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Abstract

In this paper, we address a haze removal problem from a

single nighttime image, even in the presence of varicolored

and non-uniform illumination. The core idea lies in a novel

maximum reflectance prior. We first introduce the nighttime

hazy imaging model, which includes a local ambient illumi-

nation item in both direct attenuation term and scattering

term. Then, we propose a simple but effective image prior,

maximum reflectance prior, to estimate the varying ambient

illumination. The maximum reflectance prior is based on a

key observation: for most daytime haze-free image patches,

each color channel has very high intensity at some pixels.

For the nighttime haze image, the local maximum intensities

at each color channel are mainly contributed by the ambient

illumination. Therefore, we can directly estimate the am-

bient illumination and transmission map, and consequently

restore a high quality haze-free image. Experimental results

on various nighttime hazy images demonstrate the effective-

ness of the proposed approach. In particular, our approach

has the advantage of computational efficiency, which is 10-

100 times faster than state-of-the-art methods.

1. Introduction

Restoring hazy images is important for many comput-

er vision applications for outdoor scenes. Since tiny par-

ticles floating in the air absorb and scatter light in the at-

mosphere, the hazy images suffer from significant visibility

degradation manifested in two aspects: the attenuation of

the direct reflection light and the accumulation of the scat-

tering ambient light. The degradation of hazy image in-

creases with the distance between the scene points and the
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Figure 1. (a) Input nighttime hazy image. (b)-(d) Dehazing results

of [10], [4] and our proposed method, respectively. Daytime de-

hazing method [10] and [4] fail to handle nighttime hazy scene due

to the varicolored illumination.

camera, in which the magnitude of reflection light decreas-

es and the magnitude of ambient light increases. Middle-

ton’s model [21] describes the hazy imaging process as a

linear combination of the direct attenuation term and scat-

tering term. Based on this model, a number of methods

have been proposed to remove haze from a single image

[7, 6, 10, 12, 20, 26, 27, 18, 3, 2, 24, 8, 14, 25]. The key

idea of these methods relies on various image priors, e.g.,

color attenuation [30], dark channel [10], and haze line [3].

Although the effectiveness of these methods has been

demonstrated when dealing with daytime haze, there are

great limitations when applying these methods to night-time

hazy images. The main reason is that the daytime hazy

imaging model and priors do not hold for most nighttime

hazy scenes. The daytime hazy imaging model assumes the

ambient illumination is globally consistent. Therefore, most

dehazing methods estimate a white ambient light from the

brightest region in the image. However, nighttime scenes

usually have multiple colored artificial light sources, e.g.

road lamp, neon light and automobile lamp, which result in

strongly non-uniform and varicolored ambient illumination.

This not only makes the estimation of ambient light inaccu-
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rate, but also causes some image priors becoming invalid.

For example, the dark channel prior assumes that the pixels

with the minimal intensity correspond to the black-object in

the scene. This prior works very well in daytime, whereas

it cannot be directly applied to nighttime scene, since the

minimal intensity may be affected by the varicolored ambi-

ent illumination. To overcome the above difficulties, some

works adopt various new techniques, such as color transfer

[23], illumination correction [29], glow removal [17] and

image fusion [1], to resolve the issues associated with haze

removal from single nighttime image (see Sec. 2).

The goal of this research is to estimate the ambient illu-

mination and the atmospheric transmission for each pixel so

as to recover the haze-free image. To this end, we first in-

troduce a nighttime hazy imaging model presented in [29].

This model is a linear combination of the direct attenuation

term and the scattering term both include a local variable

accounting for the varicolored and non-uniform ambient il-

lumination. According to this model, recovering the haze-

free image is an ill-posed problem.

To handle the inherent ambiguity, we propose a novel

prior for nighttime image haze removal, i.e., maximum re-

flectance prior. This prior is based on the statistics of day-

time haze-free image patches. We find that, in most of the

patches, each color channel has very high intensity at some

pixels. The proposed prior implies that, the pixels with local

maximum intensity at each color channel correspond to the

scene points with the maximum reflectance. Accordingly,

we call the proposed prior as maximum reflectance prior.

