
Temporal Action Localization by Structured Maximal Sums

Zehuan Yuan1,2, Jonathan C. Stroud2, Tong Lu1, and Jia Deng2

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2University of Michigan, Ann Arbor

Abstract

We address the problem of temporal action localiza-

tion in videos. We pose action localization as a structured

prediction over arbitrary-length temporal windows, where

each window is scored as the sum of frame-wise classifi-

cation scores. Additionally, our model classifies the start,

middle, and end of each action as separate components, al-

lowing our system to explicitly model each action’s tempo-

ral evolution and take advantage of informative temporal

dependencies present in this structure. In this framework,

we localize actions by searching for the structured maximal

sum, a problem for which we develop a novel, provably-

efficient algorithmic solution. The frame-wise classification

scores are computed using features from a deep Convolu-

tional Neural Network (CNN), which are trained end-to-

end to directly optimize for a novel structured objective. We

evaluate our system on the THUMOS ’14 action detection

benchmark and achieve competitive performance.

1. Introduction

In temporal action localization, we are given a video

and aim to detect if and when a particular action occurs.

Specifically, we answer three questions – “is there an ac-

tion in the video?”, “when does the action start?”, and

“when does the action end?”. By automating this process,

we can enable people to efficiently search through the mil-

lions of hours of video data which are generated each and

every day. However, this remains a challenging problem

for several reasons. Crucially, actions have inherent tempo-

ral structure, so we require a representation that can model

the temporal evolution of actions in addition to their instan-

taneous spatial appearance. Previous methods have either

failed to model temporal evolution, or done so at significant

computational cost [11, 16, 15]. High computational cost

is a significant problem for these methods, because in many

This work was done while Zehuan Yuan was a visiting student at the

University of Michigan.

practical applications, the videos of interest may be arbitrar-

ily long, and methods must gracefully scale to videos that

last hours (e.g. movies, web videos) or even days (e.g. se-

curity footage, first-person vision). Finally, extracting pow-

erful features for detecting actions in videos remains an un-

solved challenge.

To overcome these challenges, we propose a method that

directly models the temporal evolution of actions, and we

develop a provably-efficient algorithm to perform localiza-

tion in this framework. Our temporal evolution framework

is based on the observation that all actions have a start, mid-

dle, and end, and that these components each have distinct

patterns of appearance and motion. We hypothesize that by

localizing these three action parts separately, we can signif-

icantly improve localization performance by enforcing con-

sistent structure in their ordering. Specifically, we model an

action as a temporal window – a variable-length sequence of

video frames – and we assume that each temporal window

begins with a single start frame, followed by one or more

middle frames, and finally a single end frame (Figure 1).

We otherwise impose no restrictive constraints on the tem-

poral sequence of each action. In doing this, we recover

just enough temporal information to take advantage of the

inherent structure present in each action, without requiring

any additional annotations or making unrealistic assump-

tions about the composition of actions.

At test time, we localize actions by searching for the

structured maximal sum – the sequence of start, middle,

and end frames which has the highest sum of correspond-

ing frame-wise confidence scores. Solving this problem is

non-trivial, as it naı̈vely requires a search over a quadratic

number of possible start-end pairs. However, in Section 4,

we propose a novel dynamic programming algorithm which

provably finds the top-k structured maximal sums for a

video of arbitrary length. We prove that this algorithm is

efficient, and specifically we show that it finds the struc-

tured maximal sum in linear time. Our solution is related to

that of the well-studied k-maximal sums problem, for which

similar efficient algorithms exist [2]. Our structured maxi-

3684

Background Start

Start

End

End

Middle

Middle

Background

Figure 1: Temporal evolution of a golf-swing action. Our system explicitly models evolution as a single start frame (green),

followed by many middle frames (blue), and a single end frame (red).

mal sum algorithm enables us to gracefully scale localiza-

tion to arbitrary-length untrimmed videos, while simultane-

ously encoding the temporal evolution of each action.

We classify the three action components separately using

powerful discriminative features from two-stream Convolu-

tional Neural Networks (CNNs) [16]. In Section 5.2, we

train the entire system end-to-end, using a novel structured

loss function. We train and evaluate our approach on the

THUMOS’14 challenge dataset [6] in Section 6 and achieve

competitive results.

