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Abstract

In this paper, we propose a novel Latent Multi-view

Subspace Clustering (LMSC) method, which clusters da-

ta points with latent representation and simultaneously ex-

plores underlying complementary information from multi-

ple views. Unlike most existing single view subspace clus-

tering methods that reconstruct data points using origi-

nal features, our method seeks the underlying latent rep-

resentation and simultaneously performs data reconstruc-

tion based on the learned latent representation. With the

complementarity of multiple views, the latent representation

could depict data themselves more comprehensively than

each single view individually, accordingly makes subspace

representation more accurate and robust as well. The pro-

posed method is intuitive and can be optimized efficiently by

using the Augmented Lagrangian Multiplier with Alternat-

ing Direction Minimization (ALM-ADM) algorithm. Exten-

sive experiments on benchmark datasets have validated the

effectiveness of our proposed method.

1. Introduction

Subspace clustering is a fundamental and important tech-

nique in many applications, especially for the high di-

mensional data. Generally, subspace clustering method-

s [7, 18, 12] hold the assumption that data points are

drawn from multiple subspaces corresponding to different

clusters. Recently, the subspace clustering based on self-

representation has been proposed, where each data point

can be expressed with a linear combination of the data

points themselves. The general formulation can be present-

ed as
min
Z

L(X,XZ) + αΩ(Z), (1)

where the scalar α > 0 balances the reconstruction er-

ror and the regularization for subspace representation Z.

∗Corresponding Author (Qinghua Hu)

L(·, ·) and Ω(·) denote the loss function and regulariza-

tion term, respectively, which are usually defined based

on different assumptions. For example, Sparse Subspace

Clustering (SSC) [7] searches a sparsest representation a-

mong the infinitely many possible representations based

on ℓ1-norm. Low-Rank Representation Clustering (LRR)

[18] tries to reveal cluster structure with a low-rank repre-

sentation. SMooth Representation clustering (SMR) [12]

analyzes the grouping effect of self-representation based

methods in depth. Based on the self-representation ma-

trix Z, the similarity matrix is often constructed with S =
abs(Z) + abs(ZT ), where abs(·) is the element-wise ab-

solute operator. Finally, based on the similarity matrix S,

spectral clustering algorithm is usually performed for the

final clustering result [7, 18, 12].

These subspace clustering methods achieve promising

performances, however, they are usually affected by the

quality of original features, especially under the condition

that the observations are insufficient and/or grossly corrupt-

ed. Therefore, the multi-view subspace clustering methods

have been proposed [3, 31, 9], in which each data point is

described with information from multiple sources of fea-

tures. These multi-view representations hold rich informa-

tion from multiple cues, which could be beneficial to clus-

tering task. With proper multi-view constraints, these sub-

space clustering methods have shown their power. They

usually reconstruct the data points on the original view di-

rectly, and generate the individual subspace representation

for each view. However, each single view alone is usually

not sufficient to describe data points, which makes the re-

construction by using only one view itself risky. Moreover,

the data collection may be noisy, which further increases the

difficulty of clustering.

To address these issues, in this paper, we introduce a la-

tent representation to explore the relationships among data

points and handle the possible noise. As agreed by [11, 26],

we assume that multiple views are originated from one un-

derlying latent representation, which could depict the data
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in essence and reveal the common latent structure shared

by different views. Based on this assumption, we pro-

pose the Latent Multi-view Subspace Clustering (LMSC)

method. Our proposed method learns the latent represen-

tation based on multi-view features, and generates a com-

mon subspace representation rather than that of individual

view. Moreover, our method integrates the latent represen-

tation learning and multi-view subspace clustering in a uni-

fied framework, which is optimized effectively by using the

Augmented Lagrangian Multiplier with Alternating Direc-

tion Minimization strategy. Extensive experiments in com-

parison with several state-of-the-art methods are performed

to assess the performance of our LMSC.

1.1. Related Work

Generally, most existing multi-view clustering method-

s belong to the category of graph-based model. The ear-

ly methods (e.g., [6]) usually concentrate on the 2-view

case. Some methods [20, 24] utilize matrix factorization

technique for multi-view clustering. The subspace cluster-

ing methods [3, 31, 9] describe each data point with the

data collection itself on the original view directly. Under

the spectral clustering framework, the methods [16, 15] co-

regularize the hypothesis to be consistent across these d-

ifferent views. To address the large scale issue, a robust

large-scale multi-view clustering method [20] is proposed

under the framework of K-means algorithm. Another nature

way to integrate different views is Multiple Kernel Learning

(MKL). The work in [4] has demonstrated the effectiveness

of direct combination of different kernels. Furthermore, the

researchers in [25] proposed a more general way based on

MKL to learn the weights of different kernels. It is note-

worthy that, our method performs data reconstruction with

the comprehensive multi-view latent representation, instead

of each original single view [3, 31, 9].

