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Abstract

Most of the conventional face hallucination methods as-

sume the input image is sufficiently large and aligned, and

all require the input image to be noise-free. Their perfor-

mance degrades drastically if the input image is tiny, un-

aligned, and contaminated by noise.

In this paper, we introduce a novel transformative dis-

criminative autoencoder to 8× super-resolve unaligned

noisy and tiny (16×16) low-resolution face images. In con-

trast to encoder-decoder based autoencoders, our method

uses decoder-encoder-decoder networks. We first employ

a transformative discriminative decoder network to upsam-

ple and denoise simultaneously. Then we use a transforma-

tive encoder network to project the intermediate HR faces

to aligned and noise-free LR faces. Finally, we use the sec-

ond decoder to generate hallucinated HR images. Our ex-

tensive evaluations on a very large face dataset show that

our method achieves superior hallucination results and out-

performs the state-of-the-art by a large margin of 1.82 dB

PSNR.

1. Introduction

Face images provide critical information for visual per-

ception and identity analysis. However, when they are noisy

and their resolutions are inadequately small (e.g.as in some

surveillance videos), there is little information available to

be inferred reliably from them. Very low-resolution and

noisy face images not only impede human perception but

also impair computer analysis.

To tackle this challenge, face hallucination techniques

aim at recovering high-resolution (HR) counterparts from

low-resolution (LR) face images and have received signif-

icant attention in recent years. Previous state-of-the-art

methods mainly focus on recovering HR faces from aligned

and noise-free LR face images. More specifically, face
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Figure 1. Comparison of our method with the CNN based face

hallucination URDGN [25]. (a) 16 × 16 LR input image. (b)

128 × 128 HR original image. (c) Denoised and aligned LR im-

age. We firstly apply BM3D [4] and then STN [10]. (d) The cor-

responding most similar face in the training dataset. (e) Bicubic

interpolation of (c). (f) Image generated by URDGN. Note that,

URDGN super-resolves the denoised and aligned LR image, not

the original LR input (in favor of URDGN). (g) The denoised and

aligned LR image by our decoder-encoder as an intermediate out-

put. (h) The final hallucinated face by our TDAE method.

hallucination methods based on holistic appearance mod-

els [1, 2, 14, 20, 15, 8, 22, 24, 13, 12, 19, 25] require LR

faces to be precisely aligned beforehand. However, when

the LR images are contaminated by noise, the accuracy of

face alignment degrades dramatically. Besides, due to the

wide range of pose and expression variations, it is difficult

to learn a comprehensive, holistic appearance model for LR

images not aligned appropriately. As a result, these meth-

ods often produce ghosting artifacts for noisy unaligned LR

inputs.

Rather than learning holistic appearance models, facial

components based face hallucination methods have been

proposed [18, 23, 28, 29]. They transfer HR facial com-

ponents from the training dataset to the input LR images

without requiring alignment of LR input images in advance.

These methods heavily rely on the successful localization of
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facial landmarks. Because facial landmarks are difficult to

detect in very low resolution (16×16 pixels) images, they

fail to localize the facial components accurately and thus

produce artifacts in the upsampled face images. In other

words, the facial component based methods are not suitable

to upsample noisy unaligned LR faces either.

Considering the resolution of faces is too small and the

presence of noise, face detectors may also fail to locate such

tiny noisy faces. Thus, using pose specific face detectors

as a preprocessing step to compensate for misalignments is

also impractical.

In this paper, we propose a new transformative discrimi-

native autoencoder (TDAE) to super-resolve a tiny (16×16

pixels) unaligned and noisy face image by a remarkable up-

scaling factor of 8×, where we estimate 64 pixels for each

single pixel of the input LR image. Furthermore, each pixel

has also been contaminated by noise, making the task even

more challenging.

Our TDAE consists of three serial components: a de-

coder, an encoder, and a second decoder. Our decoder net-

work comprises deconvolutional and spatial transformation

layers [10]. It can progressively upsample the resolution-

s of the feature maps by its deconvolutional layers while

aligning the feature maps by its spatial transformation lay-

ers. Similar to [25], we employ not only the pixel-wise in-

tensity similarity between the hallucinated face images and

the ground-truth HR face images but also the class similari-

ty constraint that enforces the upsampled faces to lie on the

manifold of real faces by a discriminative network. Hence,

we achieve a transformative decoder that is also discrimina-

tive. Since the LR inputs are noisy, the hallucinated faces

after the decoder may still contain artifacts. In order to ob-

tain aligned and noise-free LR faces, we project the upsam-

pled HR faces back onto the LR face domain by a trans-

formative encoder. Finally, we train our second decoder on

the projected LR faces to attain hallucinated HR face im-

ages. In this manner, the artifacts are greatly reduced and

our TDAE produces authentic HR face images.