By using this prior, we can directly estimate a high qual-

ity ambient illumination for nighttime hazy image. From

this ambient illumination estimate, we can easily calculate

the transmission map and finally obtain the nighttime haze-

free image. The approach is physically valid and able to

handle complicated illumination conditions, including vari-

colored and non-uniform light. It can achieve high quality

dehazing results with few halo artifacts. Since its compu-

tational complexity is linear to the number of pixels in the

image, the approach is significantly efficient in run-time.

2. Previous work

A variety of approaches have been proposed to solve

haze removal from a single daytime image [7, 6, 10, 20, 26,

27]. However, these methods are not applicable for night-

time hazy images due to the varicolored and non-uniform

illumination in nighttime.

To the best of our knowledge, there are much fewer lit-

eratures about nighttime haze removal in the past decades.

Pei and Lee [23] propose a color transfer technique to trans-

form the input nighttime haze image into a grayish one un-

der the guidance of a daytime haze image. Although this

method can improve the visibility, it also introduces some

color distortion. Zhang et al.’s [29] propose a nighttime de-

hazing method including illumination compensation, color

correction and dehazing. Since the method involves some

additional post processing steps, it tends to introduce color

artifacts. Li et al. [17] modify the standard hazy imaging

model by adding the atmospheric point spread function to

model the glowing effect of active light sources. Based on

this model, they apply a layer separation algorithm to de-

compose the glow from the input image [16]. A spatially

varying atmospheric light map is then used to estimate the

transmission map based on dark channel prior. Their results

contain less halo artifacts than those of [29].

Very recently, C. Ancuti et al. [1] estimate the local

airlight by applying a local maximum on patches of dark

channel, and then use the multi-scale fusion approach to

obtain a visibility enhanced image. While the proposed

scheme for ambient illumination estimation may seem sim-

ilar to [1], they are fundamentally different. They assume

that the brightest pixels of local patches filtered by a mini-

mal operator can capture the properties of atmospheric light.

These pixels indeed correspond to the hazy regions in the

scene. Since the distribution of hazy pixels are spatially

varuing, the sizes of the patches are carefully selected in

[1] to increase the chance of capturing hazy pixels. On the

other hand, we adopt the pixels with maximum reflectance

at each color channel to estimate the ambient illumination.

These pixels generally correspond to the regions with grey

or multiple colors and light sources, which are common in

the nighttime scene, as shown in Fig. 2.

3. Nighttime hazy imaging model

Here we introduce the nighttime hazy imaging model

which takes the influence of varicolored illumination into

account. We begin with the introduction of standard day-

time haze model. For daytime haze scenes, the model wide-

ly used to describe the imaging process is as follows:

Iλi = Jλ
i ti +Aλ (1− ti) , (1)

where Iλi is the observed image, Jλ
i = AλRλ

i is the scene

radiance correlated with global atmospheric light A and

scene reflection Rλ
i , and ti = e−βdi is the scene transmis-

sion correlated with the scene depth di and atmospheric s-

cattering coefficient β.

The first term Jλ
i ti on the right side of Eq. (1) is called

direct attenuation, and the second term Aλ(1− ti) is called

airlight [10]. Direct attenuation represents the scene radi-

ance and its attenuation in the atmosphere, while airlight

describes the particle veil caused by the scattering of atmo-

spheric light.

According to Eq. (1), the global atmospheric light Aλ is

assumed to be the only light source for daytime haze envi-

ronment, and the attenuation and scattering characteristics

are identical for each channel, i.e., independent from the
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Figure 2. (a) Example images in our daytime haze-free image database. (b) Nighttime haze images. (c) The maximum reflectance maps of

(a). (d) The Maximum reflectance maps of (b).

(a)
(b)

(c)

Figure 3. Statistics and illustration of maximum reflectance prior. (a) Histograms over 50,000 patches of maximum reflectance maps for

RGB and dark channels. (b) Candidate patches which result in a white MRP. (c) A typical example for MRP.

wavelength. However, as discussed in Section 1, nighttime

scenes usually have multiple colored artificial light sources,

resulting in a strongly non-uniform and varicolored ambien-

t illumination. Therefore, the local ambient illumination is

added into both the attenuation term and scattering term of

standard hazy imaging model to obtain the nighttime hazy

imaging model as follows:

Iλi = Aλ
i R

λ
i ti +Aλ

i (1− ti)
∆
= Liη

λ
i R

λ
i ti + Liη

λ
i (1− ti)

, (2)

where Aλ
i

∆
= Liη

λ
i is the ambient illumination, Li is the

intensity of ambient illumination and ηλi is the color of am-

bient illumination.