Our primary contribution is a framework that allows us

to model the temporal evolution of actions without sacri-

ficing efficient temporal localization. Crucial to our frame-

work is a novel, provably-efficient algorithm, which com-

putes the structured maximal sum in linear time. We

achieve competitive results on action detection baselines,

and present a number of ablation studies to demonstrate the

contributions of each component of our pipeline.

2. Related work

Temporal action localization in videos is an active area

of research, and much recent progress has been facilitated

by an abundance of benchmark datasets and competitions

which focus on temporal localization, including the THU-

MOS [6] and ActivityNet [7] challenges. Most prior ap-

proaches have fallen into one of two categories: sliding win-

dow and framewise classification. In this section we will

outline the major contributions of these approaches.

Sliding Window. Many leading approaches for temporal

localization apply classifiers to fixed-width windows that

are scanned across each video. These approaches have the

advantage that they are able to consider contextual informa-

tion and temporal dependencies in their classifications, up

to the size of the temporal windows. Oneata et al. [11], the

winners of the THUMOS ’14 localization competition, used

sliding window classifiers applied to fisher vector represen-

tations of improved dense trajectories features [25]. Wang

et al. took a similar sliding-window approach and came in

second place in the same competition [26]. Recently, Shou

et al. proposed a sliding 3D Convolutional Neural Network

for localization, in favor of the hand-designed features of

previous methods [15]. In a similar vein to our temporal

evolution model, Gaidon et al. used sliding window classi-

fiers to locate action parts (actoms) from hand-crafted fea-

tures [4]. The key distinction between their sequence model

and ours is that their action parts are specific to each indi-

vidual action, and must be chosen and labeled manually,

while ours uses the same parts for each action, and requires

no additional annotations.

Most sliding window approaches are applied at multi-

ple window sizes to account for variation in temporal scale.

This leads to significant redundant computation and makes

these methods expensive to scale to long videos. However,

their success in competitions like THUMOS demonstrate

that the contextual information afforded by sliding window

methods is important for accurate localization.

Frame-wise Classification. Another class of popular ap-

proaches apply classifiers to each individual frame to detect

the presence or absence of an action. Action windows are

then aggregated during post-processing, using simple non-

maximum suppression or more complex sequence models.

Singh et al. [19] achieved competitive performance in the

ActivityNet challenge [7] using a frame-wise classifier to

propose action locations, aggregated together by minimiz-

ing a loss that encourages piecewise smoothness in the de-

tections [19]. Sun et al. and Singh et al. applied frame-wise

CNN feature detectors, connected by recurrent LSTM mod-

ules [21, 18]. Richard et al. adopt language models applied

to traditional motion features [12].

While each of these methods are able to incorporate

some temporal context in post-processing, they each ei-

ther rely on hand-designed frame-level features or optimize

some frame-level loss. Our approach, by contrast, is trained

end-to-end, and directly optimizes a structured loss over

temporal action windows, allowing it to learn features that

3685

facilitate accurate action localization.

Other Approaches. Max-margin losses have been used to

detect actions in an online setting [8] and from 3D video

features [28], but not in an end-to-end pipeline. Many

works have taken other approaches to model the temporal

structure present in actions [22]. Recently, Yeung et al. [29]

proposed using reinforcement learning to actively search for

informative frames in a video before directly regressing the

start and end points of each action. Their approach is effi-

cient, in that it only needs to observe a few frames before

making each prediction, but it does not aggregate informa-

tion over the entire video to achieve the best performance.

The work that is perhaps most related to ours is [24],

which approaches action localization as a structured pre-

diction over spatio-temporal paths through a video, utiliz-

ing the max-path algorithm of [23] to perform efficient in-

ference. Their method is capable of performing both spa-

tial and temporal localization jointly, and similarly uses a

max-margin structured regression to learn frame-wise clas-

sification scores. Our method, however, has the advantage

of modeling the temporal evolution of actions, and utilizes

powerful CNN features, which we train end-to-end.