Overall, the contributions of this paper are mainly in four

aspects:

• We propose a new transformative-discriminative archi-

tecture to hallucinate tiny (16×16 pixels) unaligned

and noisy face images by an upscaling factor of 8×.

• In contrast to conventional autoencoders, we first de-

vice a decoder-encoder structure to generate noise-

free and aligned LR faces, and then a second decoder

trained on the encoded LR faces to hallucinate high-

quality HR face images.

• Our method does not require to model or estimate

noise parameters. It is agnostic to the underlying s-

patial deformations and contaminated noise.

• To the best of our knowledge, our method is the first at-

tempt to address the super-resolution of tiny and noisy

face images without requiring alignment of LR faces

beforehand, which makes our method practical.

2. Related Work

Face hallucination has received significant attention in

recent years [18, 23, 19, 12, 28, 29, 25]. Previous face hal-

lucination methods mainly focus on recovering HR faces

from aligned and noise-free LR face images, and in general,

they can be grouped into two categories: holistic methods

and part-based methods.

Holistic methods use global face models learned by P-

CA to hallucinate entire HR faces. In [20], an eigen-

transformation is proposed to generate HR face images by

establishing a linear mapping between LR and HR face sub-

spaces. Similarly, [15] employs a global appearance model

learned by PCA to upsample aligned LR faces and a lo-

cal non-parametric model to enhance the facial details. The

work in [12] explores optimal transport and subspace learn-

ing to morph an HR output according to the given aligned

LR faces. Since holistic methods require LR face images

to be precisely aligned and share the same pose and expres-

sion as the HR references, they are very sensitive to the mis-

alignments of LR images. Besides, image noise makes the

alignment of LR faces even more difficult.

Part-based methods upsample facial parts rather than en-

tire faces, and thus they can handle various poses and ex-

pressions. They either employ a training dataset of refer-

ence patches to reconstruct the HR counterparts of the in-

put LR patches or exploit facial components. In [2], high-

frequency details of aligned frontal face images are recon-

structed by finding the best mapping between LR and HR

patches. The work in [24] uses coupled LR/HR dictionar-

ies to enhance the details. In [22], an LR face image is

super-resolved with position patches sampled from multiple

aligned HR images. [13] models the local face patches as a

sparse coding problem rather than averaging the reference

HR patches directly. In [18], SIFT flow [16] is exploited

to align the facial parts of LR images, and then the detail-

s of LR images are reconstructed by warping the reference

HR images. [23] first localizes facial components in the LR

images and then transfers the most similar HR facial com-

ponents in the dataset to the LR inputs. Since part-based

methods often require extraction of facial components in L-

R inputs, their performance degrades dramatically when the

LR faces are tiny or noisy.

As large-scale data becomes available, convolutional

neural network (CNN) based SR methods have been pro-

posed and achieved the state-of-the-art performance [11, 21,

6, 3]. However, because these SR methods are designed

to upsample generic patches and do not fully exploit class-

specific information, they are not suitable to hallucinate tiny

faces. The work in [28] employs a CNN to extract facial fea-

tures and then generates high-frequency facial details based
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Figure 2. Our transformative discriminative decoder consists of two parts: a transformative upsampling network (in the red frame) and a

discriminative network (in the blue frame).

Figure 4. Workflow of our transformative discriminative autoen-

coder. Colors of the boxes refer to the networks in Fig.2 and Fig.3.

on the extracted features. Due to the requirement of the fa-

cial feature extraction, the resolution of the input cannot be

low. Very recently, [25] presents a discriminative genera-

tive network to super-resolve LR face images. This method

addresses different facial expressions and head poses with-

out requiring facial landmarks, but it needs the eyes to be

aligned in advance. [29] proposes a cascade bi-network

to super-resolve very low-resolution and unaligned faces.

However, when there is noise in the LR images, this method

may fail to localize the face parts accurately, thus producing

artifacts in the outputs.

