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Abstract

For machines to interact with the physical world, they

must understand the physical properties of objects and ma-

terials they encounter. We use fabrics as an example of a

deformable material with a rich set of mechanical proper-

ties. A thin flexible fabric, when draped, tends to look dif-

ferent from a heavy stiff fabric. It also feels different when

touched. Using a collection of 118 fabric samples, we cap-

tured color and depth images of draped fabrics along with

tactile data from a high-resolution touch sensor. We then

sought to associate the information from vision and touch by

jointly training CNNs across the three modalities. Through

the CNN, each input, regardless of the modality, gener-

ates an embedding vector that records the fabric’s physical

property. By comparing the embedding vectors, our system

is able to look at a fabric image and predict how it will feel,

and vice versa. We also show that a system jointly trained

on vision and touch data can outperform a similar system

trained only on visual data when tested purely with visual

inputs.

1. Introduction

The success of computer vision has been greatly accel-

erated through the use of deep learning and convolutional

neural networks (CNN). However, the main successes have

been with passive tasks; for example, the computer is given

an image and in response it provides categories or descrip-

tors. For a machine to more actively interact with objects

in the physical world, it must understand something about

their physical properties. Vision can be used, for example,

to predict how an object will feel when touched.

Figure 1(a) shows a silk scarf, and a wool scarf in a

similar configuration. The silk scarf is lighter, thinner, and

more flexible, while the wool scarf is heavier, thicker, and

stiffer. A human observer, viewing the images, can easily

see the difference. In addition, one can imagine touching
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Figure 1. Humans can infer fabric properties from draperies. (a) A

silk scarf and a wool scarf in similar configurations. (b) pictures

of different fabrics draping from a cylinder post; (c) tactile images

from GelSight when pressing on the fabrics in natural states.

and grasping the two scarves; they will feel different when

touched and will deform differently when grasped.

A piece of fabric has certain mechanical parameters. At

the macro level, these can include, for example, the Kawa-

bata values that describe bending, stretching, compression,

roughness, and so on. The fabrics mechanical parameters

cause it to take on certain shapes in response to manipula-

tion. Those shapes lead to the observed images. At the same

time, the fabrics mechanical parameters engender a certain

range of tactile interactions. When touched, the silk scarf

will feel smooth and easily deformed; the wool scarf will

feel quite different.

We can think of the fabrics physical parameters as latent

variables that influence the processes leading to both the vi-

sual and tactile signals. To humans, this quantified set of

physical parameters better represents a fabric– a human sel-

dom infers to a fabric as a particular individual, but the pa-

rameter set, like “the light, thin and flexible silk”. The same

piece of fabric, may make different appearances or feelings

to touch, but is still considered the same one, because they

share the same set of parameters. On the other hand, some

fabrics may be considered similar because their parameters
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Figure 2. Left: GelSight sensor. Middle: a human presses Gel-

Sight on the flat fold of a fabric, and gets a sequence of tactile

images (shown in the right).

Figure 3. Three modalities of the fabric data. For the visual in-

formation, the fabrics are draped from a cylinder in natural state;

for the tactile information, a human holds the GelSight sensor and

presses on a fold on the fabric.

have close values, while the other fabrics are distinct be-

cause their parameters are distant.

Those underlying parameters are never directly ob-

served. Instead, they manifest themselves indirectly by

yielding a certain range of sensory data. The end result is

that the way a fabric looks is related to the way it feels,

even though the process of image formation is completely

different from the process of tactile interaction.

In this paper, we separately generate visual and tactile

data for a given fabric, and try to learn the association

through an auto-generated embedding vector, which should

only be related to the fabric’s physical parameters. First, we

drape the fabric over a cylindrical post to see the shapes that

it forms. Each time we repeat the draping we get a some-

what different shape. Second, we touch the fabric with a

high-resolution touch sensor GelSight, which captures fine

details of the fabric surface. We press on a fold of the fabric

so as to gather information about its thickness and stiffness

as well as its texture. For a piece of fabric, regardless of the

sensory modality and the occasional appearance, the em-

bedding vector is expected to be the same.

