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Abstract

Many computer vision tasks involve processing large

amounts of data contaminated by outliers, which need to

be detected and rejected. While outlier detection methods

based on robust statistics have existed for decades, only re-

cently have methods based on sparse and low-rank repre-

sentation been developed along with guarantees of correct

outlier detection when the inliers lie in one or more low-

dimensional subspaces. This paper proposes a new outlier

detection method that combines tools from sparse represen-

tation with random walks on a graph. By exploiting the

property that data points can be expressed as sparse lin-

ear combinations of each other, we obtain an asymmetric

affinity matrix among data points, which we use to con-

struct a weighted directed graph. By defining a suitable

Markov Chain from this graph, we establish a connection

between inliers/outliers and essential/inessential states of

the Markov chain, which allows us to detect outliers by us-

ing random walks. We provide a theoretical analysis that

justifies the correctness of our method under geometric and

connectivity assumptions. Experimental results on image

databases demonstrate its superiority with respect to state-

of-the-art sparse and low-rank outlier detection methods.

1. Introduction

In many applications in computer vision, including mo-

tion estimation and segmentation [18] and face recognition

[2], high-dimensional datasets can be well approximated by

a union of low-dimensional subspaces. Such applications

have motivated a lot of research on the problems of learning

one or more subspaces from data, a.k.a. subspace learning

and subspace clustering, respectively. In practice, datasets

are often contaminated by points that do not lie in the sub-

spaces, i.e. outliers. In such situations, it is often essential to

detect and reject these outliers before any subsequent pro-

cessing/analysis is performed.

Prior work. We address the problem of outlier detection in

the setting when the inlier data are assumed to lie close to

a union of unknown low-dimensional subspaces (low rela-

tive to the dimension of the ambient space). A traditional

method for solving this problem is RANSAC [12], which is

based on randomly selecting a subset of points, fitting a sub-

space to them, and counting the number of points that are

well fit by this subspace; this process is repeated for suffi-

ciently many trials and the best fit is chosen. RANSAC is

intrinsically combinatorial and the number of trials needed

to find a good estimate of the subspace grows exponentially

with the subspace dimension. Consequently, the methods of

choice have been to robustly learn the subspaces by penaliz-

ing the sum of unsquared distances (in lieu of squared dis-

tances used in classical methods such as PCA) of points to

the closest subspace [9, 21, 54, 53]. Such a penalty is robust

to outliers because it reduces the contributions from large

residuals arising from outliers. However, the optimization

problem is usually nonconvex and a good initialization is

extremely important for finding the optimal solution.

The groundbreaking work of Wright et al. [47] and

Candès et al. [4] on using convex optimization techniques to

solve the PCA problem with robustness to corrupted entries

has led to many recent methods for PCA with robustness to

outliers [48, 28, 23, 52, 20]. For example, Outlier Pursuit

[48] uses the nuclear norm ‖ · ‖∗ to seek low-rank solutions

by solving the problem minL ‖X−L‖2,1+λ‖L‖∗ for some

λ > 0. A prominent advantage of convex optimization tech-

niques is that they are guaranteed to correctly identify out-

liers under certain conditions. Very recently, several non-

convex outlier detection methods have also been developed

with guaranteed correctness [19, 6]. Nonetheless, these

methods typically model a unique inlier subspace, e.g., by

a low rank matrix L in Outlier Pursuit, and therefore can-

not deal with multiple inlier subspaces since the union of

multiple subspaces could be high-dimensional.

Another class of methods with theoretical guarantees for

correctness utilizes the fact that outliers are expected to have

low similarities with other data points. In [5, 1], a multi-

way similarity is introduced that is defined from the polar

curvature, which has the advantage of exploiting the sub-

space structure. However, the number of combinations in

multi-way similarity can be prohibitively large. Some re-

cent works have explored using inner products between data

points for outlier detection [16, 35]. Although computation-

ally very efficient, these methods require the inliers to be

well distributed and densely sampled within the subspaces.
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(a) Two exemplar representation vectors (b) Representation matrix R

Figure 1. An illustration of a self-representation matrix R in the presence of outliers. The first 32 columns of the data matrix X correspond

to 32 images of one individual under different illuminations from the Extended Yale B database, and the next 32 images are randomly

chosen from all other individuals; three examples from each category are shown near the top of 1(a). We also show a typical representation

vector for an inlier and an outlier image in 1(a), and the complete representation matrix R in 1(b), where white and black denote rij 6= 0 and

rij = 0. Notice that inliers use only other inliers in their representation, while outliers use both inliers and outliers in their representations.

