
Binarized Mode Seeking for Scalable Visual Pattern Discovery

Wei Zhang1, Xiaochun Cao1,2∗, Rui Wang1, Yuanfang Guo1, Zhineng Chen3

1: SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences

2: School of Cyber Security, University of Chinese Academy of Sciences

3: Institute of Automation, Chinese Academy of Sciences

{wzhang, caoxiaochun, wangrui, guoyuanfang}@iie.ac.cn, zhineng.chen@ia.ac.cn

Abstract

This paper studies visual pattern discovery in large-scale

image collections via binarized mode seeking, where im-

ages can only be represented as binary codes for efficien-

t storage and computation. We address this problem from

the perspective of binary space mode seeking. First, a bi-

nary mean shift (bMS) is proposed to discover frequen-

t patterns via mode seeking directly in binary space. The

binomial-based kernel and binary constraint are introduced

for binarized analysis. Second, we further extend bMS to

a more general form, namely contrastive binary mean shift

(cbMS), which maximizes the contrastive density in bina-

ry space, for finding informative patterns that are both fre-

quent and discriminative for the dataset. With the binarized

algorithm and optimization, our methods demonstrate sig-

nificant computation (50×) and storage (32×) improvement

compared to standard techniques operating in Euclidean s-

pace, while the performance does not largely degenerate.

Furthermore, cbMS discovers more informative patterns

by suppressing low discriminative modes. We evaluate our

methods on both annotated ILSVRC (1M images) and un-

annotated blind Flickr (10M images) datasets with million

scale images, which demonstrates both the scalability and

effectiveness of our algorithms for discovering frequent and

informative patterns in large scale collection.

1. Introduction

Pattern discovery is one of the most fundamental prob-

lems in computer vision and pattern analysis. Given a large-

scale un-ordered image collection (e.g., images crawled

from an anonymous website), the first question is to ask

“What kind of images are in the dataset? What’s the differ-

ence with other ‘common’ datasets?” Visual pattern discov-

ery aims to automatically find dominant items in an unsu-

pervised setting. A lot of researchers have studied this prob-

∗Corresponding author.

10110100001011

10100011101010

00101100110111

00110110101010

00111111010101

10111000110010

00111011101000

...�...

10101101001010

10101101001010

00101010101000

...�...

(a) large image sets (b) binary codes (c) modes (d) patterns

bMS

cbMS10110100001011

10100011101010

00101100110111

00110110101010

00111111010101

00111011101000

...�...

10101101011010

00101010101000

00101011101000

...�...

target�set

contrastive�set

frequent�patterns

informative�patterns

Figure 1. Given a large collection of images (a), our goal is to

discover patterns (d) by seeking modes (c) in the binary space (b).

Our bMS seeks frequent patterns from the target set, while cbMS

discovers more informative patterns by referencing an additional

contrastive set.

lem due to its wide applications in various vision tasks such

as classification [7], retrieval [27], summarization [32]. In

the context of big data, visual pattern discovery is becoming

even more important, as it provides an efficient way charac-

terizing a large image collection. Particularly, this problem

is even important as the data explodes in photo sharing web-

sites, such as Instagram, Flickr, Imgur.

Among the techniques for pattern discovery, cluster anal-

ysis serves as the core part. By projecting data into the fea-

ture space, patterns are closely related to the high density

regions. Previous techniques are mostly based on cluster-

ing directly in Euclidean space. However, there are still two

fundamental problems seldomly addressed.

One problem is the scalability issue. It is quite inefficien-

t to cluster large datasets in Euclidean space. First, large

amount of real-value arithmetic operations is involved dur-

ing distance evaluation, which makes it impossible for an-

alyzing large dataset. Second, it is also difficult to keep all

the data in memory for large datasets. For example, keeping

one million real value vectors, say R4,096 - FC7 activation-

s of AlexNet[11], takes 30GB memory, not to mention the

13864

additional memory required for the mining algorithm. This

is quite unaffordable for most computers. Therefore as data

grows, it becomes infeasible for current approaches to ana-

lyze the data in terms of computational and storage costs.