Figure 2(left) shows a GelSight sensor [12, 13]. It em-

ploys a slab of clear elastomer covered with a reflective

membrane. The device contains a small camera and light-

ing system, and uses optical methods to measure the defor-

mation of the membrane as it is pressed against surfaces.

For the present experiments, we press the sensor against a

piece of fabric that is lying on a table, as shown in Fig-

ure 2(mid). We intentionally introduce a fold in the fabric

so that the GelSight images can show how the fabric bends

when pressed. A sequence of output images are shown in

Figure 2(right). The colors correspond to the varying sur-

face normal. The grid of dots, which is printed on the mem-

brane, distorts in response to contact forces.

To gather images of fabrics, we chose a standard arrange-

ment that would reveal some mechanical properties. Fig-

ure 3(a) shows an RGB image of a fabric draped over a

cylinder. Figure 3(b) shows the same fabric, draped a sec-

ond time. The images are different, but both convey the

mechanical properties of this fabric. Depth images, which

isolate shape without the optical complications, are shown

in Figure 3(c) and (d). Figure 3(e) and (f) show the output

of a GelSight sensor when it is pressed (by hand) against a

sample of the same fabric. Each image is captured with the

fabric, and its fold, in a different position and orientation.

Figure 3(g) -(l) show the same images for a different sam-

ple of fabric. The second fabric is heavier and thicker than

the first, and this leads to different appearances, in both the

visual and the tactile domain.

We obtained a collection of 100 fabric samples for train-

ing, and 18 fabric samples for testing. For each fabric sam-

ple, we draped it over the cylindrical post for 10 times, pro-

ducing 10 color and depth images. For each sample, we also

generated 10 tactile images using the GelSight sensor.

Our main task is this: given two input images – either

color, depth of tactile images, determine whether they were

generated by the same fabric. We design multiple neural

network architectures for the cross-modality training and

compare their performance. We also compare the recog-

nition performance on a single modality when joint trained

on one or two modalities, and find that the extra informa-

tion from another modality will boost the performance on

single-modality match.

2. Related work

Visual Perception on Fabrics Studies like [2, 8]

showed humans use visual cues to infer different material

properties. Specifically, Xiao et al. [24] studied human per-

ception on fabrics and the influencing factors by using tac-

tile sensing as ground truth to measure visual material per-

ception. They showed that humans made a high matching

accuracy, while the color and 3D folds of the fabrics are the

most important to the human visual perception.

Researchers in computer vision and graphics have been

trying to track or represent fabrics or clothes, but their vi-

sual representation is difficult to obtain compared with that

5581



Figure 4. The joint neural network architectures in this paper. Three modalities: depth image, color image, and touch image (GelSight

image), are associated. (a) The Cross-modal Net: data from the three modalities goes through three independent CNNs (AlexNet [15])

in a joint network, and be presented by an embedding E, which is the fc7 layer of the network. We then compare the distance D3 =

‖E1 − E2‖ + ‖E1 − E3‖ + ‖E3 − E2‖ between the 3 embeddings. For the same fabric, the three embeddings should be close and D3

should be small. (b) The Auxiliary Network with the subtask of fabric classification. Clusters of the fabrics are made according to human

label. (c) The Multi-input Network, that touch embedding is derived from 3 independent GelSight pressing images.

of rigid objects’, and the uncertainty and complexity of the

shapes and motion make the fabrics or clothes more difficult

to predict. To track the exact shape of the clothes, White et

al. [23] made dense patterns on fabrics or clothes, and used

multiple cameras to track their motion thus to reconstruct

the 3D shapes of the clothes. Han et al. [11] represented

the cloth shape with a 2-layer model: one represents the

general shape, the other one represents fold shapes, which

are measured by shape-from-shading methods. Some other

researches tried to represent the fabrics by physical param-

eters, and estimated the parameters from the visual appear-

ance. Baht et al. [4] used a model made of physical prop-

erties, including density, bend stiffness, stretch stiffness,

damping resistance and friction, to describe and simulate

clothes. They estimate the properties by comparing the real

clothes’ motion video with the simulated videos. Bouman

et al. [5] measured fabric properties (stiffness and density)

directly from the video of fabric motion using hand-crafted

features, when the fabrics were hanged and exposed to dif-

ferent winds.