Recently, researchers have extended the subspace clus-

tering methods [7, 18] to latent representation based sub-

space clustering. The method Latent Space Sparse Sub-

space Clustering (LS3C) [22] simultaneously performs di-

mensionality reduction and sparse coding for SSC. Latent

Low-Rank Representation (LatLRR) [19] is built on the top

of LRR [18], and constructs the dictionary by using both

observed and hidden data. For multi-view representation,

some methods [11, 26] explicitly learns a common repre-

sentation based on multiple views as a joint optimization

problem with a common subspace representation matrix. D-

ifferent from LS3C which performs dimensionality reduc-

tion on the original single view data, our method recover-

s the latent multi-view representation, and the projections

corresponding to different views are learned simultaneous-

ly under this latent representation. There are also some re-

cent methods focusing on other topics, e.g., dimensionality

reduction [30] and feature selection [23].

X (1)

X(2)
P(1)P(2)

H

Figure 1: Illustration of multi-view latent representation.

Observations {X(v)}Vv=1 (V ≥ 2) corresponding to differ-

ent views are partially projected by {P(v)}Vv=1 from one

underlying latent representation H.

2. Proposed Approach

In this work, we consider subspace clustering with multi-

view latent representation. Given N multi-view obser-

vations {[x
(1)
i ; ...;x

(V )
i ]}Ni=1 which consist of V different

views, our goal is to infer a shared latent representation,

h, for each data point. Our method assumes that these

different views are all originated from one underlying la-

tent representation. Specifically, as shown in Fig. 1, the

observations from different views can be reconstructed by

their respective models {P(1), ..., P(V )} with the shared la-

tent representations H = {hi}
N
i=1. Accordingly, we have

x
(v)
i = P(v)hi. Considering the noise, it is

x
(v)
i = P(v)hi + e

(v)
i , (2)

where e
(v)
i denotes the reconstruction error corresponding

to the vth view. The objective function to infer the multi-

view latent representation is as follows

min
P,H

Lh(X,PH),

with X =





X(1)

· · ·
X(V )



 and P =





P(1)

· · ·
P(V )



 ,
(3)

where X and P are the multi-view observations and recon-

struction models aligned, respectively. Lh(·, ·) denotes the

loss functions associated with the latent (hidden) represen-

tation. Generally, with the help of complementarity from

multiple views, the latent representation H is more compre-

hensive than the representation corresponding to each single

view individually.

Then, based on the latent representation H, the objective

function of self-representation based subspace clustering of

Eq. (1) is reformulated as

min
Z

Lr(H,HZ) + αΩ(Z), (4)
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where Lr(·, ·) denotes the loss functions associated with the

data reconstruction and Z is the reconstruction coefficient

matrix.

We integrate the latent representation learning in Eq. (3)

and subspace clustering in Eq. (4) into one unified objective

function, shown as follows

min
P,H,Z

Lh(X,PH) + λ1Lr(H,HZ) + λ2Ω(Z), (5)

where λ1 > 0 and λ2 > 0 balance the three terms. The sub-

space clustering is guaranteed by the reasonable latent rep-

resentation and the constraint of subspace reconstruction,

while the latent representation is guaranteed by the comple-

mentarity of multiple views and improved by the subspace

reconstruction. Considering the robustness for outliers, our

final objective function is as follows

min
P,H,Z,Eh,Er

‖Eh‖2,1 + λ1 ‖Er‖2,1 + λ2 ‖Z‖∗

s.t. X = PH+Eh,H = HZ+Er and PPT = I,
(6)

where || · ||∗ is the matrix nuclear norm, which enforces the

subspace representation to be low-rank. || · ||2,1 is called

ℓ2,1-norm which encourages the columns of a matrix to be

zero [18], and the definition for the ℓ2,1- norm for a matrix

(A) is: ‖A‖ 2,1 =
D
∑

j=1

√

C
∑

i=1

A2
ij with A ∈ R

C×D. The

underlying assumption is that the corruptions are sample-

specific. We constrain P since without constraint H can

be pushed arbitrarily close to zero only by re-scaling H/s
and Ps (s > 0) while preserving the same loss. The first

term is utilized to assure the learned latent representation-

s H and reconstruction models P(v) associated to different

views to be good for reconstructing the observations, while

the second one penalizes the reconstruction error in the la-

tent multi-view subspaces. The last term prevents the triv-

ial solution by enforcing the subspace representation to be

low-rank. The robustness of our method benefits from t-

wo aspects. Firstly, due to the complementary information

of multiple views, the latent multi-view representation can

depict data more comprehensively than the single view and

accordingly leads to subsequent more promising clustering

result. Secondly, the ℓ2,1-norm on the first two term is a

matrix block norm, which is more robust to outliers than

the Frobenius norm.

