
Parsing Images of Overlapping Organisms with

Deep Singling-Out Networks

Victor Yurchenko∗ Victor Lempitsky

Skolkovo Institute of Science and Technology (Skoltech)

Skolkovo, Moscow, Russia

{victor.yurchenko,lempitsky}@skoltech.ru

Abstract

This work is motivated by the mostly unsolved task of

parsing biological images with multiple overlapping artic-

ulated model organisms (such as worms or larvae). We

present a general approach that separates the two main

challenges associated with such data, individual object

shape estimation and object groups disentangling. At the

core of the approach is a deep feed-forward singling-out

network (SON) that is trained to map each local patch to

a vectorial descriptor that is sensitive to the characteris-

tics (e.g. shape) of a central object, while being invariant

to the variability of all other surrounding elements. Given

a SON, a local image patch can be matched to a gallery of

isolated elements using their SON-descriptors, thus produc-

ing a hypothesis about the shape of the central element in

that patch. The image-level optimization based on integer

programming can then pick a subset of the hypotheses to

explain (parse) the whole image and disentangle groups of

organisms.

While sharing many similarities with existing “analysis-

by-synthesis” approaches, our method avoids the need

for stochastic search in the high-dimensional configura-

tion space and numerous rendering operations at test-time.

We show that our approach can parse microscopy images

of three popular model organisms (the C.Elegans round-

worms, the Drosophila larvae, and the E. Coli bacteria)

even under significant crowding and overlaps between or-

ganisms. We speculate that the overall approach is applica-

ble to a wider class of image parsing problems concerned

with crowded articulated objects, for which rendering train-

ing images is possible.

1. Introduction

Parsing images of biological substances has become one

of the important applications of computer vision [8]. In

∗Currently with Yandex, Moscow.
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Figure 1. We consider the image parsing tasks for three differ-

ent organisms that are popular in biomedical research. In each

case, parsing is hard because of a certain shape variability of indi-

vidual organisms as well as organism overlap and crowding. Al-

though the three organisms are very different biologically, we ap-

proach the corresponding parsing tasks with a unified framework

that first uses a specially-designed deep network to propose hy-

potheses about the shapes of individual organisms and then use

integer programming to pick a viable hypotheses set.

many biologically-important scenarios it is necessary to

deal with images of overlapping objects or organisms. In re-

cent years, several approaches have been proposed that can

parse images when objects have simple blob-type shapes

(e.g. cell cultures) [1, 2, 4, 7, 23]. Less attention, however,

has been paid to images containing more complex organ-

isms exhibiting significant shape and pose variations, such

as worms, larvae, and bacilli. The sheer importance of such

model organisms for biomedical studies calls for further im-

provement of parsing approaches for this class of images.

Two factors make parsing of such images a complicated

task. First, organisms can exhibit significant rigid and non-

rigid pose variations. Secondly, these organisms often form

clusters that cannot be segmented into individual organisms

using simple image processing methods. The two factors

complicate each other, as the variation of the appearance

of clusters can be combinatorially larger than the variation

of the appearance of a single organism, thus defying brute-

force parsing approaches.

Our approach uses a combination of deep learning and

generative modeling to tackle the challenge of organism
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Figure 2. Given a patch containing overlapping organisms (here

Drosophila larvae), our deep architecture (the SON-network) com-

putes a vectorial SON-descriptor. We then perform nearest-

neighbor search in the gallery of images of single organisms with

precomputed SON-descriptors (here, images corresponding to the

first three nearest neighbors are shown). Because of the prop-

erties of these descriptors, the matched organisms have similar

shapes/poses to the organism that covers the central pixel of the

query patch. The remaining organisms in the query patch have

little effect on the matching process. The recovered hypotheses

about central organisms can be then used in the whole image pars-

ing process.

cluster parsing. The approach starts by training a deep

feed-forward network that maps each local image patch P
to a descriptor that is sensitive to the configuration of the

central object in P , while being insensitive to other ob-

jects in P . Informally speaking, such a singling-out net-

work (SON), distinguishes the central element from its sur-

rounding, and then describes the appearance/configuration

of this element by a SON-descriptor. At test-time, the SON-

network allows to obtain a large set of hypotheses about

individual objects in the cluster. This is done by compar-

ing SON-descriptors of various image patches covering the

cluster against a pre-computed large set of SON-descriptors

of patches with known central elements (Figure 2). As a

last step, we use a facility-location type discrete optimiza-

tion [14, 3, 6] to pick a small subset of hypotheses that “ex-

plains” the appearance of the whole cluster.

