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Abstract

First-person videos have unique characteristics such as

heavy egocentric motion, strong preceding events, salient

transitional activities and post-event impacts. Action recog-

nition methods designed for third person videos may not

optimally represent actions captured by first-person videos.

We propose a method to represent the high level dynamics

of sub-events in first-person videos by dynamically pool-

ing features of sub-intervals of time series using a tempo-

ral feature pooling function. The sub-event dynamics are

then temporally aligned to make a new series. To keep track

of how the sub-event dynamics evolve over time, we recur-

sively employ the Fast Fourier Transform on a pyramidal

temporal structure. The Fourier coefficients of the segment

define the overall video representation. We perform experi-

ments on two existing benchmark first-person video datasets

which have been captured in a controlled environment. Ad-

dressing this gap, we introduce a new dataset collected

from YouTube which has a larger number of classes and a

greater diversity of capture conditions thereby more closely

depicting real-world challenges in first-person video anal-

ysis. We compare our method to state-of-the-art first per-

son and generic video recognition algorithms. Our method

consistently outperforms the nearest competitors by 10.3%,

3.3% and 11.7% respectively on the three datasets.

1. Introduction

Video based human action recognition has received con-

siderable attention from the research community due to its

importance in real-world applications such as surveillance

and human-machine interaction. The key challenge of de-

signing highly discriminative motion features that can cap-

ture high-level video dynamics still remains an open prob-

lem. While a number of research works have focused on

action recognition from a third-person’s perspective, ef-

forts on understanding first-person videos are much more

restricted despite that wearable cameras are increasingly

accessible. Moreover, many real applications can bene-
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Figure 1. Sample frames of play ball and punching actions from

our proposed YoutubeDog (top) and JPL-Interaction [32] (bottom)

datasets respectively. First-person videos are defined by multi-

ple salient sub-events such as pre-event (waiting/ standing), tran-

sitional (ball is being thrown/ approaching ), action is being per-

formed (playing ball/ punching), post-event (ball is released/ ob-

server is knocked down). We model the dynamics of these sub-

events before temporally encoding these dynamics as the entire

video representation.

fit from the understanding of such videos including medi-

cal monitoring, life-logging and long-term robotics percep-

tion [13, 16, 20, 30, 32, 33, 48, 45, 49, 51].

In contrast to third-person videos, where the camera is

usually set up in a fixed position, in first-person videos the

camera is moving and the observer is actively involved in

the activities being recorded. The activities include inward

interactions (e.g. shaking hands or throwing something to

the observer), egocentric actions (e.g. jumping) and out-

ward interactions (e.g. following a leader). This results

in unique visual characteristics of first-person videos (see

Fig. 1 for examples) that are not normally found in third-

person videos. The visual effects can occur due to heavy

egocentric motion (e.g. the person is running), strong pre-

ceding events (e.g. sudden approach before harming the

observer), salient transitional activities (e.g. transition be-

tween running and playing ball) and post-event impacts

(e.g. observer knocked down after being punched by an at-

tacker). Moreover, most third-person videos [28, 43] con-

sist of a subject performing an action repeatedly where the
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discriminative pattern can be effectively captured. On the

other hand, the motion dynamics in first-person videos do

not exhibit such patterns. Conventional methods for third-

person video representation such as global descriptors [36],

densely sampled local features [39] or frame-wise represen-

tation [5, 28] may not adequately capture these factors that

characterize first-person videos.

Recently, methods that are based on frame-wise features

have gained some success in modeling temporal informa-

tion due to the discriminative properties of generic feature

extractors i.e. convolutional neural networks (CNN) [5, 10,

11, 26, 28, 50, 52]. This especially holds for third-person

videos (e.g. multi-view surveillance cameras [27]) where

the subject performs actions with a continuous pattern and

is captured from a relatively static position. On the con-

trary, many first-person videos are more appropriately de-

scribed by a set of short-term highlights and there are strong

causal relationships between these events that formulate the

semantics of the overall action [25, 41, 53]. In this paper,

we demonstrate that these types of videos can be better rep-

resented when sub-event dynamics of the entire sequence

are considered separately and a hierarchy is extracted over

temporal domain of these sub-events to model the evolution

of such dynamics.