Furthermore, we vertically concatenate together along

the column of errors corresponding to the latent represen-

tation and the subspace representation. In the way of inte-

gration, it will enforce the columns of Eh and Er to have

jointly consistent magnitude values, and the effectiveness of

which has been widely proved. Then, the objective function

of our proposed method has the following form

min
P,H,Z,Eh,Er

‖E‖2,1 + λ ‖Z‖
∗

s.t. X = PH+Eh,H = HZ+Er,

E = [Eh;Er] and PPT = I.

(7)

Then, there is one parameter λ > 0 which balances the error

and regularization.

3. Optimization

Our objective function in Eq. (7) simultaneously learns

the latent representations from multiple views and finds the

meaningful similarity matrix with respect to the latent rep-

resentations. Although the objective function is not jointly

convex with respect to all the variables P, H, Z, Eh and Er,

each of them can be solved efficiently by fixing the others.

The Augmented Lagrange Multiplier (ALM) with Alternat-

ing Direction Minimizing (ADM) strategy [17] is an effi-

cient and effective solver for our problems. To adopt AD-

M strategy to our problem, we need to make our objective

function separable. Therefore, we introduce one auxiliary

variable J to replace Z in the nuclear term of our objective

function. Then we have the following equivalent problem

min
P,H,Z,Eh,Er,J

‖E‖2,1 + λ ‖J‖
∗

s.t. X = PH+Eh, H = HZ+Er,

E = [Eh;Er], PPT = I and J = Z.

(8)

The above objective function can be solved by minimizing

the following ALM problem

L(P,H,Z,Eh,Er,J)

= ‖E‖2,1 + λ ‖J‖
∗

+Φ(Y1,X−PH−Eh)

+ Φ(Y2,H−HZ−Er) + Φ(Y3,J− Z)

s.t. PPT = I.

(9)

Note that, for convenience, we give the following defini-

tion: Φ(C,D) = µ
2 ||D||2F + 〈C,D〉, where 〈·, ·〉 defines

the matrix inner product and µ is a positive penalty scalar.

To optimize our problem with ALM-ADM, we separate our

problem into the following subproblems.

1. P-subproblem: To update P, we solve the following

optimization problem by fixing the other variables

P∗ = argminΦ(Y1,X−PH−Eh)

s.t. PPT = I.
(10)

Theorem 1. [13] Given the objective function minR ||Q−
GR||2F s.t. RTR = RRT = I, the optimal solution is

R = UVT , where U and V are left and right singular

values of SVD decomposition of GTQ.
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It is not difficult to show that, the optimal solution of P-

subproblem is PT = UVT , where U and V are the left

and right singular values of SVD of H(Y1 + X − Eh)
T ,

since we have

P∗ = argminΦ(Y1,X−PH−Eh)

= argmin
µ

2
||X−PH−Eh +Y1||

2
F

= argmin
µ

2
||(X+Y1/µ−Eh)−PH||2F

= argmin
µ

2
||(X+Y1/µ−Eh)

T −HTPT ||2F .

Based on Theorem 1, if we constrain P to be an or-

thonormal matrix (i.e., PPT = PTP = I), the optimal

solution of P-subproblem is PT = UVT , where U and

V are the left and right singular values of SVD decompo-

sition of H(Y1

µ
+X − Eh)

T . For efficiency, we can relax

P to be row orthogonal in practice (i.e., PPT = I, where

P ∈ R
k×d, k ≪ d), and the promising performance and

convergence are also achieved in practice.

2. H-subproblem: By fixing the others variables, we

update H by the following rule

H∗ = argminΦ(Y1,X−PH−Eh)

+ Φ(Y2,H−HZ−Er).
(11)

Taking the derivative with respect to H and setting it to zero,

we get

AH+HB = C

with A = µPTP,B = µ(ZZT − Z− ZT + I),

C = (PTY1 +Y2(Z
T − I))

+ µ(PTX+ET
r −PTEh −ErZ

T ).

(12)

The above equation is a Sylvester equation [1]. To avoid

instability issue, we ensure A to be strictly positive definite

by Â = A+ǫI, where I is a identity matrix and 0 < ǫ ≪ 1.

Proposition 1. The Sylvester equation (12) has a unique

solution.

Proof. The Sylvester equation AH + HB = C has a u-

nique solution for H exactly when there are no common

eigenvalues of A and -B [1]. Since Â is a positive defi-

nite matrix, so all of its eigenvalues are positive: αi > 0.

While since B is a positive semi-definite matrix, so all of its

eigenvalues are nonnegative: βi ≥ 0. Hence, for any eigen-

values of A and B, αi+βj > 0. Accordingly, the Sylvester

equation (12) has a unique solution.

