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Abstract

Multimodal classification arises in many computer Vvi-
sion tasks such as object classification and image retrieval.
The idea is to utilize multiple sources (modalities) measur-
ing the same instance to improve the overall performance
compared to using a single source (modality). The vary-
ing characteristics exhibited by multiple modalities make it
necessary to simultaneously learn the corresponding met-
rics. In this paper, we propose a multiple metrics learn-
ing algorithm for multimodal data. Metric of each modality
is a product of two matrices: one matrix is modality spe-
cific, the other is enforced to be shared by all the modalities.
The learned metrics can improve multimodal classification
accuracy and experimental results on four datasets show
that the proposed algorithm outperforms existing learning
algorithms based on multiple metrics as well as other ap-
proaches tested on these datasets. Specifically, we report
95.0% object instance recognition accuracy, 89.2% object
category recognition accuracy on the multi-view RGB-D
dataset and 52.3% scene category recognition accuracy on
SUN RGB-D dataset.

1. Introduction

Owing to recent developments in sensor technology, re-
searchers and developers are able to collect multimodal data
consisting of depth information and RGB images to achieve
better performance for tasks such as object detection, clas-
sification and scene understanding [20, 7, 18, 30, 38, 32].
Massive image and video data available on the Internet are
associated with tags and metadata which are useful for im-
age classification [16] and retrieval [45, 37]. Solutions to
these problems can be formulated using multimodal clas-
sification frameworks. Multimodal classification has also
been studied for other applications such as audio-visual
speech classification [27, 33], and multimodal biometrics
recognition [29, 44].

How to efficiently and effectively combine different
modalities is the key issue in multimodal classification.

Feature vectors corresponding to different modalities might
be very different even if they essentially represent the same
object. Some feature vectors are very discriminative while
others are not; some feature vectors are clean while others
are noisy; some feature vectors are dense while others are
sparse. Many factors like data acquisition, preprocessing
and feature extraction can make feature vectors’ behavior
quite different. Therefore, direct linear combination of fea-
ture vectors or simple linear combination of the result of
each modality can not guarantee good performance com-
pared with using certain modality alone.

Metric learning algorithms can learn the Mahalanobis
distance from data pairs and side information indicating the
relationship between data pairs [40]. The learned distance
can be better than Euclidean distance for the original fea-
ture space. Extensive research on metric learning in uni-
modal setting is available in the literature. Typical exam-
ples include the one proposed in [40], Large Margin Near-
est Neighbor (LMNN) algorithm [36] and Information The-
oretical Metric Learning (ITML) algorithm [12].

Extending the uni-modal metric learning algorithm to
multi-modal metric learning can be a good solution for
multimodal classification problems if the learned metrics
are appropriate distance measures for corresponding fea-
ture spaces. Also, it is important to explore the relationship
among multiple metrics and the learning process should
take into account the underlying differences among multi-
ple modalities by balancing the contribution of each modal-
ity. As will be analyzed in Section 2 and Section 3, existing
approaches for multimodal metric learning do not fully cap-
ture the relationships among the multiple learned metrics.

Motivated by previous works that consider shared rep-
resentations in their formulations for multi-modal applica-
tions such as [27, 34, 41, 44], we propose a Hierarchi-
cal Multimodal Metric Learning (HM3L) algorithm which
fully explores the relationships among the different met-
rics of different modalities. In our formulation, metric
of each modality is constructed through the multiplication
of modality specific part representing appropriate subspace
and a common part (p.s.d matrix) shared by all the met-
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Figure 1. Overview of Hierarchical MultiModal Metric Learning.

rics. Figure 1 gives an overview of the proposed multi-
modal metric learning algorithm. Given multimodal repre-
sentations, first we apply modality-specific projections Py
to each modality since their representations are very dif-
ferent in nature, then we apply the common metric M to
features after the modality-specific projection assuming the
features lie in the same common space.