In the proposed method, we first map each frame in

the sequence to a discriminative space by forward passing

through a CNN model and taking the first-fully connected

layer activations. We consider each activation neuron as

a point that changes according to a function of time i.e.

as a time series. Then, we sample the temporal domain

of the video into multiple overlapping segments. To cap-

ture the dynamics of these segments, we employ a tem-

poral feature pooling function on the neurons in each de-

fined interval to represent how the appearance of the actions

evolve in short-term intervals. These sub-event dynamics

are then temporally aligned and a group of Fourier coef-

ficients are extracted in a temporal pyramid to encode the

overall video representation. We show that our proposed

method consistently outperforms other video representation

techniques for first-person video recognition on two bench-

mark datasets and a newly proposed dataset of first person-

videos. The compared video representation techniques in-

clude those that are specifically tailored for action recogni-

tion such as improved Dense Trajectories (iDT) [39], frame-

based representation [10] and state-of-the-art features for

first-person video recognition [33].

2. Related Work
First person video recognition is a relatively new area.

Existing first-person action recognition methods can be cat-

egorized into two types. The first category methods focus

on the application perspective and address the issues related

to first-person vision whereas methods in the second cate-

gory address the core challenge in action recognition i.e.

designing feature representations for action classification.

Here we present an overview of both research streams.

First-Person Action Recognition: First-person action

recognition answers one of the two questions based on the

subject of the action: “what are they doing to me?” [13, 30,

32, 45] or “what am I doing?” [16, 20, 33]. From practi-

cal application point of view, answering both questions is

essential for first-person video recognition. However, exist-

ing techniques address only one of the questions. Moreover,

they benchmark the algorithm on videos obtained in a con-

trolled environment with limited number of subjects, cam-

eras and environments [13, 32]. Therefore, the effectiveness

of the existing methods [13, 16, 20, 30, 32, 33, 45] can-

not be established for a realistic environment that contains

a wide variety of action classes, subjects, environments and

camera settings. In this paper, we benchmark our algorithm

against several state-of-the-art methods for answering both

questions. We also propose a new dataset of uncontrolled

first-person videos containing more action classes, subjects,

environmental variations, and cameras of different qualities.

Most of the literature in first-person video recognition

focuses on long-term life logging within a specific environ-

ment (e.g. kitchen) and a limited set of applications such as

hand detection and segmentation, egocentric object recog-

nition or contextual face recognition [25, 41, 53]. There

is also an increasing amount of literature that addresses

the tasks of retrieving highlights/ important snapshots from

long duration first-person videos [14, 22, 24, 46]. This pa-

per addresses the core task of labelling actions in video

clips. Our method is based on a moving window and can

be applied to the above-mentioned recognition problems as

well as other related tasks which are meant for long duration

videos such as action detection and prediction [29].

Action Representation in Videos Hand-crafted features

such as those that are based on spatio-temporal interest

points [21] were dominant in the earlier works on video

classification [36, 39, 40]. Due to the remarkable success

of CNN on image classification, several methods have been

proposed where deep networks are trained for video-based

action recognition [5, 8, 17, 19, 35]. However, these meth-

ods are not specifically designed for first-person videos.

Fine tuning such methods for first person video classifica-

tion requires large-scale annotated data which is currently

not available. On the other hand, frame-based representa-

tion has shown promising performance for action recogni-

tion [5, 10, 11, 26, 28, 52]. Qi et al. [26] extracted the fully

connected layer activations of CNN as single frame features

and showed that by simply taking the first- and second-

order statistics of the frame-wise features, dynamic tex-

ture and scene classification can be significantly improved.

There is also evidence that learning end-to-end frame based

network shows comparable performance to learning multi-
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frame based models [8, 19]. Our method goes beyond using

CNN activations as per-frame features by deploying various

temporal pooling operators to capture the dynamics of the

segments which are used as the description of the sub-events

in first-person videos. Moreover, as our proposed algorithm

models the temporal representation at multiple scales and

granularity, it is more closely related to the methods that

employ hierarchical temporal structure [6, 9].