Below, in Section 4 we show that this approach can be

successfully applied to three diverse datasets corresponding

to three popular model organisms: C.Elegans roundworm,

Drosophila larva, and E.Coli bacterium (Figure 1). Before

that, we discuss prior related work in Section 2, and then

explain our method in Section 3. We conclude by a short

discussion in Section 5.

2. Related work

Despite large practical importance, there is little pub-

lished work dedicated to the image analysis task we focus

on. Wählby et al. [21] describe a method for resolving

C.Elegans worms clusters based on probabilistic analysis,

which achieves impressive results. It however makes sev-

eral assumptions specific to particular organism/assay types

that can be potentially brittle, such as the ability to iso-

late tips of organisms or the ability to mine worm center-

lines as paths in the cluster skeleton. More recently, Fi-

aschi et al. [10, 9] addressed the problem of Drosophila

larvae tracking through network and integer programming.

Our approach is quite different to theirs, as we focus on

handling single frames. Below, we present results for both

Wählby et al. and Fiaschi et al. data obtained with our

method.

Algorithmically, our approach builds upon two streams

of ideas. The first stream are methods based on deep

discriminatively-trained deep convolutional networks [15],

which currently enjoy overwhelming success in image anal-

ysis. Here, the components of our methods resembles

the combination of deep descriptors and nearest-neighbor

search in [11].

The second relevant group of methods is formed by gen-

erative “analysis-by-synthesis” frameworks [7, 13, 20]. A

recent work of Kulkarni et al. [13] nicely combines the two

streams by using deep features to compare the synthesized

and the input images. “Analysis-by-synthesis” approaches

are appealing due to their conceptual simplicity, and overall

hold great potential. However the complexity of scenes that

they can parse is limited by the need to perform stochas-

tic search over the scene configuration space and the need

to re-render the scene at each step of such search. These

computational hurdles are avoided in our method.

Analyzing crowded scenes by suggesting an excessive

number of hypotheses and then picking a subset of them

through optimization is an idea that has been used in several

computer vision works. For example, Wu and Nevatia [22]

used edge-based human part detectors to hypothesize about

individual locations in crowded surveillance videos. Like-

wise, [3] used discriminatively-trained Hough transform to

obtain hypotheses. In both cases, greedy optimization was

used to pick optimal subsets, but other optimization meth-

ods could have been used. Compared to this group of meth-

ods, our contribution is the specific way the hypotheses are

obtained (SON-networks).

3. Method

In a nutshell, our approach focuses on (partial) under-

standing of image patches, and then integrating the infor-

mation from individual patches into a holistic image inter-

pretation via a joint optimization process.

Let us first introduce the notation at the level of a certain

patch P . In most microscopy image parsing scenarios (in-

cluding ours) the binary object/background segmentation is

relatively easy, and therefore it is easy to discard patches

where the central pixels are not covered by the foreground

elements. We therefore restrict our attention to the remain-

ing patches. We thus assume that the patch has a set of
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Figure 3. The classes needed to train SON-network are generated

as sets of images with the same organism (here C.Elegans) in the

center. Here, each row shows several synthetic examples from

the same class. The network then has to learn features that can

help it to distinguish (“single out”) the central organism from the

occluders.

objects (elements) EP = {eP
0
, eP

1
, . . . ePNP

} overlapping

with it, and that eP
0

denotes the central element that cov-

ers the center of the patch. Generally, we assume that each

element ePi is characterized by several degrees of freedom

(e.g. center position, orientation, shape parameters, texture

parameters).

We denote with I(P) the appearance of the patch (a mul-

tichannel image of a certain size), and assume that I(P) =
R(EP ; ξ), where R is the rendering function, and ξ is a nui-

sance variable that incorporates such factors as image noise

or some clutter that we are not aiming to recover, etc. We

further assume that we have a reasonable approximation of

the rendering function R, and that we can draw samples

from the distribution of elements.