3. Proposed Method: TDAE

Our transformative discriminative autoencoder has three

complementary components: two transformative discrimi-

native decoders (as shown in Fig. 2) and a transformative

encoder (as shown in Fig. 3). In the training phase, our pa-

rameters of TDAE are learned in three steps (§.3.3). In the

testing phase, we cascade the transformative upsampling

network of the first decoder DEC1, the encoder ENC, and

the second decoder DEC2 together to hallucinate the final

HR faces in an end-to-end manner. The whole pipeline is

illustrated in Fig. 4

3.1. Architecture of Decoder

Our decoder architecture is composed of two sub-

networks, a transformative upsampling network (TUN) and

a discriminative network. In the transformative upsampling

network, we first apply two convolutional layers with larg-

er receptive fields to partially reduce noise artifacts rather

than feeding noisy images into the deconvolutional layers

directly. The deconvolutional layer can be made of a cas-

cade of an upsampling layer and a convolutional layer, or a

convolutional layer with a fractional stride [27, 26]. There-

fore, the resolution of the output image of the deconvolu-

tional layer is larger than the resolution of its input image.

We employ the ℓ2 regression loss, also known as Euclidean

distance loss, to constrain the similarity between the hallu-

cinated HR faces and their HR ground-truth versions.

As reported in [25], deconvolutional layers supervised

by ℓ2 loss tend to produce over-smoothed results. To tackle

this, we embed the class-specific discriminative information

into the deconvolutional layers by a discriminative network

(as shown in the blue frame in Fig. 2). The discriminative

network is able to distinguish whether an image (its input)

is sampled from authentic face images or hallucinated ones.

The corresponding discriminative information is backprop-

agated to the deconvolutional layers. Hence, the deconvo-

lutional layers can generate HR face images more similar to

the real faces.

We notice that rotational and scale misalignments of LR

face images will lead to apparent artifacts in the upsampled

face images in [25]. By contrast, our decoder can align the

LR faces automatically and hallucinate face images simul-

taneously. In order to align LR faces, we incorporate the s-

patial transformation network (STN) [10] into our network,

as shown in the green box in Fig. 2. STN can estimate the
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Figure 3. Architecture of our transformative encoder.

transformation parameters of images, and then warp images

to a canonical view.

There are three modules in STN: a localization module,

a grid generator module, and a sampler. The localization

module consists of a number of hidden layers and output-

s the transformation parameters of an input relative to the

canonical view. The grid generator module constructs a

sampling grid according to the estimated parameters, and

then the sampler module maps the input onto the generated

grid by bilinear interpolation.

Here, we mainly focus on in-plane rotations, translation-

s, and scale changes, and thus use the similarity transforma-

tion to align faces. Considering the resolution of our inputs

is very small and input images are noisy, using state-of-the-

art denoising algorithms to reduce noise and then employ-

ing an STN to align LR faces will introduce extra blurriness,

as shown in Fig. 1(c) and Fig. 5(c). Therefore, aligning LR

faces in the image domain may blur the original LR facial

patterns and leads to artifacts as visible in the results of [25]

in Fig. 1(f). To prevent from this, we apply STNs to align

feature maps. As reported in [10], using multiple STNs can

improve the accuracy of the alignment. As a trade-off be-

tween the accuracy and GPU memory usage, we employ

two STNs following the first two deconvolutional layers.

Our decoder not only embeds discriminative information

but also processes multiple tasks (denoising, alignment, and

upsampling) simultaneously. As shown in Fig. 5(f), our

transformative discriminative decoder can reconstruct more

salient high-frequency details and aligned upsampled HR

face images as well.

3.2. Architecture of Encoder

By feeding an unaligned and noisy LR input to our trans-

formative discriminative decoder network DEC1, we obtain

an intermediate HR face image. As shown in Fig. 5(f), the

intermediate HR face contains more high-frequency details

and it is roughly aligned. The noise is comparatively re-

duced as well. However, the intermediate images may still

contain artifacts, which are mainly caused by noise. We ob-

serve that noise not only distorts the LR facial patterns but

also affects the face alignment. In order to achieve authen-

tic HR face images, these artifacts should be removed while

preserving the high-frequency facial details.

Our intuition is that projecting intermediate HR images

to LR images, artifacts and noise can be suppressed fur-

ther, which would allow us to apply our decoder to super-

resolve these almost noise-free and approximately aligned

LR faces. However, a decimation with anti-aliasing or sim-

ple downsampling may introduce additional artifacts into

the LR face images. Therefore, we design another CNN,

regarded as the encoder ENC, to project intermediate HR

images to noise-free LR versions as illustrated in Fig. 3.

Considering the upsampled HR faces may still have mis-

alignments, we also incorporate STNs into our encoder to

provide further alignment improvement.

When training the encoder, we constrain the projected

LR faces to be similar to the aligned ground-truth LR faces.

This helps us to generate aligned and noise-free LR faces,

as shown in Fig. 1(g) and Fig. 5(g).