The other problem lies in the informativeness of the dis-

covered patterns. By informative, we indicate that the

patterns need to be both frequent and discriminative. In

other words, a pattern is considered informative, only if it is

frequent in the target dataset, and rare in other contrastive

datasets. In a large scale dataset, directly mining frequent

items only gives patterns appearing everywhere (e.g., trees

and skies), which are not always informative. Note that

most images in the dataset are actually not that interesting,

either because they are too rare to characterize the dataset,

or too common in almost every dataset. It is worth noting

that our informativeness is an analog to the notion of TF-

IDF1 used in information retrieval, where a word is weight-

ed by both the frequency and discrimination.

This paper proposes two versions of binarized mod-

e seeking algorithms for scalable visual pattern discovery

(Figure 1). On one hand, the computation and storage bot-

tlenecks are jointly addressed by binarized data representa-

tion as well as our binarized algorithm. On the other hand,

we suppress less informative patterns via contrastive bina-

ry mode seeking. The modes of a probability distribution

are the values where the probability density function (PDF)

takes its (local) maximum values.

First, we propose a binarized mean shift algorithm ad-

dressing the scalability challenge by operating directly in

binary space. Frequent patterns can be efficiently discov-

ered as modes in binary space, where distances can be ef-

ficiently evaluated with “XOR” and “PopCnt” operations.

Although hashing technique has been extensively studied

[29, 28, 22] for generating binary codes, studies on bina-

rized data analysis are still quite limited. In this paper, we

propose to analyze the data in binary space. Concretely,

a binary mean shift is developed by enforcing the bina-

ry constraint and exploring the suitable kernels. Second,

we propose to suppress less informative patterns by min-

ing on the contrastive density. For a natural image dataset,

the dominating modes usually correspond to very common

items (e.g., face, sky, tree) that are not that informative.

We further extend the binary mean shift to operate on the

contrastive density, i.e., the density ratio between the target

dataset (as positive or foreground distribution) and anoth-

er contrastive dataset (as negative or background distribu-

tion). By iteratively maximizing the density ratio, patterns

that best discriminate the target set from contrastive set can

be discovered.

For evaluation, we test our methods on the annotated

ILSVRC dataset [21], including one million images, as well

as another unlabeled Flickr dataset, including over 10 mil-

1TF-IDF: Term Frequency-Inverted Document Frequency

lion images crawled from Flickr website. Compared to ex-

isting methods, our methods find frequent and informative

patterns with much faster speed and much smaller memory

cost, by operating in the binary space and contrastive den-

sity. To the best of our knowledge, this is the pilot work

studying the binarized pattern mining technique. Our main

contributions are summarized as follows:

• We propose a binarized mode seeking algorithm (bMS)

operating in binary space, where binomial-based ker-

nel and binary constraint are explored for binary space.

• We further extend to contrastive version (cbMS) for

discovering more informative patterns, and show that

bMS can be generalized to contrastive density by opti-

mizing with a non-uniform background density.

• Experiments show that our algorithms run much faster

(50×) with less memory cost (32×), and does not de-

generate too much in performance.

2. Related Work

Our work is closely related to both visual pattern dis-

covery and binary space data analysis. In this section, we

review relevant literatures based on this categorization.

Visual pattern discovery. Visual pattern discovery has

been studied by many researchers in multimedia and com-

puter vision communities.

Early studies on Common Pattern Discovery [13, 25, 30]

model this as an optimization problem. These methods are

computationally expensive, thus can only operate on small

scale dataset (up to few hundreds images). Frequent Itemset

Mining [31, 18] mostly work on small scale dataset (∼10k

images), despite a few works [14, 20] optimize the scalabil-

ity for large dataset. These methods are effective in pattern

discovery, but slow in the support-counting step.