3.1. Inverse rendering using Singling­Out Networks

The key idea of our approach is to learn the partial in-

verse mapping S : I(P) → eP
0

that recovers the central

element eP
0

from the appearance I(P) while ignoring the

impact of eP
1
, . . . ePNP

on the appearance I . Overall, we

achieve this using the combination of a deep feedforward

network learning and nearest-neighbor search.

The main component of such partial reverse mapping is

a deep feedforward singling-out network f(I; Θ) that maps

the appearance I of an image patch to a high-dimensional

descriptor vector d (where Θ are the parameters of the deep

network). The learning process tries to adjust Θ to ensure

that the appearance of patches with similar central elements

are mapped to close singling-out network (SON) descriptor

vectors and vice versa.

Training SON-networks. There are several potential

approaches to the training process of the SON-networks.

One can use Siamese pairwise loss [5] or triplet loss [18],

which would require sampling pairs or triplets of patches

with some patches having “similar” central elements, and

other patches having “dissimilar” central elements. Pair-

based and triplet-based learning of deep feedforward net-

works is however known to be hard in terms of finding suit-

able initialization, setting the meta-parameters of the net-

work architecture and the learning process (learning rate),

as well as setting pairs/triplets generation properly. There-

fore we used a proxy classification problem (Figure 3) to

learn a classification network (as in e.g. [19]) using a stan-

dard classification softmax loss.

In the training classification dataset, each class j is gen-

erated as follows. At first, a random central element e
j
0

is

drawn. Then each training image of the class is created

by sampling additional elements e
j
i,1, e

j
i,2, . . . , e

j
i,nj,i

and a

random nuisance parameter ξ
j
i and rendering the correspon-

dence appearance:

I
j
i = R

(

{ej
0
, e

j
i,1, e

j
i,2, . . . , e

j
i,nj,i

}, ξji

)

(1)

The training class j then consists of images I
j
i for all possi-

ble i.

The SON-network is then trained to classify between a

large number of classes generated with this procedure. In

our experiments, we use convolutional neural networks [15]

with three convolutional and three fully-connected layers.

After training the last layer that predicts class posteriors is

discarded and the output of the penultimate layer serves as a

descriptor of the input image (i.e. the feedforward mapping

from the input image to the activations of the penultimate

layer serve as f(I; Θ)).
Gallery matching. We augment the deep descriptor

learning with nearest-neighbor search to conclude the par-

tial inverse mapping. We thus synthesize K random cen-

tral elements ê1, ê2, . . . êK , render them, and then pass the

resulting image patches through the trained SON-network,

obtaining their SON-descriptors d̂i:

d̂i = f (R({êi}; ξi); Θ) (2)

The elements together with their descriptors are then stored

in a gallery {d̂1:ê1, d̂2:ê2, . . . , d̂K :êK}, which is a dictio-

nary where the descriptors serve as keys and the element

parameters serve as values. Alternatively to artificial ren-

dering process, the gallery patches can be sampled from the

annotated training images, whereas geometric and photo-

metric data augmentation can be used to increase the diver-

sity of gallery patches.

Given an image patch I we can then generate a hypothe-

sis about the central element in that patch by first obtaining

its SON-descriptor d = f(I; Θ), then finding the nearest

neighbor d̂t in the gallery of SON-descriptors. The associ-

ated central element êt then provides a hypothesis. Let us

denote the compound mapping from the appearance I to the

hypothesis as g: g(I) = êt. Figure 2 provides the examples

of such mapping.

3.2. Image­level Parsing

While the learned partial inverse mapping can provide

a hypothesis for a single central patch, an additional op-
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timization step is needed to obtain a set of elements that

“explain” the entire image.

To obtain the full image parsing, we first collect a set of

hypotheses. For that, assuming that an approximate fore-

ground/background segmentation is given, we consider a

large number M of patches with centers belonging to fore-

ground. For each such patch centered at (xi, yi) with the

appearance Ii, we obtain a hypothesis hi using the partial

inverse mapping, i.e. hi = g(Ii) (each hypothesis is thus

just an element in a certain configuration). Since an element

can be central for a number of patches (to be precise, for all

patches centered at the pixels covered by the element), the

set of hypotheses obtained in this way is excessive, and the

goal of the further processing is to pick a subset of those.