Touch Perception with GelSight As the best high-

resolution tactile sensor, GelSight is good at measuring the

fine structure of object surfaces. The tactile signal from the

sensor comes in the form of images, thus some computer vi-

sion algorithms could be directly applied on processing the

signal. Li and Adelson [16] showed that GelSight worked

well on classifying materials according to their textures.

Moreover, GelSight showed potentials in obtaining physi-

cal properties of objects through physical interaction with

the objects. Yuan et al. [26, 27] pressed the sensor on soft

objects, and estimate the objects’ hardness from the image

sequences from GelSight.

Joint Neural Network Joint neural network is the net-

work architecture that joins two or more separate networks

for different inputs. Chopra et al. [7] first proposed a

Siamese Neural Network (SNN), that learned low dimen-

sional embedding vectors from a single-modal input. The

SNN has two identical neural networks with shared weights,

and outputs the distance of embedding vectors from the two

inputs. In the training, the network uses energy-based con-

trastive loss [10] to minimize the distance of the embed-

dings from similar input pairs while making the distance

of dissimilar input pairs’ embeddings larger than margin.

SNN has been applied in face verification [7] and sentence

embedding [19].

In recent years, people have been using joint neural net-

work for cross-modality learning – mostly 2 modalities. A

traditional method is to extract features from one modality

and project the other modality to this feature space. Frome

et al. [9] proposed hinge rank loss to transform visual data

to text. Li et al. [18] learned the joint embedding by as-

sociating generated images to the trained embeddings from

shape images of objects. Owens et al. [21] combined CNN

and LSTM to predict objects hitting sound from videos.

They extracted the sound features first, and then regress

the features from images by neural networks. Their other

work [22] presented a CNN that learn visual representation

self-supervised by features extracted from ambient sound.

Some other recent works have been trying to project

inputs from different modalities into a shared embedding
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Figure 5. Clustering of the fabrics based on human label. Numbers in the bracket denote the fabric number in the cluster.

space. Otani et al. [20] proposed a network that learns

cross-modal representations of videos and sentences simul-

taneously. Besides these bi-modal networks, Aytar et al. [3]

proposed multi-modal neural networks that learn cross-

modal representation of more than two modalities related to

scenes. Projecting more modality to a shared space makes

the learning process more difficult, but could bring more

information.

3. Dataset

We collect a dataset for fabric perception that consist

of visual images (color and depth), GelSight videos, and

human labeling of the properties. The dataset contains

118 fabrics, including the apparel fabrics like broadcloth,

polyester, knit, satin; bedding fabrics like terry, fleece;

and functional fabrics like burlap, curtain cloth, oilcloth

(examples shown in Figure 3). About 60% of the fab-

rics are of single but different colors, others have ran-

dom color patterns. Each fabric piece is of the approx-

imate size 1m×1m. Some of the fabrics are kindly pro-

vided by researchers working on [24] and [5]. The dataset

is available at http://people.csail.mit.edu/

yuan_wz/fabricdata/GelFabric.tar.gz .

Visual data We drape the fabrics from a cylindrical

post(30.7cm height, 6.3cm diameter) in natural states, and

take both the color images and depth images of them. The

color images are taken by a Canon T2i SLR camera, and

depth images are taken by a Kinect One. For each fabric we

take pictures of 10 different drapes.

Tactile data We press the tactile sensor, GelSight, on the

fabrics when they lay on a hard flat surface, thus obtaining

a sequence of GelSight tactile images for the press process.

The sensor we used is the fingertip GelSight device [17].

The sensor has a slightly domed surface and a view range

of 18.4mm×13.8mm. We select the image resolution of

960 × 720. There are black markers painted on the sensor

surface to track the contact force [25].

We collected two forms of tactile data: one is the “flat

data”, when the GelSight is pressed on the single-layer of

the flat fabrics; the other one is “fold data”, when the Gel-

Sight is pressed on the fold of the fabrics, as shown in Fig-

ure 2. For each fabric, we collect 10 pressing samples of the

flat data and 15 samples of the fold data.