3. Localization as Structured Prediction

Suppose we are given a video v = {x1, x2, · · · , xn} ∈
V , where xt denotes the frame at timestep t, and n is the

total number of frames in the video. We define a tempo-

ral window to be a contiguous segment of video frames

y = {xs, xs+1, · · · , xe} ∈ Y , where s and e are the in-

dices of the start and end frames, respectively, and 1 6 s 6

e 6 n. Furthermore, suppose that each frame has a real-

valued frame-wise score f(xt) ∈ R which can be positive

or negative, which indicates our confidence in frame x be-

longing to an instance of a particular action class. Note that,

for convenience, we express f(xt) as a function of only a

single frame xt, while in practice f may depend on fea-

tures extracted from the entire video. For a video and corre-

sponding temporal window, we define the confidence score

F : V × Y 7→ R as the sum of framewise scores, that is,

F (v, y) =
∑e

t=s f(xt) . The predicted temporal window

for video v is the one that maximizes the confidence score,

in particular, ŷ = argmaxy∈Y F (v, y) .

Naı̈vely, by searching over all possible start- and end-

point pairs, this maximization requires a search over a space

quadratic in the number of frames. For long videos, this

is impractical. However, because F is decomposable into

frame-wise scores, we can pose this as the classic maximum

sum problem [2], for which there exists an O(n)-time solu-

tion [1]. In practical settings, we may have multiple action

instances in a single video. Finding the k-best windows can

similarly be posed as a k-maximal sums problem, for which

there exists a O(n + k)-time solution [3]. In the following

section, we model more complex temporal dependencies.

3.1. Temporal Evolution Model

Actions vary greatly in their appearance and motion

characteristics over time. By explicitly modelling the tem-

poral evolution of an action, we can take advantage of this

inherent temporal structure. In particular, we notice that

the frames at the start- and end-points of an action instance

tend to vary greatly in appearance, as the actor will often

change position (as in basketball-dunk) or pose (as in golf-

swing) over the course of the action. Additionally, frames

in the middle of the action instance tend to have different

motion characteristics than the start- and end-points as the

actor performs complex body movements.

The start and end of an action are of particular impor-

tance in temporal localization, as they define the bound-

aries of a single action instance. In order to encourage

precise localization, we explicitly model each action as a

single start frame, followed by an arbitrary-length series of

middle frames, and finally a single end frame. Suppose we

have separate signed frame-wise confidence scores fs(x),
fm(x), and fe(x), for the start, middle, and end compo-

nents, respectively. Using this new formulation, we can

rewrite the confidence score F (v, y) for a video v as

F (v, y) = λsf
s(xs) + λm

e−1
∑

t=s+1

fm(xt) + λef
e(xe) (1)

where λs, λm and λe are parameters that specify the relative

importance of each action part. In our experiments, we set

λs = λm = λe = 1 except where stated otherwise.

This generalization comes with a number of advantages

over the single-class confidence score without temporal

evolution. First, we are penalized heavily for detections that

fail to find good matchings for the start and end frames. This

enforces temporal consistency, as the best detections will be

those that successfully match each of the three components

in their correct order. This resistance to illogical matchings

gives us robustness to variance in the frame-wise scores.

This makes us less likely to merge consecutive or partial in-

stances of an action into a single detection, and encourages

the detector to stretch each detection to the full extent of the

action instance, preventing over- and under-segmentation.

Finally, start and end labels are readily available from ex-

isting temporal action annotations, meaning that we require

no additional training data. Finally, since every action has a

start, middle, and end, this formulation makes no restrictive

assumptions about the structure of complex actions.

4. Structured Maximal Sums

Given frame-wise scores fs, fm, and fe, and a video

v, our goal is to detect all instances of a particular action.

We represent these detections as the top-k temporal win-

dows, as ordered by their confidence scores in Equation 1.

3686

Figure 2: A depiction of the structured maximal sums prob-

lem. Gray circles depict classification scores for each of the

three action components (darker is higher), and colored out-

lines depict plausible temporal localizations. The three win-

dows depicted here are red (t = 1 . . . 4), blue (t = 1 . . . 8),
and green (t = 3 . . . 8)

In Section 3, we showed how, without temporal evolution,

localization can be framed as a k-maximal sums problem

[1]. However, our formulation introduces additional chal-

lenges, as we now need to compute the top-k structured

maximal sums (Figure 2), which previous work does not

address. To solve this problem, we introduce the Structured

Maximal Sums (SMS) algorithm (Algorithm 1), which effi-

ciently finds the top-k structured maximal sums.