To obtain HR face images, we employ a second decoder

DEC2 to super-resolve the LR faces projected by the ENC.

The decoder DEC2 shares the same architecture as the one

in Fig. 2. By employing the decoder-encoder structure, we

can jointly align the input LR faces and handle noise as

shown in Fig. 1(g) and Fig. 5(g). By exploiting the encoder-

decoder structure, we are able to remove artifacts in the up-

sampled HR faces, thus achieving high-quality, more au-

thentic, hallucinated HR face images as shown in Fig. 5(h).

3.3. Training Details of TDAE

We divide the training phase of our TDAE into three

stages: i) Training the transformative discriminative de-

coder network DEC1, as illustrated in Fig. 2. ii) Training

the encoder ENC, as shown in Fig. 3. iii) Training the de-

coder DEC2, which shares the same architecture as DEC1.

3.3.1 Training Discriminative Decoder

We construct LR and HR face image pairs {lni , hi} as our

training dataset for the training of our transformative dis-

criminative decoder DEC1. Here, hi represents aligned HR

face images, and lni is not directly downsampled from the

HR face image hi. We apply rotations, translations, and s-

cale changes to hi to obtain unaligned HR image hu
i . Then,
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Comparison of our method with the CNN based face hallucination methods. (a) The input 16 × 16 LR image. (b) The original

upright 128× 128 HR image (for comparison purposes). (c) The denoised and aligned version of (a). (d) The result of URDGN [25]. (e)

The result of CBN [29]. (f) The result of our DEC1. (g) The aligned and noise-free LR face projected by our ENC. (h) Our final result.

we downsample hu
i and then add Gaussian noise to obtain

the noisy unaligned LR faces lni .

Since we impose the upsampled image ĥi by our decoder

should be similar to its corresponding reference HR image

hi, we use pixel-wise Euclidean distance, as known as ℓ2
regression loss, to enforce the intensity similarity. The loss

function U(s) of the TUN is modeled as,

min
s

U(s) = E(ln
i
,hi)∼p(ln,h)‖ĥi − hi‖2F , (1)

where s indicates the parameters of the TUN. The convolu-

tional layers, the STN layers, and the deconvolutional layer-

s are updated jointly in the TUN. The STN layers align the

feature maps while the deconvolutional layers upsample the

resolution of the feature maps gradually. Here, p(ln, h) in-

dicates the joint distribution of the LR and HR face images

in the training dataset.

As mentioned in [25], only applying intensity similar-

ity constraint will lead to over-smoothed results. Similar

to [7, 5, 17, 25], we infuse class-specific discriminative in-

formation into the TUN by exploiting a discriminative net-

work. The architecture of the discriminative network is il-

lustrated in the blue frame in Fig. 2. It is designed to dis-

tinguish whether an image is realistic or hallucinated. If

an HR face super-resolved by our decoder can convince the

discriminative network that it is a real face image, our hal-

lucinated faces will be similar to real face images. In other

words, our goal is to make the discriminative network fail

to distinguish hallucinated faces from real ones. Hence, we

maximize the cross-entropy of the discriminative network

L as follows:

max
t

L(t)=E

[

logD(hi)+log(1−D(ĥi))
]

=Ehi∼p(h)[logD(hi)]+E
ĥi∼p(ĥ))[log(1−D(ĥi))],

(2)

where t represents the parameters of the discriminative net-

work, p(h) and p(ĥ) indicate the distributions of the real

faces and the hallucinated faces, and D(hi) and D(ĥi) are

the outputs of the discriminative network. The loss L is

backpropagated to the TUN in order to update the param-

eters s. By injecting discriminative information to s, our

decoder can hallucinate more authentic HR faces.

In our decoder network, every layer is differentiable, and

thus we use backpropagation to learn its parameters. RM-

Sprop [9] is employed to update s and t. To maximize the

discriminative network objective L, we use the stochastic

gradient ascent that updates the parameters t as follows:

∆i+1 = γ∆i + (1− γ)(
∂L

∂t
)2,

ti+1 = ti + r
∂L

∂t

1√
∆i+1 + ǫ

,
(3)

where r and γ are the learning rate and decay rate, respec-

tively, i is the index of iteration, ∆ is an auxiliary variable,

and ǫ is set to 10−8 to avoid division by zero. For the TUN,

both losses U and L are used to update the parameters s by

the stochastic gradient descent,

∆i+1 = γ∆i + (1− γ)(
∂U

∂s
+ λ

∂L

∂s
)2,

si+1 = si − r(
∂U

∂s
+ λ

∂L

∂s
)

1√
∆i+1 + ǫ

,
(4)

where λ is a trade-off weight between the intensity similar-

ity term and the class similarity term. Since our goal is to

hallucinate an HR face, we put a higher weight on the in-

tensity similarity term and set λ to 0.01. As the iteration

progresses, the super-resolved faces will be more similar to

real faces. Therefore, we gradually reduce the impact of the

discriminative network by decreasing λ as,

λj = max{λ · 0.99j , λ/2}, (5)

where j indicates the index of the epochs. Eqn. 5 also guar-

antees that the class-specific discriminative information is

preserved in the decoder network during the training phase.