The rest of this paper is organized as follows. In Sec-
tion 2, we review different metric learning algorithms. In
Section 3, the Hierarchical Multimodal Metric Learning
(HM3L) algorithm is proposed and compared with related
multiple metrics learning algorithms. In Section 4, an effi-
cient algorithm based on subgradient method is applied to
solve the resulting optimization problem. Extensive exper-
imental results on four datasets are presented in Section 5.
Finally, Section 6 concludes the paper with a brief summary.

2. Related Work

Metric learning has been studied in various fields such as
machine learning [40, 36], information retrieval [25], com-
puter vision [15] and biometrics [3 1, 8]. The goal of a met-
ric learning algorithm is to learn a metric so that after data
are projected using the learned metric, similar data samples
(e.g. from the same class) are clustered together and dis-
similar data samples (e.g. samples from different classes)
are separated.

In [40], metric learning problem was formulated as a
convex optimization problem by utilizing the side infor-
mation of two data samples being similar or dissimilar.
LMNN [36] applied the idea of large margin in Support
Vector Machine (SVM) to improve the KNN classifier and
used triplet constraints to describe the relative relationships
among three samples. In [12], the information theoretical
metric learning (ITML) algorithm was proposed which es-
sentially minimizes the differential relative entropy between
two multivariate Gaussians subject to constraints on the dis-

tance function.

More recently proposed metric learning algorithms also
explore the structure of the metric by enforcing low-rank
constraints [11, 24] or sparse constraints [42, 28, 23] or
both sparse and low-rank constraints [22]. For high dimen-
sional problems, [! 1] showed that enforcing low-rank con-
straints on the metric during the learning process is compu-
tationally efficient and tractable even with a small number
of samples. More comprehensive reviews of various metric
learning methods and their applications are summarized in
[, 19].

Several multimodal metric learning algorithms have also
been proposed in the literature [39, 13, 43, 17]. For in-
stance, a multimodal metric learning method in [39] ap-
plied the multi-wing harmonium (MWH) learning frame-
work to get latent representations from different modal-
ities and learned a metric under a probabilistic formula-
tion. A Heterogeneous Multi-Metric Learning algorithm
proposed in [43] for multi-sensor fusion essentially ex-
tended the LMNN algorithm [36] for multi-metric learn-
ing. Similarly, in [17] a large margin multi-metric learning
(LM3L) was proposed for face and kinship verification by
learning multiple metrics under which the correlations of
different feature representations of each sample are maxi-
mized. Some of the other multimodal metric learning algo-
rithms include Pairwise-constrained Multiple Metric Learn-
ing (PMML) [10]. Note that these methods can be viewed
as multimodal extensions of the classical unimodal metric
learning algorithms like ITML and LMNN. One of the lim-
itations of these methods is that they do not explore the re-
lationships among different metrics corresponding to differ-
ent modalities.

3. Formulation

3.1. Problem Description

Let
S = {(Xs, Xj)|yiy = 1}

and
D = {(Xi, Xj)|yij = —1}

be two sets consisting of similar instance pairs and dissim-
ilar instance pairs, respectively. An instance in the multi-
modal scenario is denoted as

Xi = {xz(‘l)v x7(;2)7 T 7@,51{)}’
which consists of K features from K different modalities,
where 2V € Rl 2® € Ri2,... 2l ¢ RIx . Note that
the dimension of each feature vector can be different. In
multimodal metric learning, the objective is to learn metrics
for such instances consisting of K feature vectors.

A simple way to learn a metric for multimodal data is
by concatenating the features of the K modalities into one
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feature vector of length Zszl l; and applying classical met-
ric learning algorithms like LMNN or ITML. The drawback
of this approach is the high computational cost incurred by
learning an Zfil l; by Zfil l; metric. This problem is
even more serious for high-dimensional multimodal data.

Existing multimodal metric learning algorithms such as
Pairwise-constrained Multiple Metric Learning [10], Large
Margin Multi-metric Learning [17], and Heterogeneous
Multi-Metric Learning [43], are extensions of the classical
unimodal metric learning algorithms in which the distance
between any two instances is obtained as

d2,(Xi, X;)
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These approaches simultaneously solve K positive semi-
definite (p.s.d) matrices M,k = 1,--- , K as metrics in
a joint formulation.