The Structured Maximal Sums algorithm makes a single

pass through the video, maintaining the value of the K-best

windows found so far in the list kmax[:], which is kept in

sorted order. It also keeps track of the values of the K-

best incomplete temporal windows that end at frame i in

rmax[:], that is, the windows that end at i but do not include

an endpoint fe[i]. We now prove the correctness of the SMS

algorithm.

For clarity, we first introduce the following notation.

We assume that all frame-wise classifier scores are pre-

computed, and are contained in ordered lists fs[1 · · ·n],
fm[1 · · ·n], and fe[1 · · ·n], and the shorthand [:] refers to

all elements in a list simultaneously. Similarly, we denote

adding a value to each member of a list as f [:] + n. We

denote the operation of inserting an item s into a sorted

list kmax as merge(s, kmax). We denote the k-th max-

imum value of a function g over a discrete space X as

k-maxx∈X g(x).

Lemma 1. Let rmaxi[:] denote the list of K-best incom-

plete temporal windows ending at timestep i, not including

the end-point fe[i]. Namely, let

rmaxi[k] = k-max
j∈{1,··· ,i}

{

fs(j) +

i
∑

q=j+1

fm(q)
}

. (2)

Then merge(fs[i + 1], rmaxi[:] + fm[i + 1]) gives the

list of the K-best incomplete temporal windows ending at

timestep i+ 1.

Proof. The k-th best incomplete window ending at frame

i+1 is either the window that starts at i+1, or it is a contin-

uation of one of the K-best windows that ended at frame i.

Algorithm 1 Top-K Structured Maximal Sums

Input: Frame-wise scores fs[1 · · ·n], fm[:], and fe[:]
Output: kmax[1 · · ·K]

for each k ← 1 to K do

kmax[k]← −∞, rmax[k]← −∞
end for

rmax[1]← fs[1] {Initialization}
for each i← 2 to n do

for each k ← 1 to K do

s← rmax[k] + fe[i]
rmax[k] = rmax[k] + fm[i]
kmax[:] = merge(s, kmax[:])

end for

rmax[:] = merge(fs[i], rmax[:])
end for

rmaxi[:]+fm[i+1] gives the list of all continuations of the

previous K-best incomplete windows. We insert fs[i + 1]
to this list, and discard at most one of the K continuations

if fs[i + 1] is greater than it. What remains are the K-best

incomplete temporal windows ending at frame i+ 1.

Lemma 2. Let kmaxi[:] denote the list of the K best

temporal windows ending at or before frame i. Then

merge(rmaxi[:] + fe[i + 1], kmaxi[:]) gives the list of the

K-best temporal windows ending at timestep i+ 1.

Proof. We know from Lemma 1 that rmaxi[:] gives the K-

best incomplete temporal windows ending at frame i. The

k-th best temporal window ending at frame i + 1 is ei-

ther one of these incomplete windows, completed by adding

fe[i + 1], or it is one of the top complete windows already

contained in kmaxi. By merging these two lists, we select

the top-K windows overall, preserving the top-K complete

temporal windows.

Each rmaxi and kmaxi (including the call to merge) can

be constructed in O(K) time [1]. We compute kmaxi for

all i ∈ {1, . . . , n}, so the total time complexity is O(nK).
This result, and the results of the above lemmas, lead us to

our primary theoretical contribution:

Theorem 4.1. The SMS algorithm computes the K-best

temporal windows in a video of length n in O(nK) time.

We note that, while this algorithm as written only com-

putes the scores of the top-K temporal windows, our im-

plementation is able to recover the windows themselves.

This is accomplished with simple bookkeeping which keeps

track of the temporal windows’ start- and end-points as they

are added to the rmax and kmax lists.