We approach this pruning task using facility location-

like optimization, which is a standard approach in image

understanding (see e.g. [14, 3, 6]). We thus introduce bi-

nary variables x1, x2, . . . xM , where xi = 1 means that the

i-th hypothesis is selected (xi are thus “facility” variables).

We demand that each of the M patches we consider, is “ex-

plained” by one of the picked hypotheses (i.e. the patches

are the “clients”). To measure the quality of the explanation,

we compute the value dij that measures if the hypothesis hi

can explain the patch j (small values of dij correspond to

the case when such explanation is good).

The distance between the SON-descriptor of the patch

Ii and the SON-descriptor of the hypothesis hi is a natural

choice for dii as it is computed at the stage of the nearest-

neighbor search:

dii = ‖f (Ii; Θ)− f (R ((hi); ξ))‖ , (3)

where the nuisance parameter ξ is taken arbitrarily.

One way to compute dij , when i 6= j is to evaluate the

distance between the SON-descriptor of Ij and the SON-

descriptor of the hypothesis hi shifted according to the dis-

placement between the ith and the jth pixel (in other words,

in the coordinate frame associated with the patch j):

dij = ‖f (Ij ; Θ)− f (R (Ti→j(hi); ξ))‖ , (4)

where Ti→j is an operator that translates the element hi by

(xj −xi, yj − yi) into the coordinate frame associated with

the jth patch before rendering.

Evaluating (4) however requires rendering each hypoth-

esis multiple times for different translations, and is there-

fore rather slow. Alternatively, for each gallery element one

can precompute the change of the descriptor under different

translations, and store it in the dataset. An easier approach

is however to reuse the distance dii computed in (3) for all

patches with central pixels that are covered by the hypothe-

sis hi placed on the image. Hence one can define:

dij = δ(hi, j) dii, (5)

where δ(hi, j) = 1 if the hypothesis hi covers the center of

patch pj and δ(hi, j) = +∞ otherwise (expressing the fact

that the hypothesis cannot explain a patch, for which it does

not cover the central pixel).

Yet another fast heuristic that can be used to compute

dij is to look at the difference between the hypotheses sug-

gested for the ith and the jth patches. In case, the two are

covered by the same organism and the descriptor match-

ing has worked well, the two hypotheses should be simi-

lar. Therefore, we can use some distance between hypothe-

ses (e.g. the Hausdorff distance between hypotheses cen-

terlines) to compute the distance estimates dij (again the

two hypotheses are compared in the “global” coordinate

frames). Below, we present results for the fast approach

using the distance estimates (5), and also selected results

for the slow approach based on a more principled estimates

(4) as well as some results based on the Hausdorff distances

between centerlines.

Once the distance estimates are computed, the binary

variables yij are introduced, where yij = 1 means that the

patch j is actually explained by the hypothesis hi accord-

ing to our image interpretation. The following optimization

formulation (facility location) then implements the image

parsing problem:

minimize
x,y

M
∑

i=1

λxi +

M
∑

i=1

M
∑

j=1

dij yij

subject to xi ∈ {0, 1}, yij ∈ {0, 1}

∀i, j yij ≤ xi,

∀j

M
∑

i=1

yij = 1.

(6)

Here, the first term in the objective implements the MDL

(“minimum description length”) prior penalizing the num-

ber of selected hypotheses, whereas the coefficient λ con-

trols the strength of the prior, while the second term en-

courages the explanation of the patches by the hypotheses

with matching SON-descriptors.

The optimization of (6) is well studied in the context

of computer vision applications with a variety of problem-

specific algorithms suggested [6]. We, however, utilize a

general-purpose ILP solver [12], which allows solving (6)

to global optimality in most cases in our experiments.