3.2. Hierarchical Multimodal Metric Learning
(HM3L) Formulation

In order to efficiently learn multiple metrics for multi-
ple modalities as well as to capture the relationship among
them, we enforce the different metrics My, k = 1,--- | K
to satisfy the following condition

M, =PIMP,, k=1 K, )
where Py, € R¥!* and d < min{ly,ls,--- ,lx}. Also, M
is required to be a p.s.d matrix. Using this formulation, one
can easily show that if M € R?*% is p.s.d and rank(M) <
r (r < d), then for any non-trivial P;, € R M, =
P{MPk is p.s.d and rank(My) < r.

For the given training data, the learned metrics M, are
obtained by learning the modality specific part P and the
shared part M in a hierarchical framework. As long as M
is p.s.d, My, is p.s.d meaning that M, are valid metrics.

By enforcing (2), we establish the relationship among
the different modalities. As a result, we can formulate the
Hierarchical multimodal metric learning (HM3L) algorithm
as the optimization problem specified in (3).

S,

K
min (M) +v ) [Pi% 3)
k=1

MeS;

K
1 (k) (k) .
t K Zd?VI(Pkl'i aPkSﬂj )< u ify,; =1

K
Z (Pt ka N>pB ify; =—L
k=

Here ~ controls the relative contribution to the cost func-
tion between Py, and M and p and 5 are non-negative real
numbers which specify the upper bound for distance of two
similar instances and lower bound for distance of two dis-
similar instances, respectively. We introduce the slack vari-
ables €;; > 0 for constraints. Then (3) can be rewritten as

K
min  tr(M) +5 Y |Pil|% )
k=1

MeS]

K
1 k k .
s.t. e kg_l d?w(kaE ),ka; )) <ptey ify; =1

K
1
K S d3 (Pl Py > - ey iy = —1.

3.3. HM3L-based multimodal classification

Once Py and M are learned, we can easily get L such
that L”L = M through matrix decomposition. Then the
multi-modal data

1 2 K
X = {22, 2}

) 1

can be projected by Py, and L and transformed to

X; = {LP12V LPy2® ... LPga{™)}.

Concatenation of all the projected features can be used with
various classification algorithms like KNN and SVM.

4. Optimization

To solve the proposed optimization problem (4), we ap-
ply hinge-loss function to get rid of the constraints which
results in an unconstrained optimization problem as follows

mm tr(M) + ~ P; ®))

Jmin, ZH I3

+aC > l Zd (P, Pral)) - u}
(Xi1X.7)€S +

+l-a)Cc Y [5 - % Z 42 (Pra™, ka§k))]

X;,X;€D k=1 +

where C' is a positive number that controls the relative
contribution between the constraints on the metric and the
constraints on data samples, « is a constant that balances
the relative contribution between the pairs from similar set
and pairs from dissimilar set. Let L(M;Py,Ps, ..., Pg)
denote the above cost function we are trying to minimize.
It is a bi-convex optimization problem when we consider
Pi (k=1,2,..., K) together as P. We iteratively solve for
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M and P by updating one with the other fixed.

The hinge-loss function indicates that only pairs of sam-
ples that violate the distance constraints will make contri-
butions to the overall cost function. For notational conve-
nience, let A p, A}, p, A%, and A7,/ denote active sets
at time ¢. At& p (A’5D7 p) means set for similar (dissimilar)
pairs that violate the distance constraint when we fix Py, to
update M. Similarly, A% ,, (A7 5,) means set for similar
(dissimilar) pairs that violate the distance constraint when
we fix M to update Py,.

A p={(Xi,X;) € S|
A p = {(Xi, X;) € D|—=
A%,M ={(Xi, X;) € S|

Zd
Zd

(Pk,t—1$§k>7 Pk,tflz;k)) > p}

Al v ={(Xi, X;) € D|— (Pri—12 Pre s x My < By

4.1. Updating M

Fixing Py, projected sub-gradient method [6] can be ap-
plied to solve for M. It involves two key steps.
Step 1:

thp - Mt — NGt (M)7 (6)

where g;(M) is the gradient of L(M) at time ¢ and it is
derived as,

L&
- ZPk,tﬂBE;)P;tq
k=1

9t(M) =ILixq + Ca

>
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Where Bi(fcj) = (z is a rank 1 matrix.

