tribute given in the form of sentences. Furthermore, recent

work [14, 25, 13] has demonstrated that a sequence in latent

space would be mapped back to the sequence of data. Hence

these methods embedded dynamic models such as recurrent

neural networks [14] and the Kalman filter [25, 21] into the

VAE framework. These algorithms [14, 25, 25, 13] success-

fully show the ability of dynamic models in a latent space to

capture the temporal changes of relatively simple objects in

images. In this paper, we apply the VAE for the regression

task in a relatively complex manifold.

Regression: Regression of paired data is theoretically

well established and analytic solutions for the infinite di-

mension of the basis function [4, 35] have been derived

for the last century. In non-parametric cases, Gaussian

process [35, 26] provides a general solution by expand-

ing Bayesian linear regression using kernel metrics and a

Gaussian process prior. By using this method, we can es-

timate the output data as a Gaussian posterior composed

of given data pairs and input data to the unobserved tar-

get outputs. However, applying the algorithms for the high-

dimensional output data is difficult because the kernel met-

ric has limited capacity to express the complicated high di-

mensional data. The variants of multiple output regression

algorithms [2, 3, 1, 39] are proposed to deal with multi-

dimensional output responses. Still, these algorithms fo-

cus on handling relatively low dimensional output responses

and are not able to sufficiently describe complicated data,

such as that of an image. In this paper, we construct a re-

gressed latent space by using a variational autoencoder to

handle complex data.
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Figure 2. Overall scheme of the proposed method. For observed data pairs x = {x1, x2, · · · , xN} and y = {y1, y2, · · · , yN}, the proposed

autoencoder reconstructs ŷi ' yi as shown in the top right. For the unobserved y∗ to given x∗, it is impossible to obtain z∗ by using an

encoder with WE , because we do not have information about y∗. Thus to estimate y∗, we obtain z∗ using regression from x, z and x∗, and

estimate the response ŷ∗ from z∗.

3. Proposed Method

3.1. Overall Scheme

Given the target data pair (xi, yi), i = 1, . . . , N, xi ∈
X , yi ∈ Y , our goal is to find the unknown response y⇤ for

a new input x⇤. In this paper, the response y ∈ Y is defined

as an image and the corresponding input x ∈ X is defined

accordingly based on the applications as in Fig. 1.

As shown in Fig. 2, for the observed data pairs

(xi, yi), i = 1, · · · , N , the encoder/decoder produces ŷi
which is the reconstruction of an observed image yi. For

the observed data, the encoding network E(·) produces

mean and variance for a part of the latent vector zi, that is,

[mi,y, σi,y] = E(yi;WE) which compresses yi to a latent

variable with Gaussian mean mi,y and variance σi,y . The

remaining part of zi is modeled by [mi,x, σi,x] = f(xi,Wx)
which represents mean and variance of zi. Thus, the Gaus-

sian distribution of zi is described by mi = [mi,y,mi,x]
and σi = diag[σi,y, σi,x]. For the unobserved image y⇤ for

a newly given x⇤, the proposed method produces ŷ⇤, which

is an estimator of y⇤.

Using zi sampled from N (mi, σi), the decoding net-

work reconstructs the output response ŷi, that is, ŷi =
D(zi;WD). Note that if (WE ,Wx,WD) is well trained

by the training scheme in Section 3.4, ŷi should be simi-

lar to yi. However, for an unobserved y⇤ to a given x⇤, it

is impossible to obtain z⇤ from E(·;WE) because we do

not have any information on y⇤. To estimate y⇤, we obtain

z⇤ by using regression from x = {x1, x2, · · · , xN}, z =
{z1, z2, · · · , zN} and x⇤. For this regression, zi is sam-

pled from N (mi, σi) for each observed response yi ∈ y =
{y1, y2, · · · , yN}. Then, we estimate z⇤ using Gaussian