Note that this model is different from the model pro-

posed by Li et al. [17]. Li et al.’s model adds an atmospher-

ic point spread function into the slightly modified standard

haze model, and thus can better describe the glowing ef-

fect of active light sources. However, their model employs

the same scene reflection term with standard daytime hazy

imaging model, where the illumination is assumed to be a

constant (it is set as 1 in [17]).

4. Maximum reflectance prior

The proposed prior is based on the statistics of daytime

haze-free image patches. We find that, for most image

patches, each color channel has very high intensity at some

pixels. In other words, the maximum intensities at each col-

or channels in such a patch should have very high values.

Mathematically, for an image I , we define:

Mλ
Ωi

= max
j∈Ωi

Iλj =max
j∈Ωi

LjR
λ
j , (3)

where Mλ
Ωi

is the maximum of pixel intensities in patch Ωi

at color channel λ, Lj is the incident light intensity and Rλ
j

is the reflectance. M is called maximum reflectance map in

this paper.

For daytime bright and clear images, incident light inten-

sities are uniform in space and can be assumed to be fixed

to value 1. Therefore, the pixels with local maximum in-

tensity at specific color channel mainly correspond to the

objects or surfaces with high reflectance at corresponding

color channel. So Eq. (3) has the following equivalent for-

m: Mλ
Ωi

= max
j∈Ωi

Rλ
j . The objects or surfaces with maxi-

mum reflectance mainly include: a) white (grey) or specu-

larity area, e.g. sky, road surfaces, windows of buildings,

and water surfaces; b) any surfaces full of distinct colors,

e.g. light sources, flowers, billboards, and crowds. As these

objects and surfaces are common in the scenes, for most

daytime haze-free image patches, the maximum intensities

at each color channel have the value of 1, i.e., Mλ
Ωi

≈ 1.

Accordingly, we call the above observation the maximum
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reflectance prior.

To verify the validity of the proposed prior, we collec-

t a haze-free image set from flickr.com. These images are

mainly captured in outdoor landscape and cityscape scenes,

where haze usually occurs. They are resized so that the

maximum width and height will be 500 pixels. Figure 2(a)

and (c) show several outdoor images and the corresponding

maximum reflectance maps (Note that the input images are

normalized with its V value in HSV color space). Figure

3(a) shows the intensity histogram over all 50,000 patches

of maximum reflectance maps. This statistics support our

assumption of maximum reflectance prior. As illustrated

in Fig 3(b), there are many candidate patches which result

in a white MRP. Our proposed prior does not require the

maximum intensities of each color channel being contribut-

ed by a single white pixel. A typical example is shown in

the Fig 3(c). There are quite a few pixels with the maxi-

mum reflectance in each color channel. These pixels usual-

ly correspond to the objects with grey or distinct colors, e.g.

clothes, flowers, forest and road surfaces.

For nighttime hazy imaging, the ambient illumination is

varicolored and non-uniform. Therefore, for nighttime hazy

image patches, the maximum intensities at each color chan-

nel will have lower value and show with a variety of colors.

Visually, these intensities are a rough approximation of the

varicolored ambient illumination (see Fig 2(b) and (d)). In

this research, we will utilize this property to estimate the

ambient illumination. Note that the scene points with max-

imum reflectance also include the light sources. Therefore,

by using this prior, the proposed approach shall be able to

handle the glow effect to some extent.

The proposed prior is partially inspired by the well-

known white patch assumption used in color constancy re-

search. In [13], the effects of bight pixels in several color

constancy methods are investigated. We generalize this idea

and proposed a novel prior for nighttime image dehazing.