Step 2:

k k k k
P e @ -7

M1 = VI [Z]4V, ®)

where VT XV is the eigenvalue decomposition of M,,,. Pro-
jecting My, onto the p.s.d cone can be done by thresholding the
eigenvalues by keeping the positive eigenvalues and setting the
negative ones to be 0.

4.2. Updating P

Fixing M, each P, can be updated separately through gradient
descent as

Pr:=Pri-1—ng:(Pr), k=12, K, )

k k
Zth 1 katflxg )’Pk,t—le' )) > p}

Z By, (Proo1z™ Pp1at) < )

+

where ¢:(P}) is the gradient of L(P},) at time ¢ and it is derived
as

9t(Pr) = 29Pp -1 + Ca

>

2
{?Mthﬂt_le,’;)} +
(X;,X;)€AL

S,M
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>
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The overall Hierarchical Multimodal Metric Learning (HM3L)
algorithm is summarized in Algorithm 1.

Algorithm 1: Hierarchical Multimodal Metric Learn-
ing (HM3L)
Inputs:
S = {(Xi, Xj)lyi; = 1},
D = {(X;, X;)|yi; = —1}, positive integer 7, c, 7,
1, B, C' and maximum iteration 7.
Initialization:
To initialize P, (k = 1,2,...,.K):
construct X* € Ri*N of azgk) from S and D;
perform PCA on X* to obtain Py, o € R4*!x,
To initialize M:
set Mg = I4xq.
Main loop:
fort=1:Tdo
calculate A%  and Af, p to update M through
(7), (6) and (8);
calculate A% ,, and Af, ), to update P, through

(10) and (9).
end
Outputs:
Pr(k=1,2,...,K)and M.

5. Experiments

To illustrate the effectiveness of our method, we present ex-
perimental results on four publicly available multimodal datasets:
NUS-WIDE dataset [9], RGB-D Object dataset [20], CIN 2D3D
object dataset [7] and SUN RGB-D dataset [32]. The details of
these datasets, experimental setups and experimental results are
given in the following subsections.

For experiments on each dataset, we include (1) the baseline re-
sult (without metric learning) obtained by certain features plus ei-
ther NN or SVM classifiers depending on which was used to report
the baseline result, (2) results from the proposed HM3L method as
well as other publicly available multiple metrics learning methods
[10, 43] by first transforming the features used in the baseline re-
sult, then applying either NN or SVM classifier, (3) results from
other methods which reported the best results on that experiment.

5.1. Tagged image classification on NUS-WIDE
dataset

The NUS-WIDE dataset [9] consists of 269,648 web images
and tags from Flickr. For a fair comparison with previous results
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Figure 2. Normalized cost function over iterations.

reported in [39], same subset of tagged images, same train/test
splitting, same sets of similar (dissimilar) pairs of instances and
same feature extraction procedures are applied. A subset of 1521
tagged images are used. These tagged images consist of thirty
classes (actor, airplane, bicycle, bridge, buddha, building, butter-
fly, camels, car, cathedral, cliff, clouds, coast, computers, desert,
flag, flowers, food, forest, glacier, hills, lake, leaf, monks, moon,
motorcycle, mushrooms, ocean, police, pyramid) and roughly fifty
tagged images per class are randomly selected. By randomly split-
ting the dataset, 765 tagged images are used as training data and
the remaining are used as testing data. From the training data,
9613 pairs of similar instances and 10067 pairs of dissimilar in-
stances are selected to learn metrics. For images, 1024-D bag of
visual words based on SIFT descriptors is extracted to represent
the image modality; for tags, 1000-D bag of words is extracted to
represent the associated tag modality. Therefore, one instance of
tagged image is represented by feature vectors of two modalities.