Attribute label We label each fabric with the estimation

of the physical parameters that we believe are the most im-

portant determine the fabric draping and contact process:

thickness, stiffness, stretchiness and density. The thickness

and density are measured by a ruler and a scale; stretchi-

ness is roughly estimated into the level of “non-stretchable”,

“stretchable”, and “extremely stretchable”; the stiffness is

estimated by humans: we ask 5 human subjects to score the

fabric stiffness in the range of 0 to 5 (with the permission

of excess for extra stiffness), and take the mean value. Note

that the label does not necessarily cover all the true proper-

ties that influence the drape, and the values contains human

bias, but they can provide a convenient and reasonable ref-

erence.

In this work, we cluster the fabrics into 8 clusters by us-

ing k-means on the fabrics’ physical parameters, as shown

in Figure 5. To humans, fabrics in the same cluster will

have relatively similar properties. We describe the human

intuitive description of each cluster in Figure 5.

4. Associating Vision and Touch

We build joint neural network models to associate visual

and tactile information of the fabrics. The input data is of

three different modalities: the depth image, the color im-

ages, and the tactile images from GelSight. The input data

from each modality goes through an independent CNN to

form an embedding vector E, as a low-dimension represen-

tation of the fabrics. We use the sum of Euclidean distance

D = ‖E1−E2‖ to measure the differences between two Es,

regardless of the input’s modality. Ideally all the input data

on the same fabric will make the same E through the net-

works, while two fabrics, when they are similar, will have

a small distance D between the embedding vectors E, and
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two very different fabrics will have large D. We trained a

joint CNN of the three modalities, and compared the perfor-

mance of different architectures. Figure 4 shows the neural

networks in this paper.

4.1. Neural Network Architectures

Cross-modal Net The basic network to join the three

modalities is shown in Figure 4(a). In this network, the

architecture images, color images and GelSight images go

through three separate CNNs in a joint network. The CNN

we used in this work is the AlexNet [15], which is pretrained

on ImageNet, and we take the fc7 in the network as the em-

bedding vector E to represent a fabric.

We use contrastive loss[7] as objective function. For a

input group of depth image X1, color image X2 and Gel-

Sight image X3, the embedding vectors coming from the

three neural network GW1, GW2 and GW3 can be denoted

as E1 = GW1(X1), E2 = GW2(X2) and E3 = GW3(X3).
For each input group, we measure the overall distance be-

tween the embedding vectors, denoted as D3:

D3 = ‖E1 −E2‖+ ‖E2 −E3‖+ ‖E3 −E1‖ (1)

We make Y = 0 if X1, X2 and X3 are sourced from the

same fabric, and Y = 1 if they are from different fabrics.

The network loss is

L(W1,W2, Y,X1, X2) =
1

2
(1− Y )×D2

3
+

1

2
Y ×max(0,m−D3)

2

(2)

where m > 0 is a margin (we used m = 2 in our experi-

ments). Dissimilar pairs contribute to the loss function only

if D3 is smaller than the margin radius m. The existence of

dissimilar pairs is meaningful to prevent the D3 and the loss

L being zero by setting GW s to a constant.

Auxiliary Net In auxiliary net, we keep the architecture

of the basic cross-modal net, but simultaneously use the em-

bedding vector E to train a classification task of the fabrics

cluster, as shown in Figure 4(b). The purpose is to make

similar fabrics have close embedding vectors by adding su-

pervision. The three cross-entropy losses of cluster classifi-

cation are combined with the contrastive loss(2) in addition

for a total loss. The cluster of the fabrics is made based on

human label, as shown in Figure 5.

Multi-input Net Based on the auxiliary network, we use

3 different GelSight images different presses as tactile in-

puts, thus making the Multi-input Network. The 3 Gel-

Sight images go through the same network GW3 respec-

tively, making 3 fc7 vectors, and we make the final embed-

ding E of the inputs as element-wise maximum of them.