If it is known (e.g. from the training data) that two organ-

isms cannot overlap beyond some threshold, we can find the

set S of all pairs of hypotheses (k, l) such that hl and hk

overlap by more than this threshold. We can then add the

following constraint set into the optimization formulation

(6):

∀(k, l) ∈ S xk + xl ≤ 1. (7)

Such set of equations ensures that too tightly overlapping

hypotheses will not be picked simultaneously. While the
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set S of such “conflicting” pairs can be very large, the con-

straints (7) can be enforced in a cutting-plane fashion, start-

ing the optimization without them and iteratively activating

only the violated once while resolving for the optimal set.

Due to the tendency of the facility location to avoid picking

hypotheses that are too similar, few cutting plane iterations

suffice in practice.

4. Experiments

4.1. Datasets

The C.Elegans dataset from the Broad Biomedical

Benchmark Collection [16] consists of 100 images obtained

using bright-field microscopy. The roundworms are sub-

jected to various compounds, and the ultimate goal of the

image processing in this case it to tell alive worms from the

dead ones as dead worms possess characteristic (straight)

shape. Similarly to [21], we consider the binary segmenta-

tion rather than the raw data. We use 50 images for training,

which leaves 50 images for testing. All images were scaled

down by a factor of 2.5.

The Larvae dataset was used in [9] and corresponds to a

high-resolution (1400x1400) video with 9000 frames con-

taining a large number of Drosophila larvae. As there is a

limited movement between the upper and the lower halves,

we used the upper half of the video for training and valida-

tion, and test on the lower half.

The Coli dataset contains 9 large (1024x1024) phase-

contrast microscopy images of colonies of E.Coli bacteria

(grown in mono-layer). Each image contains on average

514 worms. We use 7 images for training, 1 images to val-

idate the method parameters, and report results on the re-

maining 2 images containing 531 worms. Unlike the first

two datasets, the background segmentation task is not triv-

ial, and we learn a linear pixel classifier using the convo-

lutional features at the first layer of the SON-network for

foreground/background segmentation.

4.2. Rendering

Our approach requires rendering a large number of

crowded patches to train SON-networks and another collec-

tion of patches to form the gallery. Since the three datasets

were of different kind and had different types of annotation,

we used three different approaches to tackle these rendering

tasks. For the C.Elegans case, we followed [21] and took

the skeletons of singleton worms to build the PCA-based

shape model that was further used to generate both crowded

patches for SON-training as well as gallery patches. For

the Larvae dataset, we simply isolated the singleton worms

from the top of the dataset and used various similarity trans-

forms and superimpositions to do the rendering (examples

of renderings can be seen in Figure 2). Finally, for E.Coli

we do not have sufficient number of singleton bacteria that
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Figure 4. The architecture of the SON-networks used in our exper-

iments. SON-descriptors are obtained by passing the input patch

through two convolutional layers and two fully-connected layers

(interleaved with rectified linear units (ReLU) and 2 × 2 max-

pooling with downsampling layers. The network is trained so that

the SON-descriptors could be used to linearly classify synthetic

classes. See text for more details.

would be easy to isolate. However, the bacteria have sim-

ple shapes mostly defined by the two endpoints (and were

annotated this way). We therefore align cells of the same

length rotated to a certain fixed orientation to define a cer-

tain class for SON-network training. We also created the

gallery directly from training patches (for which the pose of

the central cell is known).

The sizes of the training datasets were 1000 classes with

500 images in each for C.Elegans and Larvae, and 198

classes of average size 550 for E.Coli. The gallery size was

4 million for C.Elegans, 6 million for Larvae and 240 thou-

sandfo for E.Coli. Generally the patch sizes were 100x100,

40x40 and 50x50 for C.Elegans, Larvae and E.Coli respec-

tively.

4.3. Network design and training

In the experiments the SON-networks had the architec-

ture specified in Figure 4. The SON-descriptors are thus 64

dimensional. For the E.Coli dataset the number of convolu-

tional maps in each layer was halved.

As discussed above, to learn the classifiers the network

was augmented at training time by an additional ReLU layer

followed by a linear dense layers with 1000 (C.Elegans,

Larvae) or 198 (E.Coli) output units corresponding to dif-

ferent classes. The classification was trained with the soft-

max loss. We used stochastic gradient descent algorithm

(with momentum) and trained networks for 53, 40 and 100

epochs for Larvae, C.Elegans and E.Coli respectively. After

each epoch the learning rate was scaled by factor 0.85.