3. Proposed Methodology
In this section, we present our approach for designing a

motion representation that is able to encode high-level ab-

straction of temporal structure for first-person videos. Our

approach consists of core modules including the modeling

of sub-event dynamics and a global temporal encoding.

3.1. Sub-Event Dynamics
Harvesting discriminative high-level motion features

which lie on a non-linear manifold pose a key challenge

in action recognition. Recent research works have shown

that temporal information can be exploited in order to cap-

ture such dynamics, usually by employing recurrent based

networks [5, 47]. Instead of taking the dynamics of the en-

tire video directly, our approach starts by extracting multi-

ple overlapping segments using pre-defined temporal filters

from the whole video. These segments represent sub-events

that are contained in each action video. Our main motiva-

tion is to observe the changing behaviour of the appearance

in the frames over time, therefore revealing the motion dy-

namics in the short interval. This is done by applying a tem-

poral feature pooling function (where we detail the choice

of function) to capture different temporal statistics and fea-

tures.

Concretely, let us assume a set of n labeled training

videos, V = {V 1, V 2, . . . , V n}, each is assigned with

one of the labels from C classes. Each video instance V i

can be represented by a set of ordered continuous frames

V i = 〈vi1, v
i
2, . . . , v

i
mi

〉 , where vij ∈ R
d. From these se-

quence of vectors, we densely extract the sub-segments us-

ing a defined window size w and stride s for ts ∈ {1, s +
1, 2s + 1, . . . } where ts denotes the starting frame number

of the local time interval, i.e. {[ts1, t
e
1], . . . , [t

s
N , teN ]}. Our

proposal maps these resultant sub-segments S = {Sℓ}
N
ℓ=1

onto a discriminative space (i.e. by feed-forwarding through

CNN) to convert from vj → xj ∈ R
D, where D = 4096

is the dimension of the first fully-connected layer neurons

activation of the CNN.

In each time interval, the sequence of w vectors of

x1, x2, . . . , xw can now be interpreted as points that are

changing according to the function of time. Let xj =
{x1

j , x
2
j , . . . , x

D
j } be the frame-wise feature descriptor ex-

tracted at frame j and that each xi
j is a neuron from the CNN

activation. Thus, we can now leverage each neuron in the

activation vector as a time series, each with the dimension

of w i.e. fk(t) = {f1(t), f2(t), . . . , fD(t)}. For each time

series in a sub-segment, a temporal feature pooling function

Ψ is invoked and this will generate a value for each time se-

ries. As a result, for any type of temporal pooling function,

we get a D-dimensional vector for each sub-segment which

is temporally aligned with other pooled features from other

segments before the invocation of global temporal encoder

to get the final feature representation.

3.2. Temporal Feature Pooling Functions
Here, we discuss multiple types of temporal feature pool-

ing functions Ψ that are used to aggregate the frame-based

descriptors within the pre-defined segments. We investi-

gate the following functions in this paper: max pooling,

sum pooling, histogram of time series gradient, cumulative

histogram of time series gradient [33] and evolution pool-

ing [10].

Max pooling, Ψmax: Given a time series fk(t), the max

pooling operator find the peak value in the series which is

defined as

θmax
k [ts, te] = max

t=ts,...te
fk(t) (1)

Sum pooling, Ψsum: Similarly, sum pooling aggregates

all entries in the time series which can be expressed as

θ
∑

k [ts, te] =
te
∑

t=ts

fk(t) (2)

Histogram of time series gradient, Ψδ
+

1 ,Ψδ
−

1 : As the

time series of CNN neurons are already in a discriminative

space and we observe that the trends in time series of an

action resembles those with the same label, we encode the

information of how the trends move by calculating the num-

ber of positive and negative gradients within the time inter-

vals. This operators will produce two values for each time

series interval.