Overview of our method and contributions. In this work,

we address the problem of outlier detection by using data

self-representation. The proposed approach builds on the

self-expressiveness property of data in a union of low-

dimensional subspaces, originally introduced in [10], which

states that a point in a subspace can always be expressed as

a linear combination of other points in the subspace. In par-

ticular, if the columns of X = [x1, · · · ,xN ] lie in multiple

subspaces, then for all j = 1, . . . , N , there exists a vector

rj ∈ IRN such that xj = Xrj and the nonzero entries of

rj correspond to points in the same subspace as xj . If the

subspace dimensions are small, rj can be taken to be sparse

and be computed by solving the ℓ1 minimization problem

min
rj

‖rj‖1 +
γ

2
‖xj −Xrj‖

2
2 s.t. rjj = 0 (1)

for some γ > 0. In [10], an undirected graph is constructed

from R = [r1, · · · , rN ] in which each vertex corresponds

to a data point, and vertices corresponding to xi and xj are

connected if either rij or rji is nonzero. Such a graph can be

used to segment the data into their respective subspaces by

applying spectral clustering [41] to the graph’s Laplacian.

Consider now the case where X contains outliers to the

subspaces. Figure 1 illustrates an example representation

matrix R computed from (1) for data drawn from a sin-

gle subspace (face images from one individual) plus out-

liers (other images). In this case, the representation R is

such that inliers express themselves as linear combinations

of a few other inliers, while outliers express themselves as

linear combinations of both inliers and outliers. Motivated

by this observation, we use a directed graph to model data

relations: a directed edge from xj to xi indicates that xj

uses xi in its representation (i.e. rij 6= 0). Then a random

walk on the representation graph initialized at an outlier will

not return to the set of outliers since once the random walk

reaches an inlier it cannot return to the outliers. Therefore,

we design a random walk process and identify outliers as

those whose probabilities tend to zero. Our work makes the

following contributions with respect to the state of the art:

1. Our method can detect outliers using the probability

distribution of a random walk on a graph constructed

from data self-representation.

2. Our data self-representation allows our method to han-

dle multiple inlier subspaces. Knowledge of the num-

ber of subspaces and their dimensions is not required,

and the subspaces may have a nontrivial intersection.

3. Our method can explore contextual information by us-

ing a random walk, i.e., the “outlierness” of a particu-

lar point depends on the “outlierness” of its neighbors.

4. Our analysis shows that our method correctly identifies

outliers under suitable assumptions on the data distri-

bution and connectivity of the representation graph.

5. Experiments on real image databases illustrate the ef-

fectiveness of our method.

2. Related work

Outlier detection by self-representation. Prior work has

explored using data self-representation as a tool for outlier

detection in a union of subspaces. Specifically, motivated

by the observation that outliers do not have sparse repre-

sentations, [37, 8] declare a point xj as an outlier if ‖rj‖1
is above a threshold. However, this ℓ1-thresholding strategy

is not robust to outliers that are close to each other since

their representation vectors may have small ℓ1-norms. The

LRR [25] solves for a low-rank self-representation matrix R
in lieu of a sparse representation and penalizes the sum of

unsquared self-representation errors ‖xj − Xrj‖2, which
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makes it more robust to outliers. However, LRR requires

the subspaces to be independent and the sum of the union

of subspaces to be low-dimensional [26].

Outlier detection by maximum consensus. In a diverse

range of contexts such as maximum consensus [55, 7] and

robust linear regression [29, 42], people have studied prob-

lems of the form

min
b

N∑

i=1

I(|x⊤
i b− yi| ≥ ǫ), (2)

in which I(·) is the indicator function. Note that if we set

yi = 1 for all i, then (2) can be interpreted as detecting

outliers in data X where the inliers lie close to an affine

hyperplane. A problem closely related to (2) is

min
b

N∑

i=1

I(|x⊤
i b| ≥ ǫ) s.t. b 6= 0, (3)

which appears in many applications (e.g. see [34]). In par-

ticular, (3) can be used to learn a linear hyperplane from

data corrupted by outliers. To detect outliers in a general

low-dimensional subspace, one can apply (2) and (3) recur-

sively to find a basis for the orthogonal complement of the

subspace [39]. However, such an approach is limited be-

cause there can be only one inlier subspace and the dimen-

sion of that subspace must be known in advance.