5. Nighttime image dehazing

Given an input image I , the goal of this research is to es-

timate the ambient illumination and the atmospheric trans-

mission for each pixel so as to recover the haze-free im-

age. We first use the maximum reflectance prior to estimate

the color map of ambient illumination and remove its effect

from the input image. Then, upon estimating the intensity of

varying illumination and the atmospheric transmission, we

remove the haze effect and obtain the final color-balanced

and haze-free image. The details of the proposed nighttime

dehazing process will be explained in following sections.

5.1. Estimation of ambient illumination

In nighttime haze environment, lights radiated from

many point-like artificial light sources change smoothly in

space, except for some occlusions which results sudden

changes between bright and shade areas. These boundaries

are very sparse in the whole images. On the other hand,

haze scatters lights in arbitrary directions. The aggregation

of scattered lights lead to smoothly changing light. To this

end, we assume the ambient illumination Aλ
j on each local

patch j ∈ Ωi to be constant. Specifically, the intensity Lj

and color map ηλj of the ambient illumination are assumed

to be constant, and written as LΩi
and ηλ

Ωi
. Besides, the

transmission map tj is also assumed to be smoothly chang-

ing as in [10]. Following [10], we also assumed tj to be a

constant on Ωi and written as tΩi
.

Based on the above assumptions, we apply a max-

operator in both side of Eq. (2) on each local patch Ωi and

obtain the following:

Mλ
Ωi
=max

j∈Ωi

Iλj

= max
j∈Ωi

(
LΩi

ηλ
Ωi
Rλ

j tΩi
+ LΩi

ηλ
Ωi

(1− tΩi
)
)

= max
j∈Ωi

Rλ
j

(
LΩi

ηλ
Ωi
tΩi

)
+ LΩi

ηλ
Ωi

(1− tΩi
)

. (4)

From the proposed maximum reflectance prior, we have

max
j∈Ωi

Rλ
j ≈ 1. Substitute into the above equation, we have:

Mλ
Ωi
=max

j∈Ωi

Rλ
j

(
LΩi

ηλ
Ωi
tΩi

)
+ LΩi

ηλ
Ωi

(1− tΩi
)

= LΩi
ηλ
Ωi
tΩi

+ LΩi
ηλ
Ωi

(1− tΩi
)

= LΩi
ηλ
Ωi

. (5)

Thus, we can estimate the color map of ambient illumina-

tion by:

ηλΩi
=
Mλ

Ωi

LΩi

. (6)

Here, the light intensity LΩi
are fixed to the maximum of

Mλ
Ωi

in all color channels. Equation (6) indeed depicts light

intensity normalization and only keeps the color component

of ambient illumination.

we describe the minimization problem as a graph opti-

mization problem, and the matting Laplacian Matrix indeed

defines the similarity between neighboring nodes.

After obtaining the rough ambient color map ηλ
Ωi

, we

refine it by minimizing the following optimization problem:

ηλ=
∥∥ηλ − ηλΩi

∥∥2 + α
(
ηλ

)T
Ληλ. (7)

Here Λ is the matting Laplacian matrix [15] which defines

the similarity between neighboring pixels [12], and the sec-

ond term accounts for the smoothness penalty. The opti-

mization problem can be efficiently solved (approximately)

by using image guided filter [11].

5.2. Haze removal

After obtaining the estimate of ηλ, we can remove the

color effect from the input image and re-write Eq. (2) as:

Îλj
∆
= Iλj

/
ηλj

=LjR
λ
j tj + Lj (1− tj)

. (8)
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Following the above assumption on Lj and tj on each local

patch Ωi, we apply a max-operator in both side of Eq. (8),

and substitute the maximum reflectance prior once again.

Similarly, we have:

LΩi
=max

j∈Ωi

Îλj . (9)

Since the above equation holds for every color chan-

nel, therefore we calculate LΩi
in each channel and

select the maximum one as the final estimate, i.e.,

LΩi
= max

λ∈{R,G,B}

(
max
j∈Ωi

Îλj

)
. Similar to ηλ, we refine LΩi

by image guided filter to obtain a smooth Li.