θ
δ
+

1

k [ts, te] = |{t|fk(t)− fk(t− 1) > 0 ∧ ts ≤ t ≤ te}|

θ
δ
−

1

k [ts, te] = |{t|fk(t)− fk(t− 1) < 0 ∧ ts ≤ t ≤ te}|
(3)

Cumulative histogram of time series gradient,

Ψδ
+

2 ,Ψδ
−

2 : We also investigate a variant of Eq. 3

by taking the total number of positive and negative

gradients in each time interval.

θ
δ
+

2

k [ts, te] =

te
∑

t=ts

h+

k (t)

θ
δ
−

2

k [ts, te] =

te
∑

t=ts

h−

k (t)

(4)

where
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Figure 2. An overview of the proposed sub-event dynamics representation. (a) Video sequence is divided into overlapping sub-segments

(in this example, with a window size of 3). (b) Each frame within sub-segments is individually passed through a CNN model and the fc6
layer’s activations are extracted. (c) A temporal feature pooling function is applied to the time series of each neuron activation (in this

example, rank pooling [10] is illustrated) and pooled vectors are temporally aligned. (d) A Fourier Temporal Pyramid algorithm is applied

to each pooled time series and concatenated to produce the final feature representation.

h+

k (t) =

{

fk(t)− fk(t− 1) if (fk(t)− fk(t− 1)) > 0

0 otherwise

(5)

h−

k (t) =

{

fk(t− 1)− fk(t) if (fk(t)− fk(t− 1)) < 0

0 otherwise.

(6)

Evolution or Rank Pooling Ψrank: So far we have dis-

cussed the temporal pooling functions which are orderless,

that is they completely ignore the temporal order of the

frames in the sequence. However, encoding temporal or-

der information has shown to be an important feature for

video representation as it can effectively model the evolu-

tion of the frame appearance [10, 11]. Therefore, we pro-

pose to encode the sub-segment dynamics by employing a

rank pooling algorithm [10] on the CNN activations of the

frames within the time intervals. Specifically, we are in-

terested in getting a ranking machine to model a regres-

sion space which explicitly imposes a strict criterion that

earlier frames must precede the following frames. To en-

code the dynamics of a sub-segment, the ranking function

Ψrank(f(t), φ) parametrized by φ sorts the sequence frame

such that ∀t − 1, t, f(t − 1) ≺ f(t) ⇐⇒ φ. f(t − 1) <
φ. f(t). Using the principle of RankSVM [18] for structural

risk minimization and max-margin formulation, the objec-

tive function can be expressed as

argmin
φ

1

2
‖φ‖2 + C

∑

∀a,b,via≺vib

ǫab

s.t. φT .(f(t)− f(t− 1)) ≥ 1− ǫab (7)

ǫab ≥ 0.

To estimate this linear function and learn the parameter φ,
we use the Support Vector Regressor (SVR) [23] for its ef-

ficiency. The learnt parameter φ defines the pooled feature

representation for each sub-segment {θrankℓ }Nℓ=1
.

3.3. Global Temporal Encoding and Classification
After the sub-event dynamics have been encoded, we

need to encode the global representation of the entire video.

As the actions in first-person videos are performed with

varying speeds and are captured in variable length clips,

the intra-class actions exhibit highly misaligned tempo-

ral information which is a challenging nuisance for action

matching. Hence, we propose to encode the global struc-

ture of the videos by employing Fourier Temporal Pyramid

(FTP) [42] on the sub-segment dynamics. To do this, we

first recursively divide the pooled sub-segment representa-

tions into a pyramid with l = 1, . . . , L levels, and perform
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fast Fourier transform (FFT) on all the partitions to extract

fine-to-coarse temporal structure.

Let θik,ℓ represent each entry of the sub-segment dynamic

features for the i-th action video, where k = 1, . . . , D de-

notes the index of the features entry and � = 1, . . . , N rep-

resents the frame number. At the lowest pyramid level, we

perform FFT on θik = [θik,1, θ
i
k,2, . . . , θ

i
k,N ] and get the first

p low frequency coefficients. The same procedure is applied

at each partition, and the concatenation of all low-frequency

coefficients at all partitions is used as the FTP features for

each entry. Finally, we define the spatio-temporal repre-

sentation of the i-th video as the concatenation of the FTP

features from all entries.