Outlier detection by random walk. Perhaps the most

well-known random walk based algorithm is PageRank [3].

Originally introduced to determine the authority of website

pages from web graphs, PageRank and its variants have

been used in different contexts for ranking the centrality

of the vertices in a graph. In particular, [30, 31] propose

the OutRank, which ranks the “outlierness” of points in

a dataset by applying PageRank to an undirected graph in

which the weight of an edge is the cosine similarity or RBF

similarity between the two connected data points. Then,

points that have low centrality are regarded as outliers. The

outliers returned by OutRank are those that have low sim-

ilarity to other data points. Therefore, OutRank does not

work if points in a subspace are not dense enough.

3. Outlier detection by self-representation

In this section, we present our data self-representation

based outlier detection method. We first describe the data

self-representation and its associated properties for inliers

and outliers. We then design a random walk algorithm on

the representation graph whose limiting behavior allows us

to identify the sets of inliers and outliers.

3.1. Data self­representation

Given an unlabeled dataset X = [x1, · · · ,xN ] contain-

ing inliers and outliers, the first step of our algorithm is

to construct the data self-representation matrix denoted by

R = [r1, · · · , rN ]. As briefly discussed in the introduction

(see also Figure 1), a self-representation matrix R computed

from (1) is observed to have different properties for inliers

and outliers. Specifically, inliers usually use only other in-

liers for self-representation, i.e. for an inlier xj , the repre-

sentation is such that rij 6= 0 only if xi is also an inlier,

where rij is the (i, j)-th entry of R. This property is ex-

pected to hold if the inliers lie in a union of low dimensional

subspaces, as evidenced from the works [11, 37, 51, 45, 43].

As an intuitive explanation, if the inliers lie in a low di-

mensional subspace, then any inlier has a sparse represen-

tation using other points in this subspace. Thus such a rep-

resentation can be found by using sparsity-inducing regu-

larization as seen in (1). In contrast, outliers are generally

randomly distributed in the ambient space, so that a self-

representation usually contains both inliers and outliers.

Since the representation R computed from (1) is sparse,

there are potentially connectivity issues in the representa-

tion graph, i.e. an inlier that is not well-connected to other

inliers may be detected as an outlier, and an outlier that

is not well connected may be detected as an inlier. To

address the connectivity issue, we compute the data self-

representation matrix R by the elastic net problem [56, 49]:

min
rj

λ‖rj‖1+
1− λ

2
‖rj‖

2
2+

γ

2
‖xj−Xrj‖

2
2 s.t. rjj = 0,

(4)

in which λ ∈ [0, 1] controls the balance between sparse-

ness (via ℓ1 regularization) and connectivity (via ℓ2 regu-

larization). Specifically, if λ is chosen close to 1, we can

still expect that the computed representation for an inlier

will only use inliers. The ℓ2 regularization has been intro-

duced to promote more connections between data points,

i.e. if λ ∈ [0, 1), then one expects more nonzero entries in

R. A detailed discussion of the representation computed

from (4) and the connectivity issue is provided in Section 4.

3.2. Representation graph and random walk

We use a directed graph G, which we call a represen-

tation graph, to capture the behavior of inliers and outliers

from the representation matrix R. The vertices of G cor-

respond to the data points X , and the edges are given by

the (weighted) adjacency matrix A := |R|⊤ ∈ IRN×N with

the absolute value taken elementwise, i.e., the weight of the

edge from xi to xj is given by aij = |rji|. In the rep-

resentation graph, we expect that vertices corresponding to

inliers will have edges that only lead to inliers, while ver-

tices that are outliers will have edges that lead to both inliers

and outliers. In other words, we do not expect to have any

edges that lead from an inlier to an outlier.