5. Training

So far, we have assumed that all frame-wise action scores

fs, fm, and fe are computed beforehand. In this sec-

3687

Frame
RGB VGG

VGG
Flow

+

.
.

.
Video

Two-Stream

Network

Two-Stream

Network

Two-Stream

Network

Two-Stream

Network

Concatenaion Localizaion

Figure 3: Diagram of our localization architecture. (left) We use a two-stream network with a VGG backbone architecture to

generate frame-wise confidence scores. (right) Scores from n frames are concatenated and localization is performed.

tion, we describe how these frame-wise score functions

are learned. We use deep Convolutional Neural Networks

(CNNs) to produce the score functions, and introduce a

structured loss function which can be used to train these

CNNs in an end-to-end framework.

5.1. Network Architecture

We adopt the two-stream network architecture of [16] to

extract deep spatio-temporal features for each video frame.

The two-stream architecture consists of two Convolutional

Neural Networks (CNNs), Spatial-CNN and Motion-CNN.

The first network stream, Spatial-CNN, operates on the

color channels of a single video frame, capturing features

from the static appearance of the scene. The second stream,

Motion-CNN, operates on dense optical flow fields com-

puted between adjacent frames, capturing distinctive mo-

tion features and pixel trajectories over time. However,

unlike [16], we adopt the larger VGG 15-layer network

from [17] as the backbone architecture for each of the two

streams. For each stream, we produce (C × 3)-dimensional

outputs, where C is the total number of action classes.

Finally, we average the frame-wise scores from the two

streams and concatenate the results across frames. This ar-

chitecture is pictured in Figure 3.

5.2. Structured Loss

Our model minimizes a video-level structured loss func-

tion, rather than the frame-wise loss function used to train

the typical two-stream action recognition architecture. By

directly optimizing for temporal action localization, we en-

able the frame-wise scores to take into account the temporal

evolution of actions. This enables a level of fine-tuning that

would not be possible by optimizing for a frame-wise ob-

jective. As in the typical two-stream architecture, we first

pre-train each stream separately and fuse by finetuning.

We have a dataset V = {v1, v2, · · · , vm} of m train-

ing videos and labels Y = {y1, y2, · · · , ym}. Each video

vi = {x
(i)
1 , · · · , x

(i)
ni
} ∈ V can be arbitrarily long, and its

length is denoted ni. For simplicity, we assume the training

videos contain only a single action instance. These labels

yi = (s(i), e(i), ℓ(i)) ∈ Y consist of a start index s, end in-

dex e, and action label ℓ. Our goal is to learn a confidence

function F : V × Y 7→ R, which measures how likely it

is that a particular action instance is present in the video.

We require F to take on the frame-wise summation form

as in Equation 1. We denote the learnable parameters of

F , namely those of the CNNs, as w. We use the notation

F (v, y;w) to denote the confidence score produced for a

video v and window y with parameters w.

For a training video vi, we define the localization loss

Lloc as the gap between the highest-scoring temporal win-

dow and the ground truth label for the action ℓi:

Lloc(vi) =

[

max
y 6=yi

{

∆(yi, y)+F (vi, y;w)
}

−F (vi, yi;w)

]

+

,

(3)

where [·]+ = max(0, ·) is the hinge loss function [5]. The

∆ term is added to weaken the penalty on windows with

high overlap with ground truth, and is defined as ∆(y, y) =
|y ∪ y| − |y ∩ y|, where each predicted window y and y is a

set of video frames and | · | is the cardinality.

To further make the network more discriminative, we in-

troduce a classification lossLcls, which enforces that the es-

timated windows of other actions should have lower scores

than those of the ground truth action class. We define

Lcls(vi) =
1

C − 1

[

M+ max
y: ℓ 6=ℓi

F (vi, y;w)−F (vi, yi;w)
]

+
,

(4)

where M is a fixed parameter that ensures we do not penal-

ize the detection if the distance is already lower than M . In

our experiments, we set M to be the ground truth window

length |yi| of the video vi.

The full structured objective L is a sum of the two losses

over all videos in the training set, defined as follows:

L(V) =

m
∑

i=1

(

Lloc(vi) + λLcls(vi)
)

, (5)

where λ weights the relative importance of the two loss

functions. By default, we set λ = 0.5.