After obtaining Li, we can estimate transmission ti by

applying a min-operator to both side of Eq. (8) and intro-

ducing dark channel prior. Mathematically, it can be written

as:

min
j∈Ωi

min
λ∈{R,G,B}

Îλj =min
j∈Ωi

min
λ∈{R,G,B}

[
LjR

λ
j tΩi

+ Lj (1− tΩi
)
]

∆
= min

j∈Ωi

min
λ∈{R,G,B}

[
Jλ
j tΩi

+ Lj (1− tΩi
)
]

= tΩi
min
j∈Ωi

(
min

λ∈{R,G,B}
Jj

)
+ (1− tΩi

) min
j∈Ωi

Lj

= (1− tΩi
) min
j∈Ωi

Lj

,

(10)

where Jλ
j

∆
= LjR

λ
j represents the color-balanced haze-

free image. After obtaining the raw estimate tΩi
as 1 −

min
j∈Ωi

min
λ∈{R,G,B}

Îλj

/
min
j∈Ωi

Lj , we refine it using image guid-

ed filter.

Finally, we recover the haze-free image as:

Jλ
j =

Îλj − Lj

max (tj , t0)
+ Lj, (11)

where t0 is a small value for computational stability.

5.3. A Faster Approximated Estimation Method

Here we propose a faster estimation method of ηλi and

Li in a simultaneous manner instead of a sequential manner

as depicted in Sec. 5.1 and Sec. 5.2. Specifically, after

obtaining max reflectance map Mλ
Ωi

, we refine it directly

using image guided filter. And thenLi and ηλi are calculated

as follows:

Li = max
λ∈{R,G,B}

Mλ
i , (12)

ηλi =Mλ
i

/
Li. (13)

Estimation of ti and Jλ
j is the same process as described in

Sec. 5.2. We denote these two methods as MRP and MRP-

Faster respectively in this paper.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Estimation results of hazy image. Top row: the estimated

color map of ambient illumination. Bottom row: the estimated

hazy image. From left to right: Results using Pei et al.’s method

[23]; Results using Zhang et al.’s method [29]; Results using Li et

al.’s method [17]; Our result. The input nighttime hazy image is

shown in (a), while the referenced daytime hazy image applied in

[23] exhibits at the right bottom corner.

6. Experimental results and discussion

To demonstrate the effectiveness of the proposed ap-

proach, we conduct a series of experiments to compare it

with several state-of-the-art methods [23, 29, 17, 1]. The

performance is evaluated both objectively and subjectively

on the same test images used in the existing research. The

experiments consist of four parts: estimation of hazy image,

dehazing results on real images, dehazing results on synthe-

sized images, computational complexity and run-time. For

all the results we use the original codes provided by the

authors on their webpages. At the end of this section, we

present some additional experimental results including the

application on daytime hazy images and some failure cas-

es using our approach. In our experiments, the size of Ω is

fixed to 15 ∗ 15. The kernel size and smoothing parameter

of image guided filter are 32 ∗ 32 and 0.01, respectively. t0
is set to 0.05.

6.1. Results on intermediate hazy image estimation

To show the importance of ambient illumination estima-

tion, we first present the experimental results on the esti-

mation of hazy image. We compare our method with the

recent night-time dehazing techniques of Pei and Lee [23],

Zhang et al. [29] and Li et al. [17], which all firstly transfer

the input image into an intermediate hazy image. Figure 4

shows the contrasting experimental results. As can be seen

from Fig. 4, the method of Pei and Lee tends to generate a

grayish hazy image. Zhang et al.’s method includes an ex-

posure enhancement process and introduces color artifacts

into hazy image. Li et al.’s method separates the glow effect
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(a) (b) (c) (d) (e) (f)

Figure 5. The visual comparisons of Pei and Lee’s method [23], Zhang et al.’s method [29], Li et al.’s method [17], our MRP method

and our MRP-Faster method. The close-up views of the regions enclosed by the red rectangle are shown in the even rows. The estimated

ambient illumination maps are shown at the bottom-right corner of each results in the odd rows.

and removes it from the input nighttime hazy image. How-

ever, their method tends to brighten the hazy image (e.g.

the sky region). Generally, the result from the proposed ap-

proach shows fewer artifacts and looks more natural.