The network is shown in Figure 4(c). The motivation for

this design is that, humans are likely to touch an object for

multiple times before obtaining a confident perception of

it, and similarly, we design the multi-input architecture to

exploit more information from the multiple presses.

4.2. Training and Testing

Our approach is implemented in Keras[6] with

TensorFlow[1] backend. We use the Adam [14] optimizer

and fix learning rate as 0.001 throughout the experiment.

Parameters of AlexNet before fc7 will be fixed during

training. We train the network for 25,000 iterations with

batch size = 128.

In the test, we used the trained CNNs GW1, GW2 and

GW3. Each input image, either a depth image, color image

or GelSight image, goes through the corresponding network

to produce an embedding E, as a representation of the fab-

ric. For different inputs, either from the same or different

modalities, we calculate the Es from the input, and compare

the distance D between the two E to decide the likeliness

that the two inputs are from the same fabric.

5. Experiments

We divide the 118 fabrics in the dataset as a training set

(100 fabrics) and test set (18 fabrics). The 18 test fabrics

are selected evenly from the 8 clusters in Figure 5.

5.1. Inferring Touch from Vision

The first experiment is picking the depth or color images

that best match the GelSight input. In other words, we give

the network a touch image, and some possible visual ap-

pearances of the fabrics, then we ask the network to choose

the most probable image of the touched fabric. The match

is according to the D between the Es from the given Gel-

Sight image and the candidate images. In the experiment,

the candidate depth or color images are 10 images from 9

random selected fabrics and the ground-truth fabric from

the test set. The selecting procedure is shown in Figure 6.

We evaluate the model performance by comparing the top 1

precision and top 3 precision: the probability of the correct

answer ranks the first in all the 10 candidates, or ranks in the

top 3. For each network, we test each 15 different GelSight

input images on each fabric for 10 times, and calculate the

average precisions.

We test the performance of 4 networks: 1. the cross-

modal network (Figure 4(a)), when the GelSight input is

the pressing image on flat fabrics without folds; 2. the

cross-modal network, when the GelSight input is one press-

ing image on the folded fabrics; 3. the auxiliary network

(Figure 4(b)) that compares depth images and GelSight on

single folds, but with the auxiliary task of cluster the embed-

dings; 4. the auxiliary network that takes 3 GelSight images

as the input (Figure 4(c)). The results of the top 1 precision

and top 3 precision on the test set is shown in Figure 7. We

also test the precisions of matching other modalities, and
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Figure 6. Examples of picking the corresponding depth image to the GelSight input, according to the distance D between their embeddings.

Trained on the Auxiliary Net. The green frames mark the ground truth. The first row shows an example of in training: a flexible and thin

satin, where the 3 closest matches are all satins, and the furthest 3 examples are all different fabrics. The second row shows two test

examples, with the 3 closest matches and a furthest match in the random 10-image set. The right example shows a soft, light and flexible

fleece, but the network confused the sample with two other thick and soft blankets.

Model Flat Cross-mdl Auxiliary Multi-in

Depth2Gel 0.3063 0.4292 0.4318 0.4576

Color2Gel 0.2681 0.3742 0.4022 0.4124

Depth2Color 0.4133 0.4329 0.4141 0.4417

Color2Depth 0.4050 0.4240 0.4070 0.4306

Table 1. Result on the test set: the average top 1 precision on test

set for the “pick 1 from 10” experiment of matching other modal-

ities.

the results are shown in Table 1. In comparison, the preci-

sions on matching the data from a single modality is much

higher, as shown in Table 2.

From the results, we can see that all the networks can

predict the matching images better than average chance.

As for the architectures, the auxiliary net with 3-frame in-

put performs the best, the auxiliary net with 1-frame input

places the second, and the basic model with the plain Gel-

Sight press comes the last. The match between touch im-

ages and depth images is better than the match with color

images.