3.3.2 Training Encoder

In training our transformative encoder, we use the outputs of

DEC1 ĥi and the ground-truth aligned LR images li as our

training dataset. Since there may be misalignment in ĥi,

we also embed STNs into our encoder ENC to align the LR

faces. During the training of the transformative encoder, the

downsampled LR faces l̂i is constrained to be similar to the
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ground-truth aligned LR faces li. Therefore, the objective

function of the transformative encoder E(e) is modeled as,

min
e

E(e) = E(li,ĥi)∼p(l,ĥ)‖Ψ(ĥi)− li‖2F
= E(li,ĥi)∼p(l,ĥ)‖l̂i − li‖2F ,

(6)

where e is the parameters of the transformative encoder, and

Ψ(ĥi) represents the mapping from the intermediate upsam-

pled HR faces ĥi to the projected LR faces l̂i. Similar to

Eqn. 1, we also use RMSprop to update e by the stochastic

gradient descent.

To obtain the final HR faces, we integrate a second de-

coder DEC2 to super-resolve the projected LR face images.

DEC2, as shown in Fig. 4, is trained on the encoded LR and

aligned ground-truth HR image pairs {l̂i, hi}.

After training the encoder network, we use the encoder

ENC to generate the training dataset l̂i, and then train DEC2

by using the image pairs {l̂i, hi}. The training procedure of

DEC2 is as the same as §. 3.3.1.

3.4. Hallucinating HR from Unaligned & Noisy LR

The discriminative network is only employed in training

our decoders. When hallucinating HR faces, the discrimi-

native work is not used. In the testing phase, we first feed an

unaligned and noisy LR face lni into the decoder DEC1 to

obtain an upsampled intermediate HR image ĥi. Then, we

use our encoder ENC to project the intermediate HR face ĥi

to an aligned LR face l̂i. Finally, we use the decoder DEC2

to super-resolve the aligned LR face l̂i and attain our final

hallucinated face h̃i.

Since in the training phase we use upright HR faces as

targets, our TDAE not only super-resolves the LR faces but

also aligns HR face images simultaneously. Although we

need to train our network in three steps, it can hallucinate

an unaligned and noisy LR face to an upright HR version in

an end-to-end fashion.

3.5. Implementation Details

The STN layers, as shown in Fig. 2 and Fig. 3, are built

by convolutional and ReLU layers (Conv+ReLU), max-

pooling layers with a stride 2 (MP2) and fully connected

layers (FC). Specifically, STN1 layer is built by cascading

the layers: MP2, Conv+ReLU (filter size: 512×20×5×5),

MP2, Conv+ReLU (20×20×5×5), FC+ReLU (from 400 to

20 dimensions) and FC (from 20 to 4 dimensions). STN2

is constructed by cascading the layers: MP2, Conv+ReLU

(256×128×5×5), MP2, Conv+ReLU (128×20×5×5), M-

P2, Conv+ReLU (20×20×3×3), FC+ReLU (from 180

to 20 dimensions) and FC (from 20 to 4 dimensions).

STN3 is constructed by cascading the layers: MP2, Con-

v+ReLU (128×20×5×5), MP2, Conv+ReLU (filter size:

20×20×5×5), MP2, FC+ReLU (from 80 to 20 dimension-

s) and FC (from 20 to 4 dimensions). STN4 layer is built

by cascading the layers: Conv+ReLU (96×20×5×5), M-

P2, Conv+ReLU (20×20×5×5), FC+ReLU (from 80 to 20

dimensions) and FC (from 20 to 4 dimensions). In the con-

volution operations, padding is not used.

In the following experimental part, some algorithms re-

quire the alignment of LR inputs [22, 25]. Thus, we employ

STN0 to align the LR images for those methods. The on-

ly difference between STN0 and STN1 is that the first MP2

step in STN1 is removed in STN0.

In training our decoders and encoder, we use the same

learning rate r and decay rate γ. We set the learning rate r
to 0.001 and multiply 0.99 after each epoch, and the decay

rate is set to 0.01.