It is worth noting that our proposed video representation

is completely unsupervised and is dictionary-free. This al-

leviates the need for re-training whenever data for the same

problem from a new domain has to be processed. The only

step that requires supervision is during the learning of an

action classifier where we employ a linear Support Vector

Machines (SVM) [7] to predict the action class. Hence, as

long as action classes remain the same, re-training is not

necessary.

4. Datasets

In this section, we provide an overview of the publicly

available datasets for first person activity recognition and

identify a common limitation of these datasets: controlled

environmentalu setup. We overcome this gap by developing

a new dataset that is collected from real-world videos and

annotated according to action classes that occur in practical

scenarios.

4.1. DogCentric Activity Dataset

This dataset [16] consists of first-person videos that were

captured using wearable camera mounted on dogs. It has

10 actions from four subjects which capture the ego-centric

behaviour of the dog as well as the interaction between the

dog and human. The first-person actions include: (1) wait-

ing car, (2) drinking, (3) feeding, (4) looking left, (5) look-

ing right, (6) patting, (7) playing ball, (8) shaking body, (9)

sniffing and (10) walking.

4.2. JPL First-Person Interaction Dataset

This dataset [32] consists of 57 continuous video se-

quences of actions done on the observer (i.e. a humanoid

robot). There are 7 actions performed in 12 sets from 8

subjects in various indoor environment and lighting condi-

tions. Sample snapshots of each action performed by differ-

ent subjects are shown in Fig. 3.

4.3. YouTubeDog Action Dataset

Both of the above datasets have been collected in a con-

trolled environment (e.g. in indoor laboratory, same sub-

jects, same camera, same background). As first-person

Figure 3. Sample snapshots from first-person videos in JPL-

Interaction dataset [32]. From top (left) to bottom (right): hand

shake, hugging, petting, waving, point-converse, punching and

throwing.

0

1

2

3

4

5

6

7

8

9

10

0

5

10

15

20

25

30

ti
m

e 
(s

ec
)

No. of clips

Average clip duration

Figure 4. Total number of clips (green bars) and average clip du-

ration (blue bars) for each class in our YouTubeDog dataset.

videos are typically used in an adverse outdoor environ-

ment, it is crucial to evaluate recognition algorithms in an

uncontrolled environment (videos captured ”in the wild”)

to establish their robustness. Therefore, we develop a new

first-person dataset comprising video clips which were ex-

tracted from first-person videos in a public video sharing

portal (i.e. YouTube). We make this dataset publicly avail-

able for research community 1.

Specifically, we collected videos captured by wearable

cameras mounted on dogs. In contrast to the DogCen-

tric dataset [16], there is no specific criterion used for the

data capturing. Thus, the dataset contains videos from var-

ious backgrounds, dog species, camera quality and also the

placement of the camera. We organized the videos into 226

short clips and annotated each clips into one of 19 action

classes including: (1) chase, (2) drink, (3) follow, (4) in-

side car, (5) jump, (6) look left, (7) look right, (8) pat/ kiss/

hug, (9) play ball, (10) run, (11) shake body, (12) sniff, (13)

stairs, (14) swim , (15) wait traffic, (16) walk city, (17) walk

indoor, (18) walk offroad and (19) wave. This dataset is

challenging as some videos are in a very low resolution and

the appearance of the frames does not necessarily reflect

the action being performed (e.g. frames show unimportant

background while the dog is drinking water). Therefore, the

algorithm has to exploit the temporal structure to describe

the action. Sample snapshots from this dataset are shown

in Figure 5. The chart shown in Fig. 4 illustrates the class-

specific total number of clips and average clip duration.