3688

Algorithm 2 Loss-Augmented Stuctured Maximal Sum

Input: Confidence scores fs[1 · · ·n], fm[:] and fe[:];
ground truth window y = {s, e}

Output: smax
smax← −∞; rsum[1]← −∞; p← 0 {Initializaition}
for each i ∈ [1, s) ∪ (e, n] do

fs[i]← fs[i]+1; fm[i]← fm[i]+1; fe[i]← fe[i]+
1;

end for

for each j ← 2 to N do

len← max[0,min(e− s+ 1, e− j)]
rsum[j]← max(rsum[j − 1] + fm[j], p+ fs[j])
smax← max(smax, rsum[j − 1] + len+ fe[j])
if j ∈ [s, e] then

p← p+ 1
end if

end for

Note that both loss functions are typical structural SVM

losses and the parameters w can therefore be learned in a

similar end-to-end fashion [14]. Since both the localization

and classification losses are sub-differentiable, the parame-

ters of the two CNN streams can be learned by backprop-

agation. Specifically, for one layer l, the gradient of either

loss on one video L(·)(vi) with respect to that layer’s pa-

rameters, w(l), can be calculated as

∂L(·)(vi)

∂w(l)
=

(

∂L(·)(vi)

∂F (vi, y∗i)

∂F (vi, y
∗
i)

∂f

−
∂L(·)(vi)

∂F (vi, yi)

∂F (vi, yi)

∂f

)

∂f

∂w(l)

(6)

where y∗i represents argmaxy(∆(y, yi)+F (vi, y)) forLloc

and argmaxy,l 6=ℓi F (vi, y) for Lcls. f is the set of frame-

wise confidence scores produced by the neural networks.

The gradient of f with respect to the network parameters,
∂f

∂w(l) , can be computed via backpropagation, as is standard

for CNNs without the structured objective. Therefore, it

remains to compute two gradients: (1) the gradient of the

confidence function F w.r.t. the classifiers f and (2) the

gradient of the objective function L(·) w.r.t. F . To compute

(1), we recall that confidence function is simply the summa-

tion of the action parts scores, so its gradient computation

is straightforward. Although (2) is not differentiable, it is in

fact sub-differentiable, so we compute a subgradient:

∂L

F (vi, y∗i)
=

{

1 if ∆(yi, y
∗
i) + F (vi, y

∗
i)− F (vi, yi) > 0

0 otherwise.

(7)

This allows us to train end-to-end with subgradient descent.

To compute the subgradient, we need to find the best

window y∗i . We use the SMS algorithm (Algorithm 1) to

find y∗i in Lcls. However, because of the ∆ term in the max-

imization in Lloc, in order to compute y∗i we are required to

perform a maximization of the loss-augmented confidence.

In Algorithm 2, we modify the SMS algorithm to include

this term, achieving the same linear time complexity, guar-

anteeing that this can be computed efficiently during train-

ing. Additionally, we only compute the top detection.

6. Experiments

We evaluate our method on the THUMOS’14 dataset [6].

Our implementation is built on Caffe [9].

Two-stream neural networks. The inputs to Spatial-CNN

are RGB video frames cropped to 224× 224 with the mean

RGB value subtracted. The inputs to Motion-CNN are

dense optical flow channels computed by the TVL1 optical

flow algorithm [30]. We scale each optical flow image to be

between [1, 255] and stack the flows of 10 frames in both

directions to form a 224 × 224 × 20 3D volume. Spatial-

CNN is pre-trained for object recognition on ImageNet [13],

and Motion-CNN is pre-trained for action classification on

UCF101 [20]. We train Spatial-CNN and Motion-CNN sep-

arately, then jointly fine-tune both of their final two fully-

connected layers. Additionally, we adopt multi-scale ran-

dom cropping for both streams. For each sample, we first

randomly choose a scale from a predefined list, then choose

a random crop of size (224 × 224) × scale. The cropped

region is resized to 224 × 224 before being input into the

network. For Spatial-CNN, three scales [1, 0.875, 0.75], for

Motion-CNN, we use two scales [1, 0.875].
Postprocessing. We divide each testing video into over-