5.1.1 Experiment Setup

For every approach considered, metrics were first learned. Then,
KNN classification under the learned metrics was performed us-
ing training and testing data. The value of K was chosen to
be 1, 3, 5, 10 and 20. We compare the performance of our
method with those of ”Xing + Original”, "ITML+Original”, ”Xing
+ MWH”, ”ITML + MWH”, "MKE” [26], Heterogeneous Multi-
Metric Learning (HMML) [43] and PMML [10]. ”Xing+Original”
and "ITML+Original” methods essentially apply algorithms pro-
posed in [40] and [12] on concatenated feature vectors from dif-
ferent modalities. Similarly, ”Xing+MWH” and "ITML+MWH”
correspond to algorithms combined with the MWH model pro-
posed in [39]. All parameters were tuned using cross-validation
on training data.

5.1.2 Experimental Results

Table 1 shows the KNN classification accuracies of different meth-
ods. As can be seen from the table, the HM3L method performs
the best and it outperforms all the other methods. This experi-
ment clearly shows that our method can provide better distance
measures which can enhance the performance of a classification
algorithm.

To show whether the proposed algorithm converges, we em-
pirically show the convergence of our algorithm by plotting the
normalized cost function values versus iterations. From Figure 2,
we can observe that the proposed algorithm converges in a few
iterations.

5.2. Object recognition on RGB-D Object dataset

RGB-D Object dataset [20] is a large scale multi-view dataset
for 3D object recognition, segmentation, scene labeling and so on.
It consists of video recordings of 300 everyday objects organized
into 51 different categories. The video recordings were captured
by cameras mounted at 3 different elevation angles of 30°, 45° and
60°. A single RGB-D frame consists of both an RGB image and
a depth image. Evaluation protocols for various computer vision
tasks such as instance recognition and category recognition were
set in [20]. RGB-D Images were sampled every 5th frame of the
videos and in total about 45,000 RGB-D images were collected.

Kernel descriptors [3] [4] were extracted as features for RGB
images and depth image. For RGB images, the LBP kernel de-
scriptor, Gradient kernel descriptor and normalized color kernel
descriptor were extracted. For depth images, the gradient ker-
nel descriptor and the LBP kernel descriptor were extracted from
depth images; normal kernel descriptor and size kernel descrip-
tor were extracted from point clouds which were converted from
the depth images. For each kernel descriptor, object-level fea-
tures were obtained from 1000 dimensional basis vector for 1 x 1,
2 x 2, 3 x 3 pyramid sub-regions. The basis vector was learned
by K-means on about 400,000 sample kernel descriptors from
training data. The dimensionality of each kernel descriptor is
(1444 9) x 1000 = 14000; principal component analysis was
used to reduce the the dimensionality to 1000. After feature ex-
traction, each RGB-D image was represented by seven kernel de-
scriptors and each kernel descriptor by a 1000 dimensional vector.

5.2.1 Experimental Setup

For the instance recognition experiment, images corresponding to
videos captured at angles 30° and 60° were used for training, and
images corresponding to videos captured at angle 45° were used
for testing. For the category recognition experiment, one object
was randomly chosen and left out from each category for testing
and all views of the remaining objects were used for training. Ten
trials were repeated for category recognition.

For instance and category recognition tasks, we first learned
multiple metrics for Seven kernel descriptors using the similar and
dissimilar set of the RGB-D images generated from the training
data. We then performed linear SVM classification [14] based on
the learned metrics. We also compared the performance of our
method with the results reported in [34] which are based on deep
learning-based methods for RGB-D image classification.

5.2.2 Experiment Results

Classification results for instance recognition and category recog-
nition are shown in Table 2 and Table 3 respectively. From these
tables, we make the following observations. (1) the proposed
HM3L-based classification method outperforms the best results
obtained from MMSS [34] which applies deep architectures on

3061



Table 2. Instance recognition accuracy on RGB-D Object dataset.