1http://www.csse.uwa.edu.au/∼ajmal/databases.html
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Figure 5. Sample snapshots from the first-person videos in our YouTubeDog dataset which has 19 action classes and diverse data distri-

butions. From top (left) to bottom (right): chase, drink, follow, inside car, jump,look left, look right, pet/kiss/hug, run, shake body, sniff,

stairs, swim, wait traffic, walk city, walk indoor, walk offroad and wave. The sample frames from the action play ball are depicted in Fig. 1.

5. Experiments

In this section, we evaluate our proposed approach on

two distinctive types of recognition tasks; the actions per-

formed by the observer and the actions done towards the

observer. The former is represented by DogCentric Activ-

ity dataset [16] and YouTubeDog action dataset whereas

the latter is encompassed by JPL-Interaction dataset [32].

The baseline results are reported from the original litera-

ture [16, 32, 33], the publicly available implementation or

from our own careful re-implementation of the proposed

methods.

Our main objective is to evaluate the proposed sub-event

dynamics encoding technique for first-person action recog-

nition. We use a CNN model which was discriminatively

trained on ImageNet [3] dataset without any fine-tuning.

Specifically, we feed-forward each video frame through the

VGG-f [1] model and extract the activations of the first-

fully connected layer fc6. For all experiments, unless other-

wise specified, we empirically set the number of FTP levels

L = 3, and the number of low frequency Fourier coeffi-

cients p = 4 using cross-validation on training data. For rank

pooling algorithm, we set the value of controlling parameter

C = 1 as suggested by Fernando et al. [10]. Furthermore,

except for the model ablation experiments (Sec. 5.1), we

set the local window size w and stride size s to 15 and 2

respectively.

Hereinafter, we refer to our proposed sub-event dynam-

ics modeling technique and global temporal encoding as Se-

Dyn and FTP, respectively. For each dataset, we report the

classification accuracy of our proposed SeDyn in two set-

tings: (1) SeDyn, where we compute the mean of the sub-

event dynamics (computed using Rank Pooling) and use the

pooled vector as the feature representation of the video. (2)

SeDyn+FTP, where we apply the proposed global tempo-

ral encoding on top of the SeDyn features to capture the

entire video representation. Moreover, we re-implemented

three baseline methods to examine the effectiveness of our

proposed algorithm. These include: (1) Improved Dense

Trajectory (iDT) [21] which is encoded into bag-of-word

representation with 2000 visual words, (2) Pooled Time Se-

ries (PoT) with the same setting as Ryoo and Matthies [30]

(temporal pyramid of 4 and four temporal operators) using

Table 1. Comparing various temporal pooling functions for model-

ing sub-event dynamics in first-person action recognition datasets.

Method DogCentric JPL YoutubeDog

Max Pooling 72.5 59.6 60.6

Sum Pooling 70.1 47.9 61.1

Gradient Pooling 67.9 83.0 56.3

Cumulative Gradient 72.7 90.2 64.4

Rank Pooling 75.2 92.9 64.6

the output of fc6 of VGG-f, as well as (3) directly apply-

ing FTP on the per-frame fc6 features without the sub-event

dynamics. The reported accuracy of our proposed method

for comparative analysis is taken from the best performing

modules in Sec. 5.1.

5.1. Analysis of Individual Components

We examine different modules of the proposed sub-event

dynamics representation in terms of their effect on the

recognition accuracy. We start by experimenting with two

hyper-parameters: (1) stride size s i.e. how many sub-events

should be sampled and (2) local window size w i.e. the time

interval of sub-events. For the evaluation of different stride

sizes, we set a constant value of window size w = 15 while

for the evaluation of different window sizes, we set the value

of the stride s = 2. For both experiments, we apply Rank

Pooling to capture the dynamics of sub-events and FTP to

get the final video representation. Generally, the accuracy

does not degrade if the amount of extracted sub-events is

neither too large or too small. We used the training partition

of the DogCentric dataset to tune these hyperparameters to

a stride of 2 and a window size of 15 and used the same

values for the remaining two datasets to show the general-

ization ability of our method.

5.1.1 Temporal Pooling

We conduct an experiment to show that the evolution/rank

pooling method is the best for representing sub-event dy-

namics. Table 1 compares the rank pooling with other pool-

ing functions for the first-person action recognition datasets.