6.2. Qualitative comparisons on real images

To verify the performance of the proposed dehazing

method, we then present the dehazing results on real night-

time hazy images. The visually inspected results are shown

in Figure 5(b)-(e), corresponding to the dehazing results us-

ing Pei and Lee’s method [23], Zhang et al.’s method [29],

Li et al.’s method [17], our MRP method and our MRF-

Faster method, respectively. Some close-up views of the

dehazing results are shown in even rows. In particular, we

also compare the proposed method with Ancuti et al.’s very

recent work [1] in Figure 6. Some close-up views of the

regions are shown in the 2nd and 4th rows.

As can be seen from these results, Pei and Lee’s method

cannot handle the color distortion very well. Zhang at al.’s

method may generate exaggerated intensity and colors of

some areas, due to the additional post processing. Li et al.’s

method is prone to over-amplify colors around the strong

edges and thus generates color fringing artifacts, especial-

ly in the sky region and area surrounding the light sources

(e.g., in Fig. 5). Ancuti et al.’s method tends to produce col-

or and blurring artifacts. The proposed approach, however,

is able to correct color distortion, enhance the visibility, and

introduce only subtle artifacts. In Figure 5, the proposed

approach generates crispier images without color fringing

artifacts. In Figure 6, the areas around road lamp generat-

ed by the proposed approach have better color balance and

clearer visibility. So do the areas around the handrail and

pedestal seats. Note that the proposed approach does not

always completely remove the hazy for the texture regions,

but it looks visually pleasing since the chrominance distor-

tion is removed. In addition, the remaining haze in the tex-

ture regions is not noticeable due to texture masking. Over-

all, the proposed algorithm outperforms the state-of-the-art

nighttime dehazing algorithms on the real hazy image case.

6.3. Quantitative comparisons on synthesized im-
ages

We further test the dehazing approach on synthesized

hazy images for quantitative comparison. We use images
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(a) (b) (c)

Figure 6. The visual comparisons results of Li et al.’s method, An-

cuti et al.’s method and our MRF method. The 2nd - 4th rows show

the close-up views of the regions enclosed by the red rectangle in

the 1
st row.

from Middlebury 2005 dataset to synthesize the nighttime

hazy images, and quantitatively evaluate the performance of

the proposed algorithm. By referring the synthetic method

in [27], we calculate the transmission map as t = 0.8d,

where d is the normalized disparity map. According to the

binocular triangulation measurement principle, we gauge

the coordinate of each pixel in the world coordinate sys-

tem. Then, we assume that the only light source is located

at the center part of the scene. We compute the illumina-

tion value of a scene point by using a negative exponential

form as L = e−α×dis, where α is a parameter and dis rep-

resents the normalized distance between a scene point and

the light source. Since dis is very small, we use its Taylor

series expansion instead, i.e., L = 1 − α × dis. In the fol-

lowing experiment, α is set to 0.8. As yellow is a common

color in artificial light sources such as road lamp, we set

the color of the light source in our synthetic experiment as

η = (1, 1, 0.3). In addition, the original clear image in the

dataset is used as the reflectance R. Finally, we generate the

nighttime hazy image according to Eq. (2).

An example of quantitative comparison is shown in Fig.

7. Figure 7(a)-(d) show the original image from Middlebury

2005 dataset, disparity map, synthetic ambient illumination,

synthetic nighttime hazy image, respectively. Figure 7(e)-

(f) present the results of Zhang et al.’s method [29], Li et

al.’s method [17] and the proposed MRP and MRP-Faster

methods. As shown in Fig. 7, result of Zhang et al.’s method

introduces color artifacts, e.g., in face regions of plaster.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Top row: From left to right: original image from Mid-

dlebury 2005 dataset, depth map, synthetic ambient illumination,

synthetic nighttime hazy image. Bottom row: Dehazing result of

Zhang et al.’s method [29],Li et al.’s method [17], the proposed

MRP and MRP-Faster methods.

Result of Li et al.’s method has fewer color artifacts, but

it shows over-dehazing effect in face regions of plaster and

generates darker result. Result of our MRP method is close

to Ground truth both in illumination and color. MRP-faster

method estimates η and L from M simultaneously, whereas

MRP method estimates L after removing η from the input

image. This difference makes MRP-faster method prone to

estimate a smaller L, which leads to a brighter result. Ta-

ble 1 shows the quantitative comparison results of different

methods according to PSNR and SSIM. The results demon-

strate the superiority of the proposed MRP method, and are

consistent with the visual impression in Fig. 5-6.