process (GP) regression z⇤ ∼ R(x⇤; x, z, σk) to be de-

scribed in Section 3.2, where σk is a kernel parameter of

the GP regression, which can be produced by an additional

encoder σk = E0(y,WG); with σk = [σk,1, · · · , σk,N ]. In

this paper, for computational simplicity, we combine this

kernel encoder with the encoder network E(y;WE) and

change the outputs into [mi,y, σi,y, σi,k] = E(yi,WE).
After z⇤ is estimated, the response ŷ⇤ is reconstructed

from z⇤ by using the decoding network D(z⇤;WD). Note

that the D(z⇤;WD) should reconstruct not only ŷ from the

zi sampled by N (mi, σi), but also y⇤ from the z⇤ which is

the regression result obtained from x⇤, x, and y. The whole

procedure is designed as a generative framework with joint

distribution p(x⇤, y⇤, x, y,WE ,Wx,WD), and hence can be

derived by the VAE algorithm.

3.2. Variational Autoencoded Regression

The proposed scheme (depicted in Fig. 2) is derived from

the directed graph model in Fig. 3. The diagram in Fig. 3 (a)

represents the generative model describing a typical recon-

struction problem, and the diagram in Fig. 3 (b) is the vari-

ational model which not only approximates the generative

model in Fig. 3 (a), but also performs the regression for

the estimation of unobserved y by utilizing an information

variable x related to y. The joint distribution pθ(y, z) can be

expressed by the likelihood function pθ(y|z) and the prior

distribution pθ(z), where θ refers to the set of all parame-

ters related to the generation of the response y ∈ Y from

the latent variable z. In our method, the prior distribution

of z is defined as zero mean Gaussian distribution, as in

typical variants of VAE [43, 24]. Also, the likelihood func-

tion pθ(y|z) depicts the decoding process in the proposed

scheme. Below, it is shown that θ is realized by the param-

eter WD of the decoding network.

Once the joint distribution pθ(y, z) is defined, the pos-

terior pθ(z|y) can be theoretically derived from the Bayes

theorem, but the calculation is intractable. Therefore, the

variational distribution qφ(z|x, y) is introduced to approxi-
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Figure 3. The directed graphical model of the proposed method.

(a) Generative model for y and the latent variable z. (b) Variational

distribution to approximate the posterior pθ(z|y) of the generative

model. y is not observed for the newly given input x = x∗.

mate the true posterior distribution pθ(z|y). Unlike pθ(z|y),
x is introduced for the variational distribution qφ(z|x, y) to

sample z⇤ ∼ R(x⇤; x, z, σk), which is the result of the GP

regression for the unknown y⇤. qφ(z|x, y) represents the

overall encoding procedure generating the latent variable z

from the input data pair (x, y) and correspondingly, the vari-

ational parameter φ is realized by the parameters WE ,Wx

as described in Section 3.1. Importantly, qφ(z|x, y) should

be able to explain both cases: 1) an observed image yi,

and 2) an unobserved image y⇤ which requires regression

as mentioned previously. For the first case, the variational

distribution is defined as zi ∼ qφ(z|x = xi, y = yi).
For the latter case, the variational distribution is defined as

z⇤ ∼ qφ(z|x = x⇤, y ∈ ∅) which represents the GP regres-

sion procedure for estimating latent z⇤ for the input x⇤.

In order to estimate the parameters θ and φ

which minimize the distance between pθ(z|y) and

qφ(z|x, y), we minimize the Kullback−Leibler di-

vergence DKL(pθ(z|y)||qφ(z|x, y)). Following the

derivation in [6, 24], the minimization procedure

{θ⇤, φ⇤} = argmin{θ,φ} DKL(pθ(z|y)||qφ(z|x, y)) is

converted to {θ⇤, φ⇤} = argmin{θ,φ} L(θ, φ), where

L(θ, φ) =−DKL(qφ(z|x, y)||pθ(z))

+

N
X

i=1

log pθ(yi|zi) +
M
X

j=1

log pθ(ŷ⇤j |z⇤j).
(1)

z⇤,j and y⇤,j represents the M number of latent codes and

output responses for x⇤,j , j = 1, · · · ,M , to be regressed.