Using the previous paragraph as motivation, we design

a random walk procedure to identify the outliers. A ran-

dom walk on the representation graph G is a discrete time

3397



Markov chain, for which the transition probability from xi

at a given time to xj at the next time is given by pij :=
aij/di with di :=

∑
j aij . By this definition, if the starting

point of a random walk is an inlier then it will never escape

the set of inliers as there is no edge going from any inlier

to any outlier. In contrast, a random walk starting from an

outlier will likely end up in an inlier state since once it en-

ters any inlier it will never return to an outlier state. Thus,

by using different data points to initialize random walks,

outliers can be identified by observing the final probability

distribution of the state of the random walks (see Figure 2).

If P ∈ IRN×N is the transition matrix with entries pij ,

then P is related to the representation matrix R by

pij = |rji|/‖ri‖1 for all {i, j} ⊂ {1, 2, · · ·N}. (5)

We define π(t) = [π
(t)
1 , . . . , π

(t)
N ] to be the state probability

distribution at time t, then the state transition is given by

π(t+1) = π(t)P . Thus, a t-step transition is π(t) = π(0)P t

with π(0) the chosen initial state probability distribution.

3.3. Main algorithm: Outlier detection by R­graph

We propose to perform outlier detection by using ran-

dom walks on the representation graph G. We set the ini-

tial probability distribution as π(0) = [1/N, · · · , 1/N ], and

then compute the t-step transition π(t) = π(0)P t. This can

be interpreted as initializing a random walk from each of

the N data points, and then finding the sum of probability

distributions of all random walks after t steps. It is expected

that all random walks—starting from either an inlier or an

outlier—will eventually have high probabilities for the in-

lier states and low probabilities for the outlier states.

We note that the π(t) defined as above need not converge,

as shown by the 2-dimensional example P = [ 0 1
1 0 ]. Instead,

we choose to use the T -step Cesàro mean, given by

π̄
(T ) =

1

T

T∑

t=1

π
(0)P t ≡

1

T

T∑

t=1

π
(t), (6)

which is the average of the first T t-step probability distri-

butions (see Figure 2). The sequence {π̄(T )} has the benefit

that it always converges, and its limit is the same as that of

π(t) whenever the latter exists. In the next section, we give

a more detailed discussion of this choice, its properties for

outlier detection, and its convergence behavior.

Our complete algorithm is stated as Algorithm 1.

4. Theoretical guarantees for correctness

Let us first formally define the problem of outlier detec-

tion when data is drawn from a union of subspaces.

Problem 1 (Outlier detection in a union of subspaces)

Given data X = [x1, · · · ,xN ] ∈ IRD×N whose columns

Algorithm 1 Outlier detection by representation graph

Input: Data X = [x1, · · ·,xN ], #iterations T , threshold ǫ.
1: Use X to solve for R = [r1, · · · , rN ] using (4).

2: Compute P from R using (5).

3: Initialize t = 0, π = [1/N, · · · , 1/N ], and π̄ = 0.

4: for t = 1, 2, . . . T do

5: Compute π ← π · P , and then set π̄ ← π̄ + π.

6: end for

7: π̄ ← π̄/T .

Output: An indicator of outliers: xj is an outlier if π̄j ≤ ǫ.

1 2 3

4 5 6

Figure 2. Illustration of random walks on a representation graph.

Top: green balls represent inliers and red balls represent outliers,

and arrows represent edges among nodes. Notice that there is no

edge going from inliers to outliers. A random walk starting from

any point will end up at only inlier points. Bottom: bar plot of

π̄
(100) with the ith bar corresponding to the ith entry in π̄

(100).

The use of thresholding on this probability distribution will cor-

rectly distinguish outliers from inliers.

contain inliers that are drawn from an unknown number of

unknown subspaces {Sℓ}
n
ℓ=1, and outliers that are outside

of ∪nℓ=1Sℓ, the goal is to identify the set of outliers.

Recall that motivation for our method is that ideally there

will be no edge going from an inlier to an outlier in the

representation graph. This motivates us to assume that a

random walk starting at any inlier will eventually return to

itself, i.e. inliers are essential states of the Markov chain,

while outliers are those that have a chance of never coming

back to itself, i.e. outliers are inessential states. Formally,

we work with a (time homogeneous) Markov chain with

state space Ω = {1, · · · , N}, in which each state j corre-

sponds to data xj , and the transition probability P is given

by (5). Given {i, j} ⊂ Ω, we say that j is accessible from

i, denoted as i → j, if there exists some t > 0 such that

the (i, j)-th entry of P t is positive. Intuitively, i → j if a

random walk can move from i to j in finitely many steps.
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Definition 1 (Essential and inessential state [22]) A state

i ∈ Ω is essential if for all j such that i → j it is also true

that j → i. A state is inessential if it is not essential.