Table 1. PSNR and SSIM for the dehazing results on synthetic

hazy images.

PSNR SSIM

Hazy image 13.89 0.9938

Zhang et al. 15.99 0.9962

Li et al. 15.74 0.9958

MRP 16.88 0.9966

MRP Faster 14.43 0.9950

6.4. Runtime evaluation

Moreover, our approach has the advantage of computa-

tional efficiency. The coarse estimations of ambient illu-

mination η and transmission map t only consist of some

max/min operations on local image patches. As described

in Sec. 5.3, we also propose a faster alternative, i.e., MRP-

Faster, which applies a non-overlap implementation to cal-

culate the max/min operations with its computational com-

plexity being O(N). Both in MRF and MRP-Faster ap-

proach, the refinements of η and t are implemented by us-

ing image guided filter, whose computational complexity is

O(N) as well.

We implement the proposed algorithms using C++ based

on OpenCV on a Laptop with Intel CORE i7 and 8G mem-

ories. Figure.10 shows the running times for processing im-

7424



Figure 8. Runtime evaluation of the proposed MRF and MRF-

Faster approaches.

ages of different sizes by using our MRP and MRP-Faster

approaches. It can be seen that the running time grows up

linearly with respect to the image size. Moreover, MRP-

Faster shows remarkable computational efficiency. It pro-

cesses an 800x600 image in 0.3 seconds, while Zhang et

al.’s method [29] and He et al.’s method [10] need approx.

20 seconds, and Li et al.’s method [17] needs more than

30 seconds to processes a similar image. Ancuti et al.’s

method [1] is computationally efficient, which need 4 sec-

onds. Overall, the proposed MRP-Faster approach is 10-

100 times faster than the state-of-the-art methods.

For an image of VGA size (i.e., 640x480), MRP-Faster

processes it in less than 193ms, i.e., more than 5 FPS. Note

that the refinement step implemented by image guided filter

(four times of image guided filtering steps in total) cost-

s about 147ms, up to 76.28% of total computational cost.

Recently, He et al. propose a faster (a speedup of >10x)

implementation of image guided filter [9]. Since the pro-

posed method is highly paralleled, it is promising to have

a real-time implementation by applying some acceleration

techniques as in [28, 9]. We leave it as the future work.

6.5. Additional experimental results

The proposed approach even works for the daytime hazy

images if there are enough maximum reflectance regions in

the image. Figure 9 shows some examples. This approach

corrects the color distortion better while generating compa-

rable dehazing results.

Finally, we present some failure examples in Fig. 10.

As shown in Fig. 10, there are some color distortions in

the regions of grasses and leaves. The main reason is that

the maximum reflectance prior does not hold well for these

regions. This will be another future work to overcome this

problem.

7. Discussion and conclusion

In this paper, we have proposed a very simple but ef-

fective prior, called maximum reflectance prior, for haze

removal from nighttime hazy image. The maximum re-

(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 9. dehazing results on daytime hazy images. (a)(e)Input

hazy image. (b)(f) Results using He et al.’s method [10]. (c)(g)

Results using MRP method. (d)(h) Results using MRP-Faster

method.

(a) (b)

(c) (d)

Figure 10. Failure examples. (a)Input hazy image. (b)Result using

Li et al.’s method [17] (c) Result using MRP method. (d) Result

using MRP-Faster method.

flectance prior is based on the statistics of the outdoor day-

time images. By applying the prior, we can easily estimate

the ambient illumination, and thus remove haze from night-

time image in a simpler and more effective way.

This work shares some common limitations of most

schemes based on statistical priors - the prior may not work

for some particular images. When the scene objects are in-

herently with solely distinct color, the maximum reflectance

prior becomes invalid. The proposed scheme will generate

color distortions for these objects, such as the grasses and

leaves in Fig. 10. We intend to investigate more advanced

color constancy techniques [19, 22] to overcome this prob-

lem. In addition, we’ll perform more evaluations with more

metrics like FADE [5] in our future work.
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