In (1), ŷ⇤,j = D(z⇤,j ;WD) is the reconstructed response

from z⇤,j by the decoding network as depicted in Fig. 2. The

parameters θ and φ are realized by the connection parame-

ters of the encoding network with regression for qφ(z|x, y),
and the decoding network for pθ(z|y) (see Section 3.3). To

minimize the loss in (1), we propose a method for mini-

batch learning (see Section 3.4). The Adam optimizer [23]

is used for stochastic gradient descent training.

3.3. Model Description

For the encoding part, we define qφ(z|x, y) which

maps the data pair (x, y) into the latent space Z . For

E;ǆ,ǇͿ E;ǆ,ǇͿ

D;zͿ

E;ǆ,ǇͿ

D;zͿ D;zͿ D;zͿ

Figure 4. Training strategy of the proposed method. The mini-

batch is generated from the sampled training data sequences.

both, observed and unobserved images, qφ(z|x, y) is

defined by Gaussian distribution as in (2) and it en-

ables us to analytically solve the KL-divergence term

DKL(qφ(z|x, y)||pθ(z)) in (1) following [24]:

qφ(z|x, y) = N (z|m(x, y), σ(x, y)). (2)

The variational parameter φ consists of the Gaussian mean

function m(x, y) and the variance function σ(x, y). The

m(x, y) and σ(x, y) are produced in different ways depend-

ing on the input data. When the input data is given by

x = xi ∈ x, the encoder yields m(x, y) = [mi,y,mi,x] and

σ(x, y) = diag[σi,y, σi,x], where diag[·] refers to a diago-

nal matrix. When the input data is given by x = x⇤,j ∈ x⇤,

m(x, y) and σ(x, y) are determined by the mean and vari-

ance (m⇤,j , σ⇤,j) estimated by GP regression from z, x and

x⇤,j , where

m⇤,j = K⇤,jK
−1Z, σG = (K⇤⇤,j −K⇤,jK

−1KT
⇤,j)I.

(3)

Z refers to the matrix [z1; z2; · · · ; zN ] ∈ RN⇥D, and I ∈
RD⇥D is the identity matrix, where D is the dimension of

z ∈ Z . The matrices K,K⇤⇤,j and K⇤,j are defined as

K =

2

6

4

k(x1, x1) · · · k(x1, xN )
...

. . .
...

k(xN , x1) · · · k(xN , xN )

3

7

5
, (4)

K⇤⇤,j = k(x⇤,j , x⇤,j), (5)

K⇤,j = [k(x⇤,j , x1), k(x⇤,j , x2), · · · , k(x⇤,j , xN )]. (6)

For the kernel k(·, ·), we use a simplified version of SE-

kernel [35], where k(xi, xj) =
√
σiσj exp ||xi − xj ||2.

Eventually, the variational parameter φ is realized by the

weight matrices (Wx,WE) of the encoder network. In sum-

mary, for the given data x, y, and x⇤, qφ(z|x, y) in (2) is

given as

qφ(z|x, y) =
(

N (mi, σi) x = xi, y = yi.

N (m⇤,j , σ⇤,j) x = x⇤,j , y ∈ ∅.
(7)

For the decoding procedure, we define the likelihood

function pθ(y|z) = p(y|D(z;WD)), where p(y|D(z;WD))
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is defined as a Gaussian distribution with mean D(z;WD)
and fixed variance. Since the prior of z is defined with zero

mean Gaussian and identity covariance matrix, the weight

WD represents the generative model parameter θ. Cor-

respondingly, the meanings of the second term and third

term in (1) are interpreted as follows. Since the negative

log-likelihood (− log(pθ(y|z))) is defined as l2 distance

||y −D(z;WD)||2 in our algorithm, the second term repre-

sents the reconstruction error for the given data pair (xi, yi)
to yi, and the third term denotes the estimation error for

y⇤,j via regression from the given input data x⇤,j and the

observed data (xi, yi), i = 1, . . . , N .