Our aim in this section is to establish that if inliers con-

nect to themselves, i.e. they are subspace-preserving (Sec-

tion 4.1), and the representation R satisfies certain con-

nectivity conditions (Section 4.2), then inliers are essential

states of the Markov chain and outliers are inessential states.

Subsequently, in Section 4.3 we show that the Cesàro mean

(6) identifies essential and inessential states, thus establish-

ing the correctness of Algorithm 1 for outlier detection.

4.1. Subspace­preserving representation

We first establish that inliers express themselves with

only other inliers when they lie in a union of low dimen-

sional subspaces. This property is well-studied in the sub-

space clustering literature. We will borrow terminologies

and results from prior work and modify them for our cur-

rent task of outlier detection.

Definition 2 (Subspace-preserving representation [40])

If xj ∈ Sℓ is an inlier, then the representation rj ∈ IRN

is called subspace-preserving if the nonzero entries of rj
correspond to points in Sℓ, i.e. rij 6= 0 only if xi ∈ Sℓ.
The representation matrix R = [r1, · · · , rN ] ∈ IRN×N is

called subspace-preserving if rj is subspace-preserving for

every inlier xj .

A representation matrix R is subspace-preserving if each

inlier uses points in its own subspace for representation.

Given X , a subspace-preserving representation R can be

obtained by solving (4) when certain geometric conditions

hold. The following result is modified from [49]. It assumes

that columns of X are normalized to have unit ℓ2-norm.

Theorem 1 Let xj ∈ Sℓ be an inlier. Define the oracle

point of xj to be δj := γ · (xj −Xℓ
−j · r

ℓ
j), where Xℓ

−j is

the matrix containing all points in Sℓ except xj and

r
ℓ
j := argmin

r

λ‖r‖1 +
1− λ

2
‖r‖22 +

γ

2
‖xj −Xℓ

−jr‖
2
2.

The solution rj to (4) is subspace-preserving if

max
k 6=j,xk∈Sℓ

|〈xk, δ̄j〉| − max
k:xk /∈Sℓ

|〈xk, δ̄j〉| >
1− λ

λ
, (7)

where δ̄j := δj/‖δj‖2.

We provide an outline of the proof in [50]. Note that the or-

acle point δj lies in Sℓ and that its definition only depends

on points in Sℓ. The first term in condition (7) captures the

distribution of points in Sℓ near δ̄j , and is expected to be

large if the neighborhood of δ̄j is well-covered by points

from Sℓ. The second term characterizes the similarity be-

tween the oracle point δ̄j and all other data points, which

includes the outliers and the inliers from other subspaces.

The condition requires the former to be larger than the lat-

ter by a margin of 1−λ
λ , which is close to zero if λ is close to

1. Overall, condition (7) requires that points in Sℓ are dense

around δ̄j , which is itself in Sℓ, and that outliers and inliers

from other subspaces do not lie close to δ̄j .

Even if (7) holds for all j so that the representation

R is subspace-preserving, we cannot automatically es-

tablish an equivalence between inliers/outliers and essen-

tial/inessential states because of potential complications re-

lated to the graph’s connectivity. This is addressed next.

4.2. Connectivity considerations

In the context of sparse subspace clustering, the well-

known connectivity issue [32, 46, 27, 49, 44] refers to the

problem that points in the same subspace may not be well-

connected in the representation graph, which may cause

oversegmentation of the true clusters. Thus, one has to

make the assumption that each true cluster is connected to

guarantee correct clustering. For the outlier detection prob-

lem, it may happen that an inlier is inessential and thus clas-

sified as an outlier when the inliers are not well-connected;

similarly, an outlier may be essential and thus classified as

an inlier if it is not connected to at least one inlier. In fact,

the situation is even more involved since the representation

graph is directed and inliers and outliers behave differently.