lapping 20-second snippets with an 18-second overlap be-

tween neighboring snippets, and perform localization inde-

pendently for each snippet. Subsequently, we merge pre-

dictions across these snippets. We set the number of action

instances to K = 100, as experimentally K ≥ 100 does not

improve recall on our validation set. The temporal action

window scores from Equation 1 are prone to giving higher

scores to longer windows, so we additionally normalize the

confidence of each window by its window length. Further-

more, we multiply confidence scores by action duration pri-

ors as in [11] to encourage action windows to have reason-

able lengths. After generating all candidates, we filter those

with large overlap using non-maximum suppression.

Balanced training. Middle frames are more prevalent than

start and end frames, so to prevent the network from becom-

ing biased towards middle frames, we divide each middle

frame’s score by the total window length during training. In

addition, since the manual annotations of start and end of

actions are relatively noisy, we randomly sample the start

frame from the first 10% of frames and the end from the last

10%. Middle frames are sampled from the middle 80%.

Evaluation Metric. We use mean Average Precision

(mAP) to measure localization performance as in [6]. We

3689

Basketball Dunk

Basketball Dunk

#517 #585

#528 #570

Pole Vault

Pole Vault

#1084 #1255

#1072 #1281

(Ours) Full

Ground Truth

Figure 4: Example detections from our system. Frame numbers are given at the boundaries of each action.

count a detection as correct if it predicts the correct action

label and its intersection over union (IOU) with ground truth

is larger than some overlap threshold σ.

6.1. Results on THUMOS 2014

THUMOS ’14 includes 20 sports action classes for tem-

poral detection, with over 13K short clips and background

videos for training, 1010 untrimmed validation videos, and

1574 untrimmed videos for testing. In our experiments, we

use the training clips, background, and validation videos for

training, and report results on the untrimmed test videos.

During training, we crop each validation video to short 800-

frame clips which contain one single action instance. We

augment the training dataset by splicing action instances

from the training and validation clips with background

videos and validation videos in which no instances of the

20 classes appear. In total, we generate 42000 action clips

for training. We choose hyperparameters based on results

on a withheld subset of the validation videos. We train

Spatial-CNN and Motion-CNN for 16K and 20K iterations,

respectively. We then finetune the two-stream network for

2K additional iterations. At test time, we downsample all

videos to 5fps, and filter out videos that are unlikely to con-

tain any of the 20 action classes. We do this by averaging

their frame-level class scores from action recognition mod-

els [27] finetuned on THUMOS’14. In Figure 4, we show

example detections on the THUMOS’14 test set.

We report results at varying overlap thresholds in Table 1

and compare with existing systems. Our model outperforms

state-of-the-art when the overlap threshold σ is 0.1, 0.2 and

0.3, and achieves competitive results for 0.4 and 0.5. This

indicates that our system can distinguish action instances

from background frames even when precise localization is

difficult. Additionally, we provide per-class average preci-

sion results in Figure 5. Our system achieves the best per-

formance on 5 of the 20 actions. For a few actions, namely

Billards, Cricket Shot, Tennis Swing and Volleyball Spiking,

we get a relatively low average precision. This could be due

Comparison with State-of-the-Art

overlap threshold σ 0.1 0.2 0.3 0.4 0.5

Karaman et al. [10] 1.5 0.9 0.5 0.3 0.2

Wang et al. [26] 19.2 17.8 14.6 12.1 8.5

Oneata et al. [11] 39.8 36.2 28.8 21.8 15.0

Shou et al. [15] 47.7 43.5 36.3 28.7 19.0

Yeung et al. [29] 48.9 44.0 36.0 26.4 17.1

Richard et al. [12] 39.7 35.7 30.0 23.2 15.2

Ours (full) 51.0 45.2 36.5 27.8 17.8

Table 1: The mean average precision (mAP) of differ-

ent methods for varying overlap thresholds. Our system

achieves state-of-the-art performance for σ = 0.1, 0.2, 0.3.