3.4. Training

To train the parameters of the proposed model, a suf-

ficient number of the training datasets is required. In

our algorithm, a total of V different training sequences

(xv
i , y

v
i ), v = 1, . . . , V, i = 1 . . . , Nv are used, as shown in

Fig. 4. These training data pairs share similar semantics to

the target (test) data pair (xi, yi). If the target data pair is a

golf swing sequence, the training data pairs will be different

golf swing sequences obtained in different situations. Once

the parameters are trained by the training dataset consisting

of diverse golf swings, the proposed method can complete

the target image sequence via regression from the incom-

plete test sequence on a golf swing. After training the model

with the mini-batch, we fine-tune the parameters with ob-

served data pairs in target regression.

Mini-Batch Training: The work in [7] reports that the

composition of the mini-batch is critical when using vari-

ants of stochastic gradient descent methods [23, 10] to train

the parameters. To generate the batch, in this paper, K se-

quences of a total V sequences are randomly selected. For

each selected training sequence k = 1 · · ·K, we randomly

pick L data pairs (xk
l , y

k
l ), l = 1, ..., L, where L = (M +

N). For the earlier N data pairs (xk
n, y

k
n), n = 1, · · · , N ,

we get the latent space vector zkn from the encoder func-

tion E(ykn;WE), and f(xk
n;Wx) to train WE ,Wx, and WD.

Alternatively, for the latter M data pairs (xk
m, ykm),m =

(N+1), · · · , L, we obtain the latent zkm by regression (Sec-

tion 3.3) from {zk1 , · · · , zkN}, {xk
1 , · · · , xk

N} and xk
m. The

responses {ykN+1
, · · · , ykL} are assumed to be unknown in

the encoding process. This data set is used to train the

decoder network D(z;WD) to reconstruct the proper re-

sponses not only for the zkn from the data pair (xk
n, y

k
n), but

also for the zkm which are obtained from the regression. The

corresponding loss from the estimated ŷkm and the actual ykm
refers to the the third term in (1). We note that it is possible

to calculate the loss term because ykm can be used as ground

truth regression response. After constructing the batch, the

stochastic gradient [23] for the batch is calculated to train

all parameters.

Parameter Fine-Tuning: After training the parameters

ܭ ܮ

Training Data Mini Batch

Observations …

…

ܻ:
ܺ:

?

Ϭ ϭ

?

Figure 5. Batch generation for fine-tuning. The batch is composed

of observed data pairs (red) and sampled data pairs in training

dataset.

WE ,Wx and WD using the batch from the training dataset,

we further fine-tune the parameters with the observed data

pairs (xi, yi), i = 1, · · · , N in the same way as previous

regression techniques [35, 26]. Note that the training of

the regression part is not done because the ground truth

is not available for the test dataset. For the fine-tuning

process, mini-batches are composed of the observed test

data pairs (xi, yi) and randomly selected (K − 1) data se-

quences (xk
i , y

k
i ) from the training set as in Fig. 5, where

i = 1, · · · , Nk and k = 1, ..., (K−1). When the total num-

ber N of observed test data pairs is less than L, we increase

the number of samples by allowing repetition. Then, the

parameters are fine-tuned with 50 iterations. The detailed

implementation is described in the supplementary material.

4. Experiments

In the experiments, we evaluated the regression capabil-

ity of the proposed method via two applications composed

of image data: (1) a problem with a simple temporal domain

and complicated codomain and (2) a problem with a com-

plicated domain and codomain. For the first application, we

used sport data sequences obtained from YouTube. Human

pose reconstruction for a given skeleton was tested for the

second application.