Max and sum pooling show similar performances as these

pooling operators essentially capture the average behaviour

of the neurons in the fc6 features. Gradient and cumulative

gradient pooling recorded a significant increase in accuracy
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from that of max and sum pooling in JPL-Interaction dataset

whereas the former method does not perform equally im-

pressive for DogCentric and YoutubeDog datasets. This

shows that while it is adequate to model the dynamics of

sub-events in the actions done on the observer consider-

ing the quantized time series pattern (using gradient pool-

ing), modeling the dynamics of sub-events in the actions

done by the observer with various ego-motions needs to

also consider the more precise location of the occurrences of

the dynamics pattern. Nevertheless, employing Rank Pool-

ing to model the sub-event dynamics gives the best perfor-

mance for all datasets which suggests that such dynamics

can be better captured when the evolution of the appearance

in pre-defined time intervals is explicitly modeled. More-

over, while orderless pooling methods have proven success-

ful for spatial based recognition such as image classification

(e.g. [12]), it is more effective to pool multiple features in a

more structured scheme by considering the ordered indices

of the frames in the video sequences.

5.1.2 Combination with Trajectory Features

Recent action recognition research [8, 9, 38, 44] has sug-

gested that deep network based features can be comple-

mented with hand-crafted trajectory features (iDT) [39]

to boost the performance. The improvement in accuracy

comes from the fact that the learned features do not opti-

mally capture the information in videos. To show that the

proposed SeDyn is an optimal first-person video represen-

tation, we conduct a simple experiment by augmenting the

SeDyn features with iDT [39] before classification. With

the augmented features, the recognition accuracy does not

improve on any dataset except the newly proposed dataset

where the improvement is only 0.5%. This shows that our

SeDyn is a more comprehensive representation.

5.2. Comparing Results on DogCentric Dataset

We follow the experimental protocol of Iwashita et

al. [16]. Specifically, we randomly split the videos in each

action class into training and testing dataset with 0.5 prob-

ability for 100 rounds. If the total number of videos is

odd, we ensure that the testing set contains more number

of videos. The final accuracy is taken as the average over

the splits.

As depicted in Table 2, our SeDyn representation signif-

icantly outperforms all state-of-the-art and baseline meth-

ods. Local video feature based representations which are

successful in recognizing third person videos [4, 21, 39]

have proven insufficient for first-person videos. This is

because first-person videos contain various dynamics and

severe ego-motion that cannot be properly tracked by lo-

cal features in consecutive frames. In addition, the perfor-

mances of fc6+FTP and PoT show that encoding the global

structure of the entire video is important for first-person ac-

tion recognition especially when we have rich frame-wise

Table 2. Performance comparison of the proposed techniques with

state-of-the-art methods for first-person action recognition task on

DogCentric dataset [16].

Method Accuracy

STIP+IFV [21] 57.6

Cuboid+IFV [4] 59.6

Iwashita et al. [16] 60.5

PoT [33] 64.9

iDT [39] 52.9

PoT [33]+VGG-f 57.8

Proposed methods

fc6+FTP (baseline) 68.1

SeDyn 73.6

SeDyn + FTP 75.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

Action number

PoT SeDyn+FTP

Figure 6. Class specific action recognition accuracies of PoT [33]

and our proposed SeDyn+FTP on DogCentric Dataset [16].

feature representation in hand such as CNN features.

However, these frame-wise based representations ignore

the salient sub-event features that define the entire first-

person actions which is important especially for actions

with minimal appearance cues, as shown in Fig. 6. In con-

trast, our proposed SeDyn+FTP recorded highest accuracy

of 75.2% as our algorithm is able to model a set of chronol-

ogy between the salient sub-events and use this information

to encode the global temporal video structure.

5.3. Comparing Results on JPL Dataset

The experimental procedure of Ryoo and Matthies [30]

is adopted for this dataset. In particular, half action sets

are used as the training data while testing is done on the

remaining. This training/ testing split is sub-sampled 100

times and the mean accuracy is taken as the final result. We

tabulate the results and per-class accuracy in Table 3 and

Fig. 7 respectively.