Methods for large scale visual pattern discovery can be

roughly grouped into two streams. The first stream is based

on clustering. The most popular technique, k-means, has

two inherent limitations: the clusters are constrained to be

spherically symmetric and their number has to be known a

priori [8]. Sivic [24] directly clusters small patches extract-

ed around local features, such that frequent patterns can be

grouped together. Philbin [17] proposes to discover pattern-

s via Spectral Clustering [15] on a matching graph, which

is constructed by searching every image in turn against the

whole dataset. As a result, dense sub-graphs are consid-

ered as patterns. As for the speed, it takes around two hours

for clustering a 37k dataset. Chum [3] mines visually sim-

ilar photos by clustering images with Min-Hash algorithm,

where hash-key collisions are extracted as patterns. It re-

quires large number of hash tables for a decent collision

probability.

3865

The second stream is based on mode seeking, which does

not require prior knowledge of the number of clusters, or

constrain the shape of clusters. One typical method is by

[7], which mines mid-level visual elements by discrimina-

tive mode seeking in Euclidean space.

Binarized data analysis. Although there have been

many hashing techniques for data binarization, only a few

works directly analyze data in binary space to fully explore

the efficient nature of binary representation.

Fast exact nearest neighbor search in binary space [16]

improves retrieval efficiency by building multiple hash ta-

bles on binary code substrings. Recent work on BKmeans

[10] performs fast clustering by adapting K-Means into bi-

nary space. Though much effective, still it needs to process

all the data before generating any patterns. It is worth noting

that clustering-based method needs to process all the data

before generating any patterns, while mode seeking has the

advantage of partially generating patterns in limited time

budget.

Deep learning based techniques have been showing

promising results on various tasks. Usually it requires con-

siderable computation resources for good performance. In-

terestingly, recent advancements in binarized deep architec-

ture [12, 6, 5] leverage the binary operations and connec-

tions in deep neural networks, which demonstrate the effi-

ciency and effectiveness of data binarization in visual recog-

nition task. A more recent work [19] exploring the “XNOR”

operation has shown similar results on ImageNet classifica-

tion task compared to the full-precision AlexNet, but with

58× speedup and 32× memory savings. These promising

results have demonstrated great potential of binarized anal-

ysis in multimedia content analysis.

As a comparison, our method efficiently discovers pat-

terns via mode-seeking in the binary space, i.e., binarized

mode seeking technique that targets for large dataset.

3. Binarized Visual Pattern Discovery

3.1. Data Binarization

Theoretically, any hashing techniques can be adopted in

our algorithm. Our aim is to best approximate the data with

binary codes, such that the following process could benefit

from the binarization with minimum precision loss. Thus

we adopt Iterative Quantization (ITQ) [9], since it mini-

mizes loss-of-precision while quantizing real-value vectors

V to binary codes B by rotating the data with R:

Q(B,R) = ‖B − V R‖2F , (1)

which can be optimized by alternatively updating B and R.

Details on this binarization technique can be found in [9].

Performing mean shift on real-value vectors is trivial.

However, in practice, we may not be able to keep large num-

ber of real-valued vectors in memory. The only affordable

representation is the binary hash keys. To perform mean

shift, one can construct a hash-table from compact hash

keys to real-value vectors, as done in [10]. During opti-

mization, the real-value vectors can be efficiently retrieved

in O(1) for numeric calculation. In such case, this method

shares the same result and similar running speed as standard

mean shift.

3.2. Binary Mean Shift: bMS

Given a set of real-value vectors X = {x1, x2, ..., xn},

manifesting an underlying probability density function p(x)
in R

d, the density can be estimated by:

p(x) ∝
n
∑

i=1

K(‖
x− xi

hi

‖2), (2)

where hi is the adaptive bandwidth associated with xi’s n-

earest neighbours [8], and K(x) is a kernel function (e.g.,

Gaussian). Mean shift locates the modes by maximizing

p(x). However due to time efficiency, standard mean shift

is not applicable for large datasets by operating in Euclidean

space. We propose a much efficient binary mean shift algo-

rithm which directly locates modes in the binary space.

Let B = {b1, b2, ..., bn} be the corresponding binary

code of X embedded in the k-dimensional binary space

{−1, 1}k, where bi is generated using ITQ.