4.1. Sports Data Sequences

Evaluation Scenario: In this scenario, we created data sets

for three sport sequences: baseball swing, golf swing, and

weightlifting. The dataset includes 236 baseball swings,

232 golf swings and 129 weightlifting sequences from

YouTube. In the dataset, 1000 − 2000 images are included

for each action sequence, and their relative orders are given.

The domain is defined as X : [0, 1] and a point in X is as-

signed to x for each image y ∈ Y according to its relative

order in the entire sequence. For testing, the golf and the

baseball swings were trained with 200 randomly selected

sequences and tested with those that remained. The weight

lifting scenario was trained with 100 sequences. We exe-

cuted the regression for each test sequence with 20 observed
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Figure 6. Qualitative Results on regression from the sport dataset (best viewed in color). The row (a) in each sport represents the proposed

regression results. The images in rows (b) result from the regression with R-VAE. Row (c) is the result from MOGP [2]. The results on the

right indicate the samples of reconstruction results for observed images.

(a)

(b)

(c)

Figure 7. experimental results comparing with the NN method. (a)

proposed method. (b) NN with the latent space from VAE.

images within all images of each sequence and compared

the results with multiple-output GP regression (MOGP) [2],

and GP regression combined with vanilla VAE [24] (called

R-VAE from here on). For R-VAE, we conducted the fine-

tuning process in the same way as the proposed method. For

MOGP, we trained the kernel with two-thirds of the images

in the given sequences.

Qualitative Analysis: Fig. 6 shows the qualitative compar-

ison of image generation results. The sequences in Fig. 6

show samples uniformly picked among the regressed re-

sponses from 100 evenly divided points in the range [0, 1].
As seen in (a), the proposed method generated the most ac-

curate responses compared to the other methods. R-VAE

also succeeded in capturing the blunt characteristics of the

background and the motions of the actions. However, the

generated images in (b) suffer from large amount of noise

for some images it is difficult to recognize the motion (cir-

cled in red). Demonstrated are also instances in which the

order of the image was not matched (circled in blue), and

instances in which the background of the image was not

matched (circled in green). The images in the box show

the samples of reconstruction results for given image pairs.

Both, the proposed method and R-VAE successfully re-

constructed the images, but the regression performance is

largely different. As in (c), MOGP was not successful in

describing the motion changes in the image, where every

(f)

(c) Reconstructed observations(a) Without fine-tuning (b) With fine-tuning

Figure 8. Analysis on the effect of fine-tuning. (a), (b): the re-

gression result of the proposed method is shown in the first row

and that of R-VAE in the second row. (c): the images in the box

denotes the samples of reconstruction results for observed images.

regression converged to the average of the training images.

We also conducted the experiments comparing with

Nearest Neighbor (NN) method results to the proposed

method. We investigated the reconstruction results by ap-

plying the NN to the latent space after VAE learning. How-

ever, the latent space encoded by the vanilla VAE is not ap-

propriate enough to perform regression using the NN (see

Fig. 7). This is because the encoding of the background

region plays a dominant role in NN as compared to the

motion region. This problem is clearly seen at the bot-

tom right sequence in the Fig. 7. Although the background

(green and sky) region is relatively similar to the obser-

vation, the swinging human regions are not correctly re-

gressed. This clearly shows that the proposed regression

in the latent space is well performed achieving expected re-

gression results in the image space. The encoder and de-

coder are trained to link the regression results in the latent

space to the regression results in the image space directly,

which is not trivial as shown in Fig. 7 (b). This is the second

contribution of the proposed method (Abstract-ii).

Fig. 8 shows the effect of the fine-tuning process. The
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Figure 9. Results from +0.5σ, 1.0σ and 1.5σ latent sample.

Table 1. Measure for the results with / without background.