Methods Xing+Original | ITML+Original | Xing+MWH | ITML+MWH | MKE[260] Xie[39] PMML][10] HMML[43] HM3L
1-NN 0.8995 0.8995 0.8995 0.9286 0.8056 0.9352 0.9233 0.9140 0.9524
3-NN 0.8108 0.6653 0.8849 0.8929 0.6944 0.9021 0.9220 0.9246 0.9431
5-NN 0.6971 0.4868 0.8426 0.8519 0.5860 0.8849 0.9299 09114 0.9418
10-NN 0.4775 0.2394 0.7646 0.7394 0.4405 0.8333 0.9139 0.9008 0.9339
20-NN 0.1548 0.0450 0.6230 0.4841 0.1746 0.7130 0.9074 0.8876 0.9223

Table 1. KNN Classification Accuracy under learned metrics for tagged images.
Methods RGB | Depth | RGB-D
Lai [20] 60.7 46.2 748
Bo [4] 90.8 54.7 91.2
Blum [2] 82.9 - 90.4
HMP [5] 92.1 517 92.8
MMSS [31] - - 94.0
PMML [10] + linear SVM 92.7 534 92.9
HMML [43] + linear SVM | 90.0 51.9 92.1
HM3L + linear SVM 93.34 55.6 95.0

Methods RGB Depth RGB-D
Lai [20] 64.7£2.2 74.5+3.1 83.8 £3.5
Bo [4] 80.7+2.1 80.34+2.9 86.5 £2.1
Blum [2] - - 86.4 +2.3
HMP [5] 82.4+3.1 | 81.2+2.3 87.5 £2.9
MMSS [34] - - 88.5+2.2
PMML [10] + linear SVM 80.2 77771+ 24 885+ 1.4
HMML [43] + linear SVM 75.8£3.2 774 +24 873 £ 1.8
HM3L + linear SVM 81.0 £2.7 79.1+24 89.21+1.6

Table 3. Category recognition accuracy on RGB-D Object dataset.

100

r 106
150 r 105

F qo4
200

0.3

0.2
250

0.1

300 0

50 100 150 200 250 300

Figure 3. Confusion matrix for Instance recognition result.

the RGB-D images for both instance recognition testing on over
13800 instances and category recognition overall ten trials. (2)
The proposed HM3L algorithm can boost classification accuracy
compared to the case where metrics learning was not performed.
(3) HM3L-based multimodal classification outperforms other mul-
tiple metrics learning-based classification and this shows that the
idea of capturing the relationship for different multiple metrics can
help to learn more appropriate distance measures.

Confusion matrices of classification results based on the pro-
posed algorithm are shown in Figure 3 for instance recognition
experiment and in Figure 4 for the 8th trial of category recognition
experiment. The testing data of recognition experiment are placed
such that testing samples of the same objects are put together and

1
0.9
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0.7
0.6
0.5
0.4
03
0.2
0.1
5 10 15 20 25 30 35 40 45 50 0

Figure 4. Confusion matrix for 8th trial category recognition re-
sult.

Figure 5. Examples of prediction errors in category recognition
experiment.

objects from the same category are grouped together. As we can
see from Figure 3, for each of 300 objects, most samples are clas-
sified correctly (diagonal) and many errors are made due to the
misclassification of certain samples to other objects from the same
category. Examples of misclassification in category recognition
is shown in Figure 5. For each column, the objects on top was
misclassified to the category represented by certain object in the
bottom. We can see that errors occur due to similar color and
shape.

5.3. Object recognition on CIN 2D3D dataset

CIN 2D3D object classification dataset [7] contains segmented
color and depth images of 154 objects from eighteen categories
of common household and office objects. Each category contains
between three to fourteen objects. Each object was recorded using
a high-resolution color camera and a time-of-flight rang sensor.
Objects were rotated using a turn table and snapshots taken every
ten degrees and yields 36 views per object. Each view is one data
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sample consisting of RGB image and Depth image. Following
the procedures used to extract kernel descriptors for samples in
RGB-D object dataset, we also extract kernel descriptors for data
samples in 2D3D dataset.