Suppose, as a first example, that there exists an inlier that

is never used to express any other inliers. This is equivalent

to saying that there is no edge going into this point from any

other inliers. Note that the subspace-preserving property

can still hold if this inlier expresses itself using other inliers.

Yet, since a random walk leaving this point would never

return it can not be identified as an inlier. To avoid such

cases, we need the following assumption.

Assumption 1 For any inlier subspace Sℓ, the vertices

{xj ∈ Sℓ} of the representation graph are strongly con-

nected, i.e. there is a path in each direction between each

pair of vertices.

Assumption 1 requires good connectivity between points

from the same inlier subspace. We also need good connec-

tivity between outliers and inliers. Consider the example

when there is a subset of outliers for which all of their out-

going edges lead only to points within that same subset. In

this case, the subset of points can not be detected as out-

liers since their representation pattern is the same as for the

inliers. The next assumption rules out this case.

Assumption 2 For each subset of outliers there exists an

edge in the representation graph that goes from a point in

this subset to an inlier or to an outlier outside this subset.
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4.3. Main theorem: guaranteed outlier detection

We can now establish guaranteed outlier detection by our

representation graph based method stated as Algorithm 1.

Theorem 2 If the representation R is subspace-preserving

and satisfies Assumptions 1 and 2, then Algorithm 1 with

T =∞ and ǫ = 0 correctly identifies outliers.

Theorem 2 is a direct consequence of the following two

facts (see [50] for the proof).

Lemma 1 If the representation R is subspace-preserving

and Assumptions 1 and 2 hold, then inliers and outliers cor-

respond to essential and inessential states, respectively.

Lemma 2 For any probability transition matrix P ,

the averaged probability distribution in (6) satisfies

limT→∞ π̄(T ) = π, where π is such that πj = 0 if and

only if state j is inessential.

Theorem 2 shows that Problem 1 is solved by Algo-

rithm 1 if the data X satisfies the geometric conditions in

(7) and the representation graph satisfies the required con-

nectivity assumptions.

We note that the random walk by the Cesàro mean

adopted here is different from the popular random walk with

restart as adopted by PageRank, for example. The benefit of

PageRank is that the random walk converges to the unique

stationary distribution. However, it is not clear whether

this stationary distribution identifies the outliers. In fact,

all states in the random walk of PageRank are essential, so

that outliers do not converge to zero probabilities. In con-

trast, the random walk in our method does not necessarily

have a unique stationary distribution, but the Cesàro mean

does converge to one of the stationary distributions, which

we have shown can be used to identify outliers. A detailed

discussion is provided in [50].

5. Experiments

We use several image databases (see Figure 3) to eval-

uate our outlier detection method (Algorithm 1). For com-

puting the representation rj in (4), we use the solver in [17]

with λ = 0.95 and γ = α · λ
maxi:i 6=j |x⊤

j
xi|

, where α is a pa-

rameter tuned to each dataset. In particular, the solution to

(4) is nonzero if and only if α > 1. The number of iterations

T is set to be 1,000.

5.1. Experimental setup

Databases. We construct outlier detection tasks from three

publicly available databases. The Extended Yale B [14]

dataset contains frontal face images of 38 individuals each

under 64 different illumination conditions. The face im-

ages are of size 192 × 168, for which we downsample to

(a) Extended Yale B

(b) Caltech-256

(c) Coil-100

Figure 3. Examples of data used for outlier detection. For each

database, the top row shows examples of the inlier set and the bot-

tom row shows examples from the outlier set.

48 × 42. The Caltech-256 [15] is a database that contains

images from 256 categories that have more than 80 im-

ages each. There is also an additional “clutter” category

in this database that contains 827 images of different vari-

eties, which are used as outliers. The Coil-100 dataset [33]

contains 7,200 images of 100 different objects. Each object

has 72 images taken at pose intervals of 5 degrees, with the

images being of size 32× 32. For the Extended Yale B and

Coil-100 datasets we use raw pixel intensity as the feature

representation. Images in Caltech-256 are represented by

a 4,096-dimensional feature vector extracted from the last

fully connected layer of the 16-layer VGG network [36].

Baselines. We compare with 6 other representative meth-

ods that are designed for detecting outliers in one or mul-

tiple subspaces: CoP [35], OutlierPursuit [48], REAPER

[20], DPCP [39], LRR [25] and ℓ1-thresholding [37]. We

also compare with a graph based method: OutRank [30, 31].