4.4. Matching with SON­descriptors

As our main contribution is the idea of hypothesis min-

ing on the basis of SON-descriptors, we quantitatively com-

pare the performance of the learned descriptors against

SIFT descriptors [17] and a simple baseline based on L2

pixelwise distance. In more detail, on the test set we use
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C. Elegans Larvae Coli
Figure 5. Cumulative plots of the accuracy of pose matching between randomly drawn query patches containing crowded organisms

and a gallery of training patches. The accuracy is judged using symmetric Hausdorff distance between centerlines (using ground truth

annotations). For matching, we compare distances between SON-descriptors (blue line), SIFT descriptors with optimally picked radii (red

line) and the L2-distance between raw image patches (green line). The plots show the number of samples (y-axis) with the pose distance

less than threshold (x-axis). In all three datasets, the SON-distance yields better performance than SIFT and raw patches.

query L2(raw) SIFT SON
Figure 6. Nearest neighbors in the gallery for the query patches

using L2 distance on raw pixels, SIFT and SON-descriptors for

the C.Elegans dataset. Uniform sampling of test sets is shown.

600− 800 patches crowded with organisms as queries, and

then find their nearest neighbors in the gallery set. The

query patches were sampled from the test set. Patches from

C.Elegans and Larvae datasets were centered on a random

pixel of random object from test set while E.Coli patches

were chosen in a such a way that the center of each patch

matched to the center of some segment which defines a

E.Coli sample from test set. SIFT descriptors were cal-

culated for the central pixel of each patch and with fixed

keypoint orientation. We gave SIFTs an advantage by op-

timizing the diameters of keypoints neighborhoods on the

test sets (separately for each dataset).

When searching for the closest neighbors we either use

L2-pixelwise distance or distances based on SIFT or SON-

descriptors. In all cases, we evaluate the distances be-

tween the poses of the central organism in the query patch

and the closest nearest neighbor. To measure the dis-

parity between the poses we used the symmetric Haus-

query L2(raw) SIFT SON
Figure 7. Nearest neighbors in the gallery for the query patches

using L2 distance on raw pixels, SIFT and SON-descriptors for the

E.Coli dataset. Green lines are superimposed for clarity. Uniform

sampling of test sets is shown.

query L2(raw) SIFT SON
Figure 8. Nearest neighbors in the gallery for the query patches

using L2 distance on raw pixels, SIFT and SON-descriptors for

the Larvae dataset. Uniform sampling of test sets is shown.
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dorff distance (dH(A,B) = max{maxa∈A minb∈B ‖a −
b‖,maxb∈B mina∈A ‖a− b‖}) between centerlines.

Figure 5 provides numerical comparisons, while Fig-

ure 6, Figure 7, Figure 8 provides side-by-side qualitative

comparisons. For all three datasets, the SON-descriptors

provide more accurate pose matches compared to SIFT

and L2-distance between patches. When comparing our

method with L2-distance-based method, it is important to

note that matching using SON-descriptors is much faster

as its dimensionality (set to 64 in all our experiments) is

much smaller than the dimensionality of image patches.

For SIFT descriptors the best results were achieved on key-

points with the characteristic scale of five pixels for E.Coli

and C.Elegans and four pixels for Larvae. Because of low

variability of Larvae and E.Coli such a small neighborhood

can provide a good estimation for the whole organism.

4.5. Image parsing

Finally, we provide results for full image parsing on

our dataset. Numerically, we compare the results on

C.Elegans and Larvae with the results of [21] (using their

WormToolbox software). Their method is specialized for

C.Elegans and obtains near-perfect results on their dataset.

In Figure 9, we compare the performance of the Worm

toolbox of [21] with several variants of our method on

C.Elegans. The variants differ in the way of definition dij
of optimization problem (6). We refer as fast to the vari-

ant with equation (5) and fair to the variant with (4). The

hausdorff variant is the variant where we estimate dij
via the Hausdorff distance between centerlines of the worm

hypotheses suggested for the ith and the jth pixel. Gener-

ally, all three variants performs worse than WormToolbox,

especially for large thresholds. However these results can

be significantly improved by local fitting of the pose. In

order to show it we performed two simple postprocessing

steps on fair results. On the first step we excluded from

instance masks all pixels which belong to background of

initial image (we refer to this results as fair+bg). On the

second step we assigned all uncovered foreground pixels of

the image to the nearest instances masks (fair+bg+fg

line in Figure 9). With this postprocessing our approach

slightly outperforms WormToolbox on the most of thresh-

olds of intersection-over-union (IoU) score.