Ablation Study

overlap threshold σ 0.1 0.2 0.3 0.4 0.5

Baseline 18.5 10.2 4.5 1.8 0.2

w/o cls + sme 40.5 28.8 23.2 16.4 13.2

w/o cls 42.5 32.6 27.8 19.6 15.7

w/o sme 48.0 42.2 33.0 24.8 16.2

w/o prior 50.7 45.0 36.2 27.4 17.5

Ours (full) 51.0 45.2 36.5 27.8 17.8

Separate networks

spatial 46.2 40.3 31.5 23.2 16.0

motion 47.6 44.0 35.6 25.8 16.9

late fusion 46.0 43.2 32.8 24.0 14.5

Ours (full) 51.0 45.2 36.5 27.8 17.8

Table 2: Ablation experiments for the structured objective

(top) and the two-stream architecture (bottom). The full

model outperforms all other configurations.

to two main reasons: (1) these action instances are short

and thus the action scores are relatively noisy compared to

longer actions and (2) these actions often occur in rapid suc-

cession, making it easy to merge adjacent action instances.

Ablation Study In order to show the contribution of each

component in our system, we experiment with eight variants

of the full pipeline. The results are reported in Table 2.

3690

0

10

20

30

40

50

Baseball P
itc

h

Basketball D
unk

Billi
ards

Clean and Je
rk

Cliff
 D

iving

Cric
ket B

owl

Cric
ket S

hot

Diving

Fris
bee C

atch

Golf S
wing

Hammer T
hrow

High Ju
mp

Javelin
 Throw

Long Ju
mp

Pole Vault

Shotput

Soccer P
enalty

Tennis
Swing

Throw D
isc

us

Volle
yball S

piking

A
v
er

ag
e

P
re

ci
si

o
n
(%

) Yeung et al. Wang et al. Shou et al. Oneata et al. Ours

Figure 5: Per-class average precision on THUMOS ’14 at overlap threshold σ = 0.5.

Throw Discus Throw Discus

Throw Discus Throw Discus

Throw Discus

#8 #190 #284 #448

#12 #168 #222 #420

#1 #500

(Ours) Full

(Ours) w/o cls

Ground Truth

High Jump High Jump

High Jump High Jump

High Jump

#1605

#1635 #1694 #2012

#2028#1680 #1707

#1498 #2000

#1727

Figure 6: Example detections from our full system compared with our system trained without the classification loss Lcls.

In baseline, we do not train using a structured loss func-

tion during training. Instead, we train our model to per-

form mutually exclusive framewise classification, and sub-

tract the mean confidence to form signed confidence scores,

and perform localization using SMS. In w/o cls, we drop

the structured localization loss Lcls during training. In w/o

sme, we do not model start-middle-end temporal evolution,

and each action score is computed as the average of frame-

level action classification scores. In w/o cls + sme, we use

drop Lcls and also do not model temporal evolution. Drop-

ping each of these components results in a significant drop

in performance, indicating that both temporal evolution and

the structured classification loss are important to facilitate

training and accurate localization. In w/o prior, we drop the

action duration priors, which results in a small drop in per-

formance. In Figure 6, we give examples of detections pro-

duced when the Lcls loss is dropped, localization becomes

less precise. We also perform a separate ablation study on

the components of the two-stream architecture. We evaluate

using each stream individually (spatial and motion), as well

as simply averaging the two streams rather than fine-tuning

jointly (late fusion). We find that the full model outperforms

late fusion, suggesting the importance of joint training of

the two streams. The late fusion does not outperform sepa-

rate networks, suggesting an incompatibility of confidence

scores from the two networks.

6.2. Conclusions

We present a framework for end-to-end training of tem-

poral localization that takes into account the temporal evo-

lution of each action. We frame localization as a Structured

Maximal Sum problem, and provide efficient algorithms for

training and detection in this framework. We show that

modeling temporal evolution improves performance, and

demonstrate that our system achieves competitive perfor-

mance on the THUMOS ’14 benchmark.

Acknowledgements

This work is partially supported by a University of Michi-

gan graduate fellowship, the Natural Science Foundation of

China under Grant No. 61672273, No. 61272218, and No.

61321491, and the Science Foundation for Distinguished

Young Scholars of Jiangsu under Grant No. BK20160021.

3691