In binary space, the commonly adopted continuous ker-

nels (e.g., Gaussian kernel) is not applicable. First, kernel

designed for continuous space becomes less suitable for dis-

crete binary space. Second, distance between binary codes

has a clear interpretation, i.e., number of inconsistent bits,

which also requires a kernel that fits this interpretation.

Without any prior knowledge, the binary codes are as-

sumed to be uniformly distributed in {−1, 1}k. With this

assumption, the Hamming distance between two random

hash-codes follows the Binomial distribution Bin(k, 1/2).
We propose a kernel Kb to weight binary codes with differ-

ent Hamming distances:

Kb(d) = − log2

(

1

2k

d
∑

i=0

(

k

i

)

)

/z, (3)

where z is the normalization factor to ensure Kb a valid k-

ernel, and the part in parentheses amounts to the cumulative

distribution function CDF(d) of Bin(k, 1/2). In this way,

the kernel Kb(d) has a clear interpretation: the probability

of two random binary codes with their Hamming distance

less than or equal to d. Since there are only k + 1 finite

values for Kb, it is implemented as a look-up table in our

case. Moreover, our method has a clear advantage in run-

ning speed compared to standard mean shift.

Considering this binomial-based kernel as well as the bi-

3866

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

k=128

k=256

k=512

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

k=128

k=256

k=512

Figure 2. The binomial based kernel Kb (left) and the correspond-

ing kernel Gb (right). Please note that all kernels are discrete and

we line up the discrete points only for better visualization. This

figure is best viewed in color.

Algorithm 1 - bMS: binary mean shift

Input: B: binary codes of the dataset; b: initial location;

h: bandwidth; r: radius search threshold; T : maximum

iterations;

Output: mode: b∗

1: Build a multi-index hash table M on B;

2: for iter = 1 ... T do

3: N (b) = M .r-search(b, r);

4: Update b̂ using Eq. (6);

5: if not converge then

6: b ← b̂;
7: else

8: break;

9: end if

10: end for

11: b∗ = b;

nary constraint, we formulate the problem as:

b∗ = argmax
b

n
∑

i=1

Kb(‖
b− bi
2hi

‖2)

s.t. b, bi ∈ {−1,+1}k,

(4)

where ‖ ·‖ denotes the l2-norm. With the binary constraints

on b, we only shift the estimation among vertices of the

Hamming hypercube.

For optimization, we iteratively update the estimation

with mean shift. As pointed out in [2], mean shift on kernel

Gb = −K ′
b is equivalent to gradient ascent on the density

estimated with its shadow kernel Kb, where K ′
b denotes the

derivative of Kb. Figure 2 shows several example kernel

profiles for Kb (left) and Gb (right) with different number

of bits k. Please note that the kernel derived for binary s-

pace is quite different from the widely adopted Gaussian

kernel for Euclidean space. The shape for Gb is binomial-

like. Most energy is located in the area with small Ham-

ming distances, and the peak is more sharper than Gaussian

function. In our case, Gb is also implemented as a look-up

table to facilitate fast computation. Although the differenti-

ation is analytically complicated, the numeric computation

is quite straightforward as long as we got Kb computed. As

a result, performing mean shift with the binary constraint is

to update the estimation b̂ via:

b̂ = sgn

(∑n

i=1
bi
2h2

i

Gb(‖
b−bi
2hi

‖2)
∑n

i=1
1

2h2
i

Gb(‖
b−bi
2hi

‖2)

)

, (5)

where sgn(·) is the signum function for binarization.

There are two observations to further speed up the com-

putation. First, although Eq. (5) takes the summation over

the whole set of points, it is quite inefficient and unnec-

essary, since most of the points makes no contribution to

the summation. In our implementation, we only consider

the points in the neighborhood of b, i.e., points with their

Hamming distances less than or equal to a threshold r. For

efficient r-radius search in the Hamming ball, we adopt the

Multi-Index Hashing [16] to index and search in binary s-

pace. From Figure 2, k/4 ∼ k/3 is a reasonable range for

r. This strategy significantly improves the running speed.