The positive results in the matching experiments show

that the neural networks are able to automatically extract

the features related to fabric intrinsic properties from ei-

ther visual or touch information. The properties from the

three modalities are correlated, so that the networks can

match one modal input with the other by comparing the em-

bedding vectors. But in the given dataset with the limited

Figure 7. Test result: the top 1 and top 3 precision on matching

the depth or color image candidates to a given GelSight input. We

compared 4 models: the Cross-modal net with input GelSight im-

ages of pressing on flat fabrics (denoted as ‘Flat’), the Cross-modal

net, the auxiliary net and the Multi-input Net. (the last three results

groups are based on GelSight images when pressing on folded fab-

rics)

Model Flat Cross-mdl Auxiliary Multi-in

Dep2Dep 0.6030 0.6265 0.6224 0.6459

Color2Color 0.7941 0.7831 0.7968 0.8247

Gel2Gel 0.8025 0.7672 0.8090 0.9351

Table 2. Result on the test set: the average top 1 precision on

test set for the “pick 1 from 10” experiment of matching a single

modality.
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Figure 8. Confusion matrices between fabrics on “picking the possible depth image to a given GelSight input”. The fabrics are ranked

according to human subjects, so that similar fabrics are placed close. (a) Confusion matrices of the test results for different networks. (b)

Confusion matrices on training set for the Cross-modal net and Mutli-input Net, either between clusters, or on the individual fabrics. (c)

Confusion matrices on fabrics in the training set within Cluster 2 and Cluster 5.

size, the neural networks extract the physical properties bet-

ter from the depth images than from the color images, be-

cause the former has less information and the fabric shape is

more directly related to the physical properties. The results

also show that, the additional information helps the network

to better recognize the materials: the comparison between

model 1 and 2 shows that the folds on the fabric reveals

more properties; comparison between model 2 and 3 shows

on this small dataset, the human label help to improve the

network performance; the comparison between model 3 and

4 shows that providing more touch information, the network

will extract the relevant information better, and makes the

matching more robust.

5.2. Representing Fabrics by Embeddings

For each input image, we represent it with an embedding

vector E through the trained neural network. The distance

D between two Es is expected to measure the likeliness that

they are sourced from the same fabric, or two similar fab-

rics. In this experiment, we aim at seeing how the E repre-

sents the fabrics; in other words, whether Es from the same

or similar fabrics are closer than those of distinct fabrics.

In this section, we continue with the experiment of “pick-

ing the possible depth image given a GelSight image” as

an example. To denote the possibility that the two Es are

sourced from the same fabric, we build a function P :

P(E1,E2) ∝ exp
(

−c×D(E1,E2)
2
)

(3)

Where c is a positive coefficient (we set it as 8.5 × 10−2).

For a given input with embedding Etar, and a set of can-

didates with embedding vectors {Ei}, we normalized P so

that
∑

i

P(Etar,Ei) = 1 (4)

Here we make {Ei} from all the depth images in the can-

didate fabric set. For each test fabric, we calculate P over

all the available GelSight input image and take their aver-

age, so that we got a possibility of “mismatching the touch

data from the current fabrics to the other fabrics”. We draw

confusion matrices of the mean P between the fabrics in

Figure 8. In the figure, we re-order the fabrics numbers to

put the fabrics adjacent when human subjects consider them

similar, so that the bright spots near the diagonal line means

the neural network gets confused with the fabrics that are

likely to confuse human too.

Figure 8(a) shows the confusion matrix on the test

dataset, and it indicates that most of the possible confusion

occurs between the similar fabrics. For instance, in the ex-

amples shown in Figure 6, The first test case, the network

picked the correct candidate, but the D is close to the sec-

ond candidate, because the two fabrics are similar knits; in

the second text case, the network predicted wrong, because

the input pattern is like a “thick, soft and fuzzy material”,

while the best matched and second match have similar prop-

erties. In general, the Multi-input Net performs the best on

the confusion distribution, while the Cross-modal Net with

only plain input performs the worst.

Figure 8(b) shows the probability in matching the Gel-

Sight data and depth image in the training set (100 fabrics).