We implement the inexact ALM [24] for solving the opti-

mization in OutlierPursuit. For LRR, we use the code avail-

able online at https://sites.google.com/site/

guangcanliu/. For DPCP, we use the code provided by

the authors. All other methods are implemented according

to the description in their respective papers.

Evaluation metric. Each outlier detection method gener-
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Table 1. Results on the Extended Yale B database. Inliers are taken to be the images of either one or three randomly chosen subjects, and

outliers are randomly chosen from the other subjects (at most one from each subject). For R-graph we set α = 5 in the definition of γ.

OutRank CoP REAPER OutlierPursuit LRR DPCP ℓ1-thresholding R-graph (ours)

Inliers: all images from one subject Outliers: 35%, taken from other subjects

AUC 0.536 0.556 0.964 0.972 0.857 0.952 0.844 0.986

F1 0.552 0.563 0.911 0.918 0.797 0.885 0.763 0.951

Inliers: all images from three subjects Outliers: 15%, taken from other subjects

AUC 0.519 0.529 0.932 0.968 0.807 0.888 0.848 0.985

F1 0.288 0.292 0.758 0.856 0.509 0.653 0.545 0.878

ates a numerical value for each data point that indicates its

“outlierness”, and a threshold value is required for deter-

mining inliers and outliers. A Receiver Operating Charac-

teristic (ROC) curve plots the true positive rate and false

positive rate for all threshold values. We use the area un-

der the curve (AUC) as a metric of performance in terms

of the ROC. The AUC is always between 0 and 1, with a

perfect model having an AUC of 1 and a model that guesses

randomly having an AUC of approximately 0.5.

As a second metric, we provide the F1-score, which is

the harmonic mean of precision and recall. The F1-score is

dependent upon the threshold, and we report the largest F1-

score across all thresholds. An F1-score of 1 means there

exists a threshold that gives both precision and recall equal

to 1, i.e. a perfect separation of inliers and outliers.

The reported numbers for all experiments discussed in

this section are the averages over 50 trials.

5.2. Outliers in face images

Suppose we are given a set of images of one or more

individuals but that the data set is also corrupted by face

images of a variety of other individuals. The task is to de-

tect and remove those outlying face images. It is known that

images of a face under different lighting conditions lie ap-

proximately in a low dimensional subspace. Thus, this task

can be modeled as the problem of outlier detection in one

subspace or in a union of subspaces.

We use the extended Yale B database. In the first ex-

periment, we randomly choose a single individual from the

38 subjects and use all 64 images of this subject as the in-

liers. We then choose images from the remaining 37 sub-

jects as outliers with at most one image from each subject.

The overall data set has 25% outliers. The average AUC and

F1 measures over 50 trials are reported in Table 1. For a fair

comparison, we fine-tuned the parameters for all methods.

Comparing to state of the art. We see that our represen-

tation graph based method R-graph outperforms the other

methods. Besides our method, the REAPER, Outlier Pur-

suit and DPCP algorithms all perform well. These three

methods learn a single subspace and treat those that do not

fit the subspace as outliers, thus making them well suited

for this data (the images of one individual can be well-

approximated by a single low dimensional subspace).

The LRR and ℓ1-thresholding methods use data self-

representation, which is also the case for our method. How-

ever, LRR does not give good outlier detection results, prob-

ably because its algorithm for solving the LRR model is

not guaranteed to converge to a global optimum. The ℓ1-

thresholding also does not give good results, showing that

the magnitude of the representation vector is not a robust

measure for classifying outliers. By considering the con-

nection patterns in the representation graph, our method

achieves significantly better results.

The performance of OutRank and CoP is significantly

worse than that of the other methods. This poor perfor-

mance can be explained by the use of a coherence-based dis-

tance, which fails to capture similarity between data points

when the data lie in subspaces. For example, it can be ar-

gued that the coherence between two faces with the same

illumination condition can be higher than two images of the

same face under different illumination conditions.

Dealing with multiple inlier groups. In order to test the

ability of the methods to deal with multiple inlier groups,

we designed a second experiment in which inliers are taken

to be images of 3 randomly chosen subjects, and outliers

are randomly drawn from other subjects as before. For all

methods, we use the same parameters as in the previous ex-

periment to test the robustness to parameter tuning. The

results of this experiment are reported in Table 1.