4. Experiments

We compare our method with the state-of-the-art meth-

ods qualitatively and quantitatively. We employ BM3D [4]

to reduce the image noise, and then align the LR inputs by

STN0. In the experiments, we only show the upright HR

ground-truth faces hi for comparison purposes.

4.1. Dataset

We use the Celebrity Face Attributes (CelebA)

dataset [30] to train our TDAE. There are more than 200K

face images in this dataset, and the images cover different

pose variations and facial expressions. We use these im-

ages without grouping them into different pose and facial

expression subcategories.

When generating the LR and HR face pairs, we random-

ly select 30K cropped aligned face images from the CelebA

dataset, and then resize them to 128×128 pixels as HR im-

ages. We use 28K images for training and 2K for our tests.

We manually transform the HR images while constraining

the faces to be visible in the in the image, downsample the

HR images to generate LR images, and add Gaussian noise.

In the training of the decoder DEC1, we apply zero mean

Gaussian noise with the standard deviation 10% of the max-

imum image intensity to the LR images.

4.2. Qualitative Comparison with the SoA

Since some super-resolution baselines [22, 25] require

the input LR faces to be aligned, for a fair comparison we

align the LR faces by STN0 for the compared methods. We

present only the aligned upright HR ground-truth faces for

easy comparisons.

As shown in Fig. 6(c), conventional bicubic interpolation

cannot generate facial details. Since the resolution of inputs

is very small, little information is contained in the input im-

ages. Furthermore, the upsampled images also have some

deformations. This indicates that aligning very LR images

is more difficult when there is noise in the images.

Dong et al. [6] present a CNN based general purpose

super-resolution method, also known as SRCNN. Since SR-
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Comparison with the state-of-the-arts methods at the noise level 10%. (a) Unaligned and noisy LR inputs. (b) Original HR

images. (c) Bicubic interpolation. (d) Results of [6]. (e) Results of [22]. (f) Results of [29]. (g) Results of [25]. (h) Our method.

CNN is patch based, it cannot capture the global face struc-

ture. Training SRCNN with the full face images introduces

more ambiguity because the patch size (i.e.128×128) is too

large to learn a valid non-linear mapping. Hence, we em-

ploy an upscaling factor of 8× to retrain it. As seen in

Fig. 6(d), SRCNN cannot produce authentic facial details.

Ma et al. [22] exploit position patches to hallucinate HR

faces. This method requires the LR inputs to be precisely

aligned with the reference images in the training dataset.

As visible in Fig. 6(e), when there are alignment errors, it

produces deformed faces. Moreover, as the upscaling factor

increases, the correspondences between LR and HR patches

become inconsistent. Hence, it suffers from severe block

artifacts around the boundaries of different patches.

Zhu et al. [29] propose a deep cascaded bi-network for

face hallucination, known as CBN. This method has its own

aligning process that localizes facial landmarks used to fit

a global face model. When the noise level is low, it can

align LR faces based on the landmarks. However, when the

noise is not negligible, it fails to localize landmarks thus

produces ghosting artifacts (see Fig. 6(f)). Since noise im-

pedes the landmark detection, we apply BM3D as a remedy.

However, LR faces becomes smooth, and detecting facial

landmarks becomes even difficult. Our observation is that

CBN is not designed for noisy images.

Yu and Porikli [25] developed a discriminative genera-

tive network to super-resolve very low resolution face im-

ages, known as URDGN. Their method also employs de-

convolutional layers to upsample LR faces and a discrimi-

native network is used to force the generate network to pro-

duce sharper results. However, this method requires aligned

images and cannot super-resolve unaligned faces. In addi-

tion, noise may damage the LR facial patterns, which may

degrade the performance as visible in Fig. 6(g).

In comparison, our method reconstructs authentic fa-

cial details as shown in Fig. 6(h). We note that the input

faces have different poses and facial expressions. Since our

method applies multiple STNs on feature maps to align face

images and remove noise simultaneously, it achieves much

better alignment. With the help of the encoder, it obtains

aligned and noise-free LR images. With its second decoder,

it produces visually pleasing results, which are similar to the
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Table 1. Quantitative evaluations on the entire test dataset. Dif-

ferent configurations: (1) STN+SR+BM3D, (2) STN+BM3D+SR,

(3) BM3D+STN+SR. Here, SR is the compared super-resolution

method. Our method does not use BM3D or a separate STN.