Structural Similarity Index Measure [41] result

sports Proposed R-VAE [24] MIGP [2] NN

Baseball 0.610 / 0.607 0.492 / 0.489 0.803 / 0.247 0.215 / 0.210

Golf 0.752 / 0.707 0.578 / 0.543 0.845 / 0.114 0.244 / 0.213

Snatch 0.377 / 0.369 0.207 / 0.205 0.626 / 0.019 0.206 / 0.198

first and second column show the results with and without

fine tuning. The result of the proposed method is shown

in the first row and that of R-VAE in the second row. Be-

fore fine tuning, both methods generated noisy outputs, but

the proposed method captured the vast characteristics of the

background as well as the change of the motions. In R-

VAE, background information was less accurate than the

proposed method (circled in red). After the fine-tuning pro-

cess, both methods accurately reconstructed the given im-

age pairs, as in (c). Nevertheless, the regression perfor-

mance between the methods varied significantly, as in (b).

Fig. 9 represents the image generation results for differ-

ent standard deviations. As with the original GP regression,

the proposed method estimates the output responses in the

form of mean and variance because the latent z for recon-

structing the image is sampled from Gaussian distribution,

as in (7). As seen in (a), the proposed algorithm captured

the core semantics of the motion in each image despite the

deviation change. In R-VAE, the regression results were

plausible when the sampled latent z was close to the mean,

but the motion in the image was regressed by a totally differ-

ent action when adding large amounts of noise (up to 1.0σ).

From this result, we can see that R-VAE also has an abil-

ity to align the images in the latent space according to their

order as reported in previous works [24, 13]. However, the

results also show that the learned variance of R-VAE does

not represent the motion semantics required for regression

well, which is essential for the realization of GP regression

in the image space.

Quantitative Analysis: The quantitative performance was

measured using the Structural Similarity Index Measure

(SSIM) [41] which captures the structural similarities be-

tween two images. We estimated the 100 images in the

test set by using their domain information only, and com-

pared the similarity between the ground truth image and

the regression results. Table 1 shows the performance mea-

Table 2. Measure for images from +0.5σ,+1.0σ and +1.5σ.

SSIM result for different standard deviations

sports method +0.5σ +1.0σ +1.5σ

Baseball proposed 0.6453 0.5980 0.5307

R-VAE [24] 0.4993 0.4402 0.3825

Golf proposed 0.7203 0.4839 0.4422

R-VAE 0.5642 0.4026 0.2417

Snatch proposed 0.4042 0.3656 0.3629

R-VAE 0.2700 0.1645 0.0770

sures for generated regression images. For the three differ-

ent sport sequences, the proposed method generated more

similar images to the ground truth (GT) compared to R-

VAE. Interestingly, the results of MOGP [2] which con-

verged to the average of the images were measured to be

most similar among the tested methods when including the

background. This is because the background of the average

image is almost the same as the background of the GT when

the background of the GT is fixed. When we measured the

similarity without the background region, MOGP was not

successful and the proposed algorithm achieved the highest

performance. Also, as with the result shown in Fig. 7, NN

method marked unsuccessful quantitative performance. Ta-

ble 2 and Fig. 9 show the performance when changing the

standard deviation. We confirmed that the proposed method

generated more plausible output than R-VAE for all cases.

4.2. Human Pose Reconstruction

Evaluation Scenario: For this experiment, we have used

the human 3.6 million (H3.6m) [20] dataset for generat-

ing proper human appearance given the joint positions. The

dataset provides 32 joint positions, and thus the input data

lie in 96 dimensional space. The dataset includes diverse

actions, and each action is repeatedly performed by differ-

ent actors. Our goal is to estimate the proper image of a

new skeleton by utilizing the observed pairs of joint posi-

tions and images. In the experiment, we used the ‘greeting’

and ‘posing’ scenarios of the H3.6m dataset. The scenario

for each actor was captured in 8 different view-points, re-

sulting in a total of 16 human pose sequences available for

each actor. We trained the model with the motions of 4 dif-

ferent actors using 12 sequences from each actor. Then, we

picked the observations from the remaining four sequences

and conducted the regression. The joint vectors for the re-

gression were selected from the sequences from which the

observations were selected. The joint vectors from other ac-

tors were also tested. For comparison, we used the recent

conditional VAE (C-VAE) [43] method, which generated an

image according to a given attribute coupled with the sam-

pled latent code. In this experiment, the joint vector was

used as the attribute.