Here we compared the matching probability of all the in-

dependent fabrics, and also between different clusters. The

figures indicate that for both networks, they well distinguish
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the fabrics in different clusters. Even the Cross-modal net

does well, while it does not know the cluster in the train-

ing. But within the clusters, the network can be confused

between fabrics. Figure 8(c) shows the confusion matrices

of fabrics within Cluster 2 and 5. Cluster 2 denotes fabrics

that are “thin, light and stiff”, and contains many broad-

cloths. They appear very similar to human; similarly, the

Cross-modal Net and Auxiliary Net make their embedding

vectors close, and display a blurred area in the bottom left

part in the matrices. But for the Multi-input Net, as there

are more input information, the network is able to repre-

sent the more subtle differences between the fabrics, so that

the confusion matrix concentrated. Cluster 5 contains fab-

rics that are thick and stiff. Similarly, the Multi-input Net

reduced the confusion between different fabrics the best (al-

though not totally), and the embedding vectors would better

represent the fabrics.

The results in this section prove that all those factors

will improve the network’s ability of representing the fab-

rics: touching the folds instead of the plain fabric; multiple

presses that contains less biased information. The cluster-

ing information made according to human label also help

the network to narrow down the fabric range to represent

the properties.

5.3. Data Augmentation

We augment the dataset on the color images by changing

the hue and exposure of the images during the training: we

perform Gamma Correction (range 0.5-2.0) to each image,

and change the order of the RGB channels. The matching

tests with the color images involved make a better result, as

shown in Table 3. But the results of other matching tests

between GelSight images and depth images do not change.

We tried other data augmentation on the GelSight images

and the depth images, including adding noise to the input,

and crop the images randomly, but the results make little

difference.

5.4. Touch Helps Vision

We find that the joint learning of the multi-modality

boosts the performance on one modality. Taking the vision

as an example, we work on the task of “picking a depth

image of draped fabrics that best matches a given depth im-

age”. We compare the performance of 2 network architec-

tures: a Siamese Neural Network (SNN) [7] trained on only

depth images, and a Cross-modal Net similar to Figure 4(a),

but only takes in depth images and GelSight images. The

two architectures are the same other than they take in dif-

ferent modalities as branches.

In this experiment, we select 80% of the data on the 100

training fabrics as the training set, and the rest 20% data, as

well as the data from 18 test fabrics as the test set. The test

results are shown in Table 4. As shown in the results, on

Model Cross-mdl Cross-mdl

(with aug)

Multi-in Multi-in

(with aug)

Gel2Color 0.3954 0.4359 0.4303 0.4937

Color2Gel 0.3742 0.4088 0.4124 0.4264

Depth2Color 0.4329 0.4674 0.4417 0.4924

Color2Depth 0.4240 0.4607 0.4306 0.4624

Table 3. Comparison of the top 1 precision before and after data

augmentation on the color images.

Seen Fabrics Novel Fabrics

Model Top1 Top3 Top1 Top3

SNN (only depth) 0.482 0.660 0.554 0.729

Cross-mdl (depth&Gel) 0.608 0.786 0.606 0.786

Table 4. Test results on the depth-to-depth match on two net-

works: a Siamese Neural Network (SNN) [7] trained only on depth

images, and a Cross-modal Net trained on depth and GelSight im-

ages.

this size-limited dataset, the joint model on both touch and

depth images have much better performance than single-

modal SNN model. We assume this means the extra infor-

mation from one modality will help the training in the other

modality to reduce overfit and find a better local minimum.

6. Conclusion

In this work, we use deep learning to associate visual and

tactile information on recognizing fabrics. Three modalities

are used: the depth image, the color image, and the Gel-

Sight image. The recognition is more about estimating the

physical parameters of the materials, rather than a discrete

label, and the parameters are represented by an auto-trained

embeddings. The distance between two embedding vectors

shows how likely the data source are the same fabric, or how

similar the fabrics are. We compare the performance of dif-

ferent neural network architectures which exploit different

amounts of input information, and the results show that, the

folds on the fabrics during touching, the presumed fabric

cluster based on human labels, and the multiple touch in-

put, will help the network to learn better embedding vectors.

The comparison of networks trained on single modality and

two modalities also shows that, the joint training with both

visual and tactile information will greatly improve the per-

formance on visual information matching.
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