PSNR SSIM

Noise 5% 10% 5% 10%

1

Bicubic 17.93 17.77 0.51 0.49

SRCNN [6] 17.77 17.53 0.51 0.48

Ma [22] 17.98 17.90 0.51 0.50

CBN [29] 17.16 16.93 0.47 0.44

URDGN [25] 16.58 16.45 0.38 0.36

2

Bicubic 18.59 18.30 0.52 0.51

SRCNN [6] 18.59 18.32 0.53 0.51

Ma [22] 18.63 18.37 0.50 0.49

CBN [29] 18.34 18.26 0.52 0.52

URDGN [25] 16.95 16.79 0.41 0.40

3

Bicubic 17.87 17.63 0.52 0.50

SRCNN [6] 17.74 17.53 0.51 0.50

Ma [22] 17.86 17.65 0.49 0.48

CBN [29] 17.39 17.28 0.49 0.48

URDGN [25] 18.95 18.65 0.49 0.47

Ours 21.02 20.47 0.58 0.56

ground-truth faces as well. Our method does not need any

landmark localization or any information about the noise.

When the noise is low, it also attains superior performance.

Figure 7. The PSNR curves of the state-of-the-art methods on syn-

thetic test datasets with noise level from 1% to 10%.

4.3. Quantitative Comparison with the SoA

We quantitatively measure the performance of all meth-

ods on the entire test dataset in different noise levels by the

average PSNR and the structural similarity (SSIM) scores.

Table 1 presents that our method achieves superior perfor-

mance in comparison to other methods, outperforming the

second best with a large margin of 1.82 dB in PSNR.

For an objective comparison with the SoA methods, we

report results for three possible scenarios. In the first case,

we first apply STN0 to align noisy LR faces, then super-

resolve the aligned LR images by the SoA, and finally use

(a) 3% (b) 5% (c) 7% (d) 10%

Figure 8. Visualization of our results for different noise levels.

Please refer to Fig. 5(b) for the ground-truth HR image.

BM3D to remove the noise in the upsampled HR images.

In the second case, we apply STN0 followed by BM3D and

then super-resolution. In the third case, we first denoise

by BM3D, then align by STN0, and finally super-resolve.

When aligning noisy LR images, we train STN0 with noisy

LR faces. Otherwise, if we first use BM3D to reduce noise,

we train STN0 with noise-reduced LR faces.

Table 1 also indicates that simply denoising and then

aligning, or aligning and then denoising LR faces cannot

lead to good performance by the SoA methods.

Furthermore, we demonstrate that our method can suc-

cessfully hallucinate faces in different noise levels in Fig. 8.

When the noise level increases, our hallucinated faces re-

main consistent and retain their visual quality, which im-

plies that our method is robust to noise variations.

Figure 7 shows the PSNR curves for different noise lev-

els. We observe that our method achieves higher PSNRs

over the other methods, and for lower noise levels it per-

forms even better. Furthermore, we apply Gaussian blur

with σ = 2.4 to the spatially transformed HR images,

downsample HR faces, and add noise to the LR images.

As shown in Fig. 7, our network still performs well with-

out obvious degradation (dashed red line). Note that, we

do not need to know the noise level or re-train our network

with blurred LR inputs. We also combine DEC1 and ENC

together as another baseline, denoted as AE.

5. Conclusion

We presented a transformative autoencoder network to

super-resolve very low-resolution (16×16 pixels) unaligned

and noisy face images with a challenging upsampling fac-

tor of 8×. We leverage on a new decoder-encoder-decoder

architecture. Our networks jointly align, remove noise,

and discriminatively hallucinate input images. Since our

method is agnostic to image noise, face pose, and spatial

deformations, it is very practical. At the same time, it can

generate rich and authentic facial details.

3767



References

[1] S. Baker and T. Kanade. Hallucinating faces. In Proceedings

of 4th IEEE International Conference on Automatic Face and

Gesture Recognition, FG 2000, pages 83–88, 2000. 1

[2] S. Baker and T. Kanade. Limits on super-resolution and how

to break them. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(9):1167–1183, 2002. 1, 2

[3] J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution

with deep convolutional sufficient statistics. In ICLR, 2016.