5.3.1 Experiment Results

The evaluation protocol for category classification was set in the
original paper [7]. Six objects per category were used for train-
ing and remaining objects were used for testing. For each object,
eighteen views were selected for training and eighteen for testing.
The training set consists of 82 objects with a total of 1476 views.
The test set consists of 74 objects with 1332 views. Same methods
as included in the RGB-D dataset were evaluated. Classification
results for category recognition are shown in Table 4. As can be
seen from this table, the proposed HM3L-based multimodal clas-
sification gives the best performance on average.

Methods RGB Depth | RGB-D
Browatzki [7] 66.6 74.6 82.8
HMP [5] 86.3 87.6 91.0
MMSS [34] - - 91.3
PMML [10] + linear SVM 90.6 82.7 91.8
HMML [43] + linear SVM 86.8 83.4 90.8
HM3L + linear SVM 89.9 86.4 92.9

Table 4. Category recognition accuracy (in %) on CIN 2D3D
dataset.

5.4. Scene Categorization on SUN RGB-D dataset

The SUN RGB-D dataset [32] consists of 10355 RGB-D scene
images including 3784 Kinect v2 images, 1159 Intel RealSense
images as well as 1449 images taken from the NYU Depth Dataset
V2 [30], 554 scene images from the Berkeley B3DO Dataset [ 18],
and 3389 Asus Xtion images from SUN3D videos [38]. We choose
the same Places-CNN [46] scene features of dimension 4096 for
both RGB image and depth image which were used to report the
baseline results in [32].

54.1 Experimental Results

We followed the standard experimental setup for scene categoriza-
tion task according to [32]. Specifically, nineteen scene categories
with more than eighty images were used. These scene categories
are bathroom, bedroom, classroom, computer room, conference
room, corridor, dining area, dining room, discussion area, furni-
ture store, home office, kitchen, lab, lecture theatre, library, living
room, office, rest space, study space.

The train and test split is available in [32]. In total, 4845 sam-
ples were used for training and 4659 samples were used for testing.
The standard average categorization accuracy was used for evalu-
ation. We applied the proposed HM3L method to the Places-CNN
features, transformed the original features with the learned matri-
ces, and then applied one-vs-all rbf SVM for classification. The
scene category recognition results are shown in Table 5.

From results, we make the following observations. (1) the pro-
posed HM3L-based classification method outperforms the best re-
sults obtained from [35, 47]. (2) The proposed HM3L algorithm
as well other two multiple metrics learning algorithms can signif-
icantly boost the classification accuracy compared to the baseline
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Figure 6. Confusion matrix for scene recognition result.

case in which metrics learning was not performed. (3) HM3L-
based multimodal classification outperforms other multiple met-
rics learning-based classification and this again shows the impor-
tance of capturing the relationship for different multiple metrics in
the learning process.

Methods RGB Depth | RGB-D
Place-CNN + linear SVM [32] 35.6 25.5 372
Place-CNN + rbf SVM [32] 38.1 27.7 39.0
Liao [21] 36.1 - 41.3
Zhu [17] B - 415
Wang [35] - - 48.1
PMML [10] + rbf SVM 40.7 30.5 44.2
HMML [43] + rbf SVM 47.9 32.6 51.1
HM3L + rbf SVM 48.6 33.2 52.3

Table 5. Scene categorization accuracy (in %) on SUN RGB-D
dataset.

6. Conclusions

In this paper, we proposed a hierarchical multimodal metric
learning algorithm which can efficiently learn multiple metrics for
multi-modal data while fully exploiting the relationships among
these metrics. The proposed approach makes no assumption about
the feature type or applications. We view feature learning as a dif-
ferent problem and only focus on learning discriminative metrics
for multimodal data in order to improve the multimodal classifica-
tion accuracy. As we separate the feature learning process from the
metric learning process, the proposed approach can be applied to
many different applications with many different feature types. Ex-
perimental results on four datasets show that the proposed metric
learning algorithm outperforms other metric learning algorithms
dealing with multi-modal data and provide the best performance
for all the experiments considered. As the concept of modality is
quite general and many computer vision problems can be consid-
ered in multi-modal settings, the proposed HM3L algorithm can
be applied where appropriate metrics are required and can boost
the performance of related computer vision tasks.
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