Second, noticing that the kernel Kb as well as Gb are strictly

positive, the denominator can be ignored since it is strictly

positive. Therefore, the estimation can be further simplified

as:

b̂ = sgn

⎛

⎝

∑

bi∈N (b)

bi
2h2

i

Gb(‖
b− bi
2hi

‖2)

⎞

⎠ , (6)

where N (b) denotes the neighborhood of b. As a result, our

method is highly efficient in terms of computation. This

algorithm (bMS) is summarized in Algorithm 1.

3.3. Contrastive Binary Mean Shift: cbMS

As data grows, modes in the feature space often corre-

spond to common patterns (e.g., sky, people) appearing ev-

erywhere. For a dataset with a large number of categories

that may overlap with each other, taking the modes directly

as the patterns is not that informative, e.g., the sky and face

patterns in Figure 1 (top-right). We further extend binary

mean shift to find discriminative patterns, by contrasting a-

gainst the background distribution defined by another set.

We take the target dataset as the positive set, and intro-

duce another background dataset as the negative set for con-

trast. The density ratio between positive and negative sets

makes more sense, since it suppresses the modes that al-

so exist in the background sets. Formally, in binary space,

some points are taken as the foreground (positive set P), and

others are regarded as the background (negative set N). In-

spired by [7], we can formulate the problem on contrastive

density ratio p̂(b) = p+(b)
p
−
(b) :

b∗c = argmax
b

p̂(b) =

∑

bi∈P Kb(‖
b−bi
2hi

‖2)
∑

bj∈N Kb(‖
b−bj
2hi

‖2) + λ
,

s.t. b, bi, bj ∈ {−1,+1}k

(7)

3867

where the modes are estimated with the contrastive density

between p+ and p−, and λ is an offset to avoid division-by-

zero. Therefore, a pattern has to be frequent in the positive

set, and rare in the negative set at the same time. Similarly,

by maximizing p̂(b), the new mode can be estimated via:

b̂c = sgn

(

fNb,Gb
· lPb,Kb

− fPb,Gb
· lNb,Kb

− λfPb,Gb

lPb,Kb
· lNb,Gb

− lNb,Kb
· lPb,Gb

− λlPb,Gb

)

,

(8)

where

fS,H =
∑

bi∈S

bi
2h2

i

H(‖
b− bi
2hi

‖2)

lS,H =
∑

bi∈S

H(‖
b− bi
2hi

‖2),

(9)

and S ∈ {Pb,Nb}, H ∈ {Kb, Gb}, where Pb, Nb denote

the neighborhood of b in set P , N respectively.

Discussion. It is worth noting that Eq. (8) can be re-

garded as the generalized version of Eq. (5), and bMS is

actually a special case of cbMS. Assuming p−(x) a unifor-

m distribution, it is easy to show that Eq. (8) degenerates to

(5) with the following equations hold:

∑

bi∈N

Kb(bi) = 1/|N |,

∑

bi∈N

biGb(bi) =
∑

bi∈N

Gb(bi) = 0,
(10)

where |N | is the cardinality of the set N , and bi ∈ N is

uniformly distributed.

It is worth noting that a fundamental difference between

cbMS and [7] is that our method is binarized analysis de-

signed for large dataset, and the optimization is quite differ-

ent. [7] operates on continuous space and targets for relative

small data.

Optimization detail. In practice, optimizing Eq. (7)

with (8) tends to be unstable when p−(b) shrinks to ze-

ro. Gradients are peaky around such locations and the op-

timization of Eq. (7) becomes difficult and unstable. Please

note that the offset parameter λ also plays an important

role in smoothing the estimation by adding a constant off-

set on the background density, such that the binarization via

sgn(·) will not drastically drift b̂c too far away. In extreme

case where λ goes to very large number, the problem of

cbMS (Eq. (7)) degenerates to bMS (Eq. (4)).

Though the computation in Eq. (8) involves both the ker-

nel and its shadow, still it can be efficiently evaluated with

two separate loop-up tables for Kb and Gb. Note that the bi-

nary codes for positive and negative sets are jointly indexed

in one Multi-index Hash Table, but different neighborhoods

in Eq. 8 are separately evaluated. This algorithm (cbMS) is

summarized in Algorithm 2.