We can see that Outlier Pursuit and our R-graph are the

two best methods. Although Outlier Pursuit only models a

single low dimensional subspace, it can still deal with this

data since the union of the three subspaces corresponding

to the three subjects in the inlier set is still low dimensional

and can be treated as a single low dimensional subspace.

However, we postulate that Outlier Pursuit will eventually

fail as we increase the number of inlier groups, since the

union of low dimensional subspaces will no longer be low

rank. Our method does not have this limitation.

Similar to Outlier Pursuit, both REAPER and DPCP can,

in principle, handle multiple inlier groups by fitting a single

subspace to their union. However, REAPER and DPCP re-

quire as input the dimension of the union of the inlier sub-

spaces, which can be hard to estimate in practice. Indeed, in

Table 1, we observe that the performances of REAPER and

DPCP are less competitive in comparison to Outlier Pursuit
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Table 2. Results on the Caltech-256 database. Inliers are taken to be images of one, three, or five randomly chosen categories, and outliers

are randomly chosen from category 257-clutter. For R-graph we set α = 20 in the definition of γ.

OutRank CoP REAPER OutlierPursuit LRR DPCP ℓ1-thresholding R-graph (ours)

Inliers: one category of images Outliers: 50%
AUC 0.897 0.905 0.816 0.837 0.907 0.783 0.772 0.948

F1 0.866 0.880 0.808 0.823 0.893 0.785 0.772 0.914

Inliers: three categories of images Outliers: 50%
AUC 0.574 0.676 0.796 0.788 0.479 0.798 0.810 0.929

F1 0.682 0.718 0.784 0.779 0.671 0.777 0.782 0.880

Inliers: five categories of images Outliers: 50%
AUC 0.407 0.487 0.657 0.629 0.337 0.676 0.774 0.913

F1 0.667 0.672 0.716 0.711 0.667 0.715 0.762 0.858

Table 3. Results on the Coil-100 database. Inliers are taken to be images of one, four, or seven randomly chosen categories, and outliers

are randomly chosen from other categories (at most one from each category). For R-graph we set α = 10 in the definition of γ.

OutRank CoP REAPER OutlierPursuit LRR DPCP ℓ1-thresholding R-graph (ours)

Inliers: all images from one category Outliers: 50%
AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997

F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990

Inliers: all images from four categories Outliers: 25%
AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996

F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970

Inliers: all images from seven categories Outliers: 15%
AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996

F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955

and our R-graph for the three subspace case.

5.3. Outliers in images of objects

We test the ability of the methods to identify one or sev-

eral object categories that frequently appear in a set of im-

ages amidst outliers that consist of objects that rarely occur.

For Caltech-256, images in n ∈ {1, 3, 5} randomly chosen

categories are used as inliers in three different experiments.

From each category, we use the first 150 images if the cat-

egory has more than 150 images. We then randomly pick

a certain number of images from the “clutter” category as

outliers such that there are 50% outliers in each experiment.

For Coil-100, we randomly pick n ∈ {1, 4, 7} categories as

inliers and pick at most one image from each of the remain-

ing categories as outliers.

The results are reported in Table 2 and Table 3. We

see that our R-graph method achieves the best performance.

The two geometric distance based methods, OutRank and

CoP, achieve good results when there is one inlier category,

but deteriorate when the number of inlier categories in-

creases. The performance of REAPER, Outlier Pursuit and

DPCP are similar to each other and worse than our method.

This may be because they all try to fit a linear subspace to

the data, while the data in these two databases may be bet-

ter modeled by a nonlinear manifold. The ℓ1-thresholding

and the representation graph method are all based on data

self-expression, and seem to be more powerful for this data.

6. Conclusion

We presented an outlier detection method that combined

data self-representation and random walks on a represen-

tation graph. Unlike many prior methods for robust PCA,

our method is able to deal with multiple subspaces and does

not require the number of subspaces or their dimensions to

be known. Our analysis showed that the method is guaran-

teed to identify outliers when certain geometric conditions

are satisfied and two connectivity assumptions hold. In our

experiments on face image and object image databases, our

method achieves the state-of-the-art performance.
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