2

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image

denoising by sparse 3-d transform-domain collaborative fil-

tering. IEEE Transactions on image processing, 16(8):2080–

2095, 2007. 1, 6

[5] E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep Gen-

erative Image Models using a Laplacian Pyramid of Adver-

sarial Networks. In Advances In Neural Information Pro-

cessing Systems (NIPS), pages 1486–1494, 2015. 5

[6] C. Dong, C. C. Loy, and K. He. Image Super-Resolution

Using Deep Convolutional Networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 38(2):295–307,

2016. 2, 6, 7, 8

[7] I. Goodfellow, J. Pouget-Abadie, and M. Mirza. Generative

Adversarial Networks. In Advances in Neural Information

Processing Systems (NIPS), pages 2672—-2680, 2014. 5

[8] P. H. Hennings-Yeomans, S. Baker, and B. V. Kumar. Simul-

taneous super-resolution and feature extraction for recogni-

tion of low-resolution faces. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1–8. IEEE, 2008. 1

[9] G. Hinton. Neural Networks for Machine Learning Lecture

6a: Overview of mini-batch gradient descent Reminder: The

error surface for a linear neuron. 5

[10] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information

Processing Systems, pages 2017–2025, 2015. 1, 2, 3, 4

[11] J. Kim, J. K. Lee, and K. M. Lee. Accurate Image Super-

Resolution Using Very Deep Convolutional Networks. arX-

iv:1511.04587, 2015. 2

[12] S. Kolouri and G. K. Rohde. Transport-based single frame

super resolution of very low resolution face images. In Pro-

ceedings of the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2015. 1, 2

[13] Y. Li, C. Cai, G. Qiu, and K. M. Lam. Face hallucination

based on sparse local-pixel structure. Pattern Recognition,

47(3):1261–1270, 2014. 1, 2

[14] C. Liu, H. Shum, and C. Zhang. A two-step approach to

hallucinating faces: global parametric model and local non-

parametric model. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition (CVPR), volume 1, pages 192–198, 2001. 1

[15] C. Liu, H. Y. Shum, and W. T. Freeman. Face hallucination:

Theory and practice. International Journal of Computer Vi-

sion, 75(1):115–134, 2007. 1, 2

[16] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-

dence across scenes and its applications. IEEE transaction-

s on pattern analysis and machine intelligence, 33(5):978–

994, 2011. 2

[17] A. Radford, L. Metz, and S. Chintala. Unsupervised Repre-

sentation Learning with Deep Convolutional Generative Ad-

versarial Networks. arXiv:1511.06434, pages 1–15, 2015.

5

[18] M. F. Tappen and C. Liu. A Bayesian Approach to

Alignment-Based Image Hallucination. In Proceedings of

European Conference on Computer Vision (ECCV), volume

7578, pages 236–249, 2012. 1, 2

[19] N. Wang, D. Tao, X. Gao, X. Li, and J. Li. A comprehen-

sive survey to face hallucination. International Journal of

Computer Vision, 106(1):9–30, 2014. 1, 2

[20] X. Wang and X. Tang. Hallucinating face by eigen transfor-

mation. IEEE Transactions on Systems, Man and Cybernet-

ics Part C: Applications and Reviews, 35(3):425–434, 2005.

1, 2

[21] Z. Wang, Y. Yang, Z. Wang, S. Chang, W. Han, J. Yang,

and T. Huang. Self-tuned deep super resolution. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 1–8, 2015. 2

[22] C. Q. Xiang Ma, Junping Zhang. Hallucinating face

by position-patch. Pattern Recognition, 43(6):2224–2236,

2010. 1, 2, 6, 7, 8

[23] C. Y. Yang, S. Liu, and M. H. Yang. Structured face hal-

lucination. In Proceedings of the IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1099–1106, 2013. 1, 2

[24] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. IEEE transactions on

image processing, 19(11):2861–73, 2010. 1, 2

[25] X. Yu and F. Porikli. Ultra-resolving face images by dis-

criminative generative networks. In Proceedings of Euro-

pean Conference on Computer Vision (ECCV), pages 318–

333, 2016. 1, 2, 3, 4, 5, 6, 7, 8

[26] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European Conference on Com-

puter Vision, pages 818–833, 2014. 3

[27] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-

convolutional networks. In Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2528–2535, 2010. 3

[28] E. Zhou and H. Fan. Learning Face Hallucination in the

Wild. In Twenty-Ninth AAAI Conference on Artificial Intel-

ligence, pages 3871–3877, 2015. 1, 2

[29] S. Zhu, S. Liu, C. C. Loy, and X. Tang. Deep cascaded

bi-network for face hallucination. In Proceedings of Euro-

pean Conference on Computer Vision (ECCV), pages 614–

630, 2016. 1, 2, 3, 5, 7, 8

[30] X. W. Ziwei Liu, Ping Luo and X. Tang. Deep learning face

attributes in the wild. In Proceedings of International Con-

ference on Computer Vision (ICCV), 2015. 6

3768