The main limitation of the method proposed in [21] is the

ability to work only with binary masks of worms. Therefore

we trained WormToolbox model for Larvae using the binary

masks of the singleton worms (which were also used in our

method for training SON-network) and tested their model

on binary masks of worm clusters. Since our method is able

to work with any type of input images, we trained and tested

it on actual grayscale images. We also considered exploit-

ing our prior knowledge about data: Larvae organisms usu-

ally tend to overlap significantly. That fact makes choosing
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Figure 9. The graph shows the ratio of true positives (y-axis) ly-

ing within the certain intersection-over-union (IoU) score thresh-

old (x-axis) with the organisms found by the methods (all meth-

ods produced similar number of organisms). At most one-to-one

matching is enforced using Hungarian algorithm. For C.Elegans,

the performance of the proposed approach without postprocessing

(fast, fair and hausdorff lines) is mostly below the perfor-

mance of WormToolbox [21] due to lower accuracy of localization

(large values of threshold). But with simple postprocessing steps

the approach performs slightly better then WormToolbox.

Precision Recall F1-score

WormToolbox 0.7032 0.4665 0.5609

SON fast 0.8174 0.8302 0.8238

SON fast + size 0.8291 0.8787 0.8532

SON fair 0.8091 0.8103 0.8097

SON fair + size 0.8340 0.8317 0.8329

SON hausdorff 0.8277 0.8431 0.8353

SON hausdorff + size 0.8816 0.8816 0.8816
Table 1. Precision, recall and F1-score on Larvae dataset. Meth-

ods results were evaluated by Hausdorff-distance-based Hungarian

matching with threshold set to mean thickness of larvae (8 pixels).

the good set of hypotheses ambiguous. To facilitate pick-

ing smaller hypotheses, we change λ in (6) to λ0 + λ1si,

where si is the size of hypothesis hi. Table 1 provides preci-

sion, recall and F1-score values for two methods on Larvae.

The big advantage of our method over the Worm toolbox is

likely due to the use of textural information that is impor-

tant for parsing organisms clusters whose overlapping area

size is comparable with the size of the whole organism.

We also present qualitative results in Figure 10. Both

qualitative and quantitative results demonstrate the ability

of our method to parse complex clusters. The method gets

limited accuracy in terms of finding the exact worm bound-

aries, which can be addressed through local shape/pose op-

timization using our result as the initial starting point.

5. Summary

We have presented a new approach to parsing images

with crowded objects and have demonstrated its viability

for biomedical images of model organisms with medium
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(a) Parsing (bottom row) of segmented wells (top row) with C.Elegans

(b) Parsing of clusters of Drosophila larvae (left – input cutout, right – results)
Figure 10. Qualitative results (randomly chosen) for the C.Elegans and the Larvae datasets. Better viewed in color and with zoom-in. We

used fair variant without postprocessing for C.Elegans and hausdorff variant with modification in (6) for Larvae. Different organisms

are color-coded. Our approach parses many of the complicated organisms clusters correctly.

complexity. Our approach is not specific to these kinds of

objects and can be applied to other data. The method as-

sumes that it is possible to render training data (although

in the case of E.Coli we showed that one can obtain train-

ing data directly from user-annotated images). Another as-

sumption is that the gallery can sample the pose space of

a single object densely enough. In the current version, we

also assume that foreground/background segmentation can

be performed as a pre-processing.

Our main contribution is in the mechanism for propos-

ing hypotheses about individual objects that is based on

singling-out networks. This mechanism is compatible with

different hypotheses selection approaches. E.g. it can be

used within full-fledged “analysis-by-synthesis” approach

that would choose a subset of hypotheses that minimizes the

mismatch in appearance between the synthetic and the real

image directly. In this work, we presented a faster discrete

optimization-based alternative that produced good results in

our experiments.
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