Qualitative Analysis: Fig. 10 (A) shows the pose gen-

eration result of the proposed algorithm and C-VAE. For
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(b)

(a)

(c)

(d)

C-VAE (2)ProposedGT

Experiment (A) Experiment (B)

Figure 10. Human pose estimation results from the joint (best viewed in color). The images in row (a) represents the C-VAE (1) results.

The images in rows (b) is result from the CVAE (2). The row (c) is the result from proposed method. The row (d) shows the ground truth.

Table 3. Similarity measure for generated human pose image.

SSIM result for human pose generation

Actors proposed(A) CVAE(A) proposed(B) CVAE(B)

#1 0.7402 0.4849 0.5227 0.4059

#2 0.6743 0.4265 0.4775 0.3580

#3 0.7295 0.5094 0.5013 0.4268

#4 0.7671 0.4954 0.5224 0.4198

C-VAE (1), we used randomly sample latent code zy as

in [43]. For C-VAE (2), the latent code was given by the

proposed regression block in Fig. 2. As shown in (c), the

image regressed by the proposed method successfully de-

scribes the overall motion of each human pose. Also, note

that the background of each image was correctly generated

according to the view point of the observed data pair. The

generated images from C-VAE (2) contain a large amount

of noise, but they captured the rough silhouette of the actors.

This result is noticeable because C-VAE usually deals with

cases in which the attribute is discrete. The result from C-

VAE (2) was clearer than the result from C-VAE (1), but

the difference was not significant. The result in Fig. 10

(B) shows the output responses when the joint vectors of

other actors were given. The images in the blue box refer

to the ground truth pose, and the images in the red box are

the regression result by the proposed method. This result

shows that the proposed method generates poses that re-

semble those of the input joint vectors while preserving the

appearance of the given data pairs via regression. Specif-

ically, when the given pair involves a man wearing white

clothes, the generated image illustrates a man wearing the

same clothes with a similar pose to the GT image. C-VAE

(2) was not successful in generating a corresponding pose

for a given joint from other actors.

Quantitative Analysis: Table 3 shows the similarities be-

tween the generated image and the ground truth image. The

first two columns denoted by (A) represent the quantitative

results in experiment (A) of Fig. 10. In the experiment, the

proposed method achieved a higher score than C-VAE (2).

For experiment (B), we compared the similarity between the

regressed image and the original images for the joint vector

(green box in Fig. 10). There, our method also achieved a

higher score than C-VAE (2).

In this experiment, the input data lay in the high dimen-

sional space and the target joint vectors were selected with-

out considering temporal information. Despite the compli-

cated and non-sequential input domain, the proposed re-

gression method achieved reasonable output responses de-

scribing the semantics given in the input and the identity

information contained in the observed pairs. It means that

the proposed method is available for the temporal input and

can also handle more complex and non-sequential input.

5. Conclusion

In this paper, we have proposed a novel regression

method regarding high dimensional visual output. To tackle

the challenge, the proposed regression method is designed

so that the result of the regressed response in a latent space

and the corresponding response in the data space coincide.

Through qualitative and quantitative analysis, it has been

verified that our method properly estimates the regressed

image responses and offers an approximation of the compli-

cated input-output relationship. This paper discovers mean-

ingful progress in the regression field in that our work intro-

duces a way to combine a deep layered architecture to the

regression method in a probabilistic framework.
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