Algorithm 2 - cbMS: contrastive binary mean shift

Input: P : binary codes for the target dataset; N : binary

codes for the contrastive dataset; b: initialization; h:

bandwidth; T : maximum iterations; λ: smoothing ter-

m;

Output: mode: b∗c
1: Build a multi-index hash table M for {P ∪N};

2: for iter = 1 ... T do

3: [Pb, Nb] = M .r-search(b, r);

4: Update b̂c using Eq. (8);

5: if not converge then

6: b ← b̂c;

7: else

8: break;

9: end if

10: end for

11: b∗c = b;

4. Experiments

Benchmarking mode seeking algorithms is quite diffi-

cult. Due to the lack of large scale annotated dataset, quan-

titatively evaluating our algorithms becomes quite difficult.

In this section, we first evaluate bMS and cbMS in terms

of purity-coverage. Then we analyze the results on a large-

scale real-world Flickr dataset.

4.1. Datasets

We adopt ILSVRC because it is the largest fully-

annotated dataset publicly available, such that quantitative

evaluation can be conducted. On the other hand, Flickr10M

is adopted to test our algorithm on real-world large-scale

un-ordered dataset.

ILSVRC [21]. A large number of images crawled from

the Internet are manually organized with the WordNet hi-

erarchy. This dataset contains 1,000 object categories and

1.28 million images in total. For detailed evaluation, we

sample three subsets by randomly picking 200, 500 and

1,000 object categories from the 1,000 categories, name-

ly ILSVRC-200, ILSVRC-500, and ILSVRC-1000, respec-

tively. Note that the ILSVRC-1000 corresponds to the full

set of ILSVRC.

Flickr10M. This dataset contains 10 million images

crawled from Flickr. Though randomly constructed, Flick-

r10M still contains lots of visual patterns due to the effect of

big data, e.g., popular objects/landmarks shared by different

users, consistent images uploaded in the same geo-location.

Note that it is impossible for us to annotate this dataset, and

this set serves as a “blind” dataset to test the applicability of

our algorithms against real-world un-ordered Web data.

3868

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

coverage

p
u
ri
ty

ILSVRC−200

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

coverage

p
u
ri
ty

ILSVRC−500

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

coverage

p
u
ri
ty

ILSVRC−1000

MS

bMS

bMS−K
g

cbMS

Figure 3. Comparison between different methods with the purity-coverage plot. Left: the subset with 200 categories. Middle: the subset

with 500 categories. Right: the full set with 1,000 categories.

4.2. Experimental Setup

We use the deep features of VGGNet-19 [23] fc7 acti-

vations as the image features. Iterative Quantization [9] is

applied to quantize features into binary codes, which are the

inputs for all methods (except mean shift operating in Eu-

clidean space). We follow the evaluation protocol by [7],

Purity-Coverage plot. High quality patterns correspond to

dense regions in feature space, where the supporting im-

ages locating in its neighborhood share the same category

label. For a discovered pattern (or equivalently a mode in

the feature space), we pool different sets of supporting im-

ages by varying the (Hamming) distances to the mode. Pu-

rity is defined as the percentage of true images in the set,

and coverage is the fraction of true images included in the

set. As an analog to the Precision-Recall curve, there is a

also trade-off between purity and coverage.

To the best of our knowledge, this paper is the pioneer

work on mode seeking / pattern discovery with binarized

analysis, where the data is difficult to fit into the memory.

Thus most methods operating in Euclidean space are not

directly comparable. We include the standard Mean Shift

operating on full precision data for evaluating the precision

loss in our binarized algorithms. In this paper, the following

methods are included for comparison:

• Mean Shift (MS) is the standard method operated in

Euclidean space [4].

• Binary Mean Shift (bMS) corresponds to the method

(with binomial-based kernel Kb) in Algorithm 1.

• Binary Mean Shift with Gaussian kernel (bMS-Kg)

corresponds to the method in Algorithm 1. Different

from bMS, bMS-Kg adopts a Gaussian-based kernel.