Similarly to the previous dataset, local feature based rep-

resentations are not able to effectively discriminate the ac-

tion labels. However, there is a different performance pat-

tern of the settings of our proposed SeDyn compared to

those recorded in DogCentric dataset. Taking the simple

average of sub-event dynamics does not give as good a per-

formance as taking the global temporal encoding from the

frame-wise features. This shows that sub-event moments in

the actions done on the observer are generally sparse and

that using the SeDyn alone without modelling the global
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Table 3. Performance comparison of the proposed techniques with

state-of-the-art methods for first-person action recognition task on

JPL-Interaction data [32].

Method Accuracy

ST-Pyramid [2] 86.0

Dynamic BoW [31] 87.1

Structure Match [32] 89.6

iDT [39] 60.5

PoT [33]+VGG-f 62.8

Proposed methods

fc6+FTP (baseline) 78.6

SeDyn 74.4

SeDyn+FTP 92.9
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Figure 7. Class specific action recognition accuracies of PoT[33]

and our proposed SeDyn+FTP on JPL Dataset [16].

temporal structure cannot adequately describe the action

pattern. It is particularly true for actions such as hand shake

and throwing where the ego-motion generally peaks only at

specific time lapses.

Nevertheless, our proposed SeDyn+FTP considerably

improves the state-of-the-art that shows first-person actions

can be better modeled using both the sub-event dynamics

and the global temporal structure encoding of these dynam-

ics. It is important to emphasize that we do not fine-tune

the CNN model to the target datasets which has shown im-

proved performance for various applications [34]. Thus,

state-of-the-art off-the-shelf per-frame features that possess

effective discriminative properties [15, 37] can be employed

in our method to further improve performance.

5.4. Comparing Results on YoutubeDog Dataset

Table 4. Performance comparison of the proposed techniques with

the state-of-the-art methods for first-person action recognition task

on our newly collected YoutubeDog Action dataset.

Method Accuracy

iDT [39] 44.4

PoT [33]+VGG-f 52.9

RankPooling [10] 24.7

Proposed methods

fc6+FTP (baseline) 57.3

SeDyn 58.1

SeDyn+FTP 64.6

The results and class-specific accuracy on YouTubeDog

action dataset are reported in Table 4 and Fig. 8 respec-
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Figure 8. Class specific action recognition accuracies of PoT[33]

and our proposed SeDyn+FTP on our YoutubeDog dataset.

tively. Our proposed SeDyn+FTP significantly outperforms

the baseline methods by more than 10%. PoT represen-

tation [30] which has shown good performance for first-

person videos is significantly lagging from our SeDyn.

This demonstrates that first-person videos with severe ego-

motion can be more discriminatively modeled using densely

extracted sub-events instead of conventional temporal pyra-

mid based representation used in PoT.

Additionally, we also re-implemented Rank Pooling al-

gorithm using the publicly available implementation [10,

11] that has shown impressive performance for action

recognition in third-person videos. Interestingly, Rank

Pooling on per-frame fc6 features only registers 24.7% of

accuracy, a massive degradation of 40% from our proposed

SeDyn+FTP. This shows that modeling the appearance evo-

lution of the video frames could not effectively encode dis-

riminative temporal structure especially for sequences with

short duration where the appearances may evolves very

slowly and subtly.

6. Conclusion
We tackle the problem of action recognition from first-

person videos by proposing a technique to model the sub-

event dynamics. We build upon our observation that first-

person videos are more appropriately described by the com-

bination of salient sub-events. Using a set of overlapping

sub-segments of an action video, we rank pool the seg-

ments to represent the sub-event dynamics and empirically

show that such a pooling methodology consistently achieves

the best performance over all datasets compared to conven-

tional pooling methods. The global temporal structure of

the video is then encoded with pyramidal Fourier coeffi-

cients. Experiments on two benchmark first-person video

datasets as well as our newly proposed dataset show that

our method consistently outperforms state-of-the-art by a

significant margin.
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