• Contrastive Binary Mean Shift (cbMS) is the extension

of bMS on contrastive density as described in Algorith-

m 2.

4.3. Performance Comparison

For fair comparison, we initialize all the methods with

the same set of initial positions, which contains 200 / 500 /

1,000 random locations for ILSVRC-200 / 500 / 1000. Up-

on convergence, the modes are extracted as patterns and the

supporting images can be drawn by retrieving the neighbor-

hoods.

Figure 3 compares different methods on each subset of

ILSVRC, in terms of purity-coverage plot. As shown, it is

slightly easier to find patterns in the small subset with only

200 categories. As more images are embedded in the fea-

ture space, modes could be easily perturbed by noise images

from other categories.

Figure 4. Example patterns discovered by bMS in ILSVRC. Im-

ages with red-dashed borders are false results from categories oth-

er than the dominating pattern.

As expected, MS works best by operating in the original

Euclidean space, since other methods suffers from the loss-

of-precision during data binarization as well as the binary

constraint. In general, our method bMS works reasonably

well, demonstrating slightly worse performance compared

to MS. However, as we will show later in Section 4.5,

bMS runs much faster than MS. Example patterns of bMS
can be found in Figure 4. By operating in binary space,

bMS does not show too much performance degeneration.

First, data binarization via ITQ approximately preserves the

density by minimizing the quantization error, although the

neighborhood does not necessarily hold. Second, in mode

seeking step, the binomial kernel Kb is effective to mod-

el the kernel for binary space, which can be confirmed by

comparing bMS and bMS-Kg . The Gaussian kernel, how-

ever, does not fit well for binary codes. For cbMS, we take

one category in turn as the positive set, and treat other cat-

egories as the negative set. Our cbMS shows clear advan-

tage in high purity areas (see top half of each figure). That

3869

is, cbMS tends to locate the modes in the area with low

negative density.

Informative Pattern Discovery Practically, both fre-

quency and discriminability account for a “good” pattern

for real users. We are more interested in the patterns telling

things apart from each other.

Figure 5 shows example patterns discovered by bMS
and cbMS from the ILSVRC dataset. For bMS, we dis-

covery patterns for each category. For cbMS, we take one

category as the positive set and the rest as negative sets.

Based on our observation, it is easier to discover pattern-

s from categories with consistent visual appearances. In

practice, some categories are with multiple patterns, and

modes from different categories might overlap with each

other. For example in the first row, the “space bar” has a

pattern similar with a “typewriter keyboard”, as well as an-

other pattern with closed-up view space-bar. With patterns

by bMS, it remains difficult to tell one category from an-

other, since modes from “space bar” is quite similar with

the mode from “typewriter keyboard”. However, cbMS ad-

dresses this problem by the contrastive density. As shown

in the last column, modes discovered by cbMS are more

informative to characterize the category. Another typical

example is as the last row. The pattern on the left is with

the fish and a person inside. However, persons are rather

“common” patterns throughout the whole dataset (middle).

Therefore, the pattern by bMS on the left is suppressed and

a more discriminative pattern (right) is discovered by cbMS.

4.4. Results on Flickr10M Dataset

We further conduct experiments on the un-annotated

Flickr10M dataset to discover patterns in the “blind” set-

ting, i.e., no prior knowledge on the dataset. Figure 6 shows

several patterns discovered on this dataset by bMS (left) and

cbMS (right). As shown on the left, most popular patterns

in a real-world dataset are not that interesting, similar to the

stop-words in information retrieval (e.g., is, are, of). Real-

world data is mostly noisy and biased. As expected, our

method bMS characterizes Flickr10M with such patterns,

e.g., default place-holder image (1st row), skys (2nd row),

uni-color photo (3rd row) and people (last rows). If we take

a close look, most patterns exist due to certain reasons. For

example, the place-holder pattern is due to dead-links.

We further take the top patterns from bMS as the negative

set N , and run cbMS on the dataset again to obtain the top

patterns as shown on the right. This time, the resulting pat-

terns characterizes the Flickr10M dataset by showing more

informative patterns, e.g., pets, planes, landmarks that are

popularly shared among Flickr users.

4.5. Discussion

The experiments were conducted on a PC with 3.30GHz

CPU and 8GB memory, except that the full precision mean

Table 1. Average running time (in seconds) for finding one mode

in ILSVRC dataset (with one million images).

Methods MS bMS bMS-Kg cbMS
Time 9.78 0.17 0.17 0.21

shift (MS) is on a server machine with 64GB memory.

Space complexity of our methods is O(n), where n is

the total number of images. In practice, keeping the same

feature dimension, converting real-value data into binary

codes gives 64× (double precision to bit) or 32× (single

precision to bit) memory savings.

Time complexity of our algorithms is of O(Tn2), where

T is the number of iterations. Table 1 summarizes the av-

erage running time for mining a pattern from one million

images. Algorithms operating directly in binary space run

significantly faster, i.e., 10 versus 0.2 seconds, benefiting

from efficient “XOR” and “PopCnt” operations. In our ex-

periment, bMS and bMS-Kg show similar running time,

since both of them benefit from the discrete kernels imple-

mented with look-up tables. On the contrary, MS needs to

online evaluate the kernels in continuous space. Our cbMS
is slightly slower than bMS, by introducing extra computa-

tions in the optimization (Eq. (8)).

Theoretically, for modern CPU, one can perform 64 bi-

nary operations in a single CPU clock, and thus the speedup

is around 64× faster [19]. Practically, we observe around

50× speedup in the experiment (Table 1).

It is worth noting that, in terms of speed efficiency, mod-

e seeking based methods are more flexible in running time.

Even with limited time budget (one second for example),

it could still return some interesting patterns from the large

dataset, since it does not need to traverse all the data to find

a single mode. With more time budget, it could gradually

find more patterns as demanded. On the contrary, clustering

based methods need to traverse all the data before generat-

ing any patterns, making it less suitable for real application.

Convergence analysis Although the convergence proof

for bMS and cbMS is difficult2, we provide some empirical

analysis on the convergence property. Based on the exper-

iments, our methods usually take 5∼15 iterations to con-

verge. In particular, bMS always converges in 10 iterations,

and cbMS generally takes more iterations in practice. The

offset term (λ in Eq.7) helps a lot on the converge speed.

Due to the discrete optimization (especially the sgn(·) oper-

ation), it is difficult to guarantee the convergence theoreti-

cally. In our case, each iteration through Eq. 6, 8 updates

the estimation to a point with higher density.

2Note that a rigorous convergence proof for standard Mean-Shift in

continuous space is still missing [1]

3870

typewriter�keyboardspace�bar space�bar

sample from negative setpatterns discovered by bMS patterns discovered by cbMS

barracouta,�snoek� sturgeon� barracouta,�snoek

Figure 5. Comparison of patterns discovered by bMS (left) and cbMS (right) in ILSVRC. Middle: sample images from other categories

that are visually similar to the left column.

Top patterns by bMS Top patterns by cbMS

Figure 6. Top-5 patterns discovered by bMS (left) and cbMS (right) in the un-ordered Flickr10M dataset. Each row lists the supporting

images of a discovered mode, ranked (top to bottom) based on the mode density. bMS tends to find common patterns shared by many

images, while cbMS discovers more informative patterns characterizing the dataset.

5. Conclusion

We have presented a technique addressing large scale vi-

sual pattern discovery via mode seeking in binary space,

by exploring binary constraint and binomial kernel. Our

method is much more scalable in terms of computation and

storage than standard techniques. By further extending the

algorithm on contrastive density, we are able to discover

more informative patterns from the dataset. For now, our

experiments were conducted only on full images for pattern

discovery. A future direction is to extend for object level

mining, i.e., finding representative parts of an object.

6. Acknowledgement

This work was supported by National Key Research and

Development Plan (No.2016YFB0800603), National Nat-

ural Science Foundation of China (No. 61602463, No.

61422213, No. 61602344), Beijing Natural Science Foun-

dation (4172068), Key Program of Chinese Academy of

Sciences (No. QYZDB-SSW-JSC003).

3871