Remark: For solving the Sylvester equation, Bartels-

Stewart algorithm [1] is employed. The algorithm first-

ly transforms the coefficient matrices into Schur forms by

QR decomposition. Then it solves the obtained triangular

system by back-substitution. It also noteworthy that under

PPT = PPT = I, our method could be exactly solved,

i.e., A = PTP is strictly positive definite without introduc-

ing a perturbation (for H-subproblem) and Theorem 1 is ex-

actly suitable for P-subproblem. For efficiency in practice

use, we can learn a low dimensional latent representation

by relaxing P to be row orthogonal, i.e., PPT = I, then we

should introduce a small perturbation to ensure it strictly

positive definite.

3. Z-subproblem: Fix the other variables, we update Z

by solving the following problem

Z∗ = argmin
Z

Φ(Y3,J− Z) + Φ(Y2,H−HZ−Er).

(13)

Taking the derivative with respect to Z and setting it to zero,

we get

Z∗ = (HTH+ I)−1[(J+HTH−HTEr)

+ (Y3 +HTY2)/µ].
(14)

4. E-subproblem: The reconstruction error E is updat-

ed by solving the following problem

E∗ = argmin
E

‖E‖2,1 +Φ(Y1,X−PH−Eh)

+ Φ(Y2,H−HZ−Er)

= argmin
E

1

µ
‖E‖2,1 +

1

2
‖E−G‖

2
F ,

(15)

where G is formed by vertically concatenating the matrices

X−PH+Y1/µ and H−HZ+Y2/µ. This subproblem

can be efficiently solved by Lemma 3.2 in [18].

5. J-subproblem: Fix the others, the Lagrange function

with respect to J can be written as

J∗ = argmin
J

λ ‖J‖
∗
+Φ(Y3,J− Z)

=
λ

µ
‖J‖

∗
+

1

2
‖J− (Z−Y3/µ)‖

2
F .

(16)

The above problem can be efficiently solved by the singular

value thresholding operator [2].

6. Updating Multipliers: We update the multipliers by










Y1 = Y1 + µ(X−PH−Eh)

Y2 = Y2 + µ(H−HZ−Er)

Y3 = Y3 + µ(J− Z).

(17)

Intuitively, the multipliers are updated proportionally to the

violation of the equality constraints.

Note that, simply initializing the block variables H with

zero is not appropriate, since in this way, the optimal H

(see H-subproblem in Eq. (11)) will be zero. Then, sub-

sequent optimizations for all the other subproblems (e.g.,

Z-subproblem in Eq. (13)) will be trivial. Based on this, we

randomly initialize H in practice and we can also initial-

ize H with other preprocessing ways (e.g., PCA) to avoid

unstable results.
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Algorithm 1: Optimization Algorithm for LMSC

Input: Multi-view matrices: {X(1), ..., X(V )},

hyperparameter λ and the dimension K of

latent representation H.

Initialize: P = 0, Er = 0, Eh = 0, J = Z = 0,

Y1 = 0,Y2 = 0,Y3 = 0, µ = 10−6, ρ = 1.1,

ε = 10−4, maxµ =106; Initialize H with random

values.

while not converged do
Update variables P,H,Z,Eh,Er,J according to

subproblems 1-5;

Update multipliers Y1,Y2,Y3 according to

subproblems 6;

Update the parameter µ by µ = min(ρµ; maxµ);

Check the convergence conditions:

||X−PH−Eh||∞ < ǫ, ||H−HZ−Er)||∞ < ǫ
and ||J− Z||∞ < ǫ.

end

Output: Z, H, P, E.

3.1. Complexity and Convergence

Our method is composed of six sub-problems. The

complete algorithm is shown in Algorithm 1. The com-

plexity of updating P is O(k2d + d3), where k, d and n
are the dimension of the latent representation, the total di-

mensions of multi-view features, and the sample number

of data, respectively. The complexities of the other sub-

problems are as follows: For updating J (the nuclear norm

proximal operator), the complexity is O(n3) . For updat-

ing H, the classical algorithm for the Sylvester equation

is the Bartels Stewart algorithm[1], whose complexity is

O(k3). For updating Z, the main complexity is the matrix

inversion, which is O(n3). For updating E and the mul-

tipliers, the main complexity is the matrix multiplication,

which is O(dkn + kn2). Overall, the total complexity is

O(k2d+d3+k3+n3+dkn+kn2) for each iteration. Un-

der the condition k ≪ d, the total complexity is basically

O(d3 + n3). It is difficult to generally prove the conver-

gence for our algorithm. Fortunately, empirical evidence on

both synthesized and real data presented suggests that the

proposed algorithm has very strong and stable convergence

behavior even with initializing H randomly.

Remarks. 1) Linear projection employed in our model is

a simple but effective technique for high-dimensional data,

and actually it is easy to resolve in practice. The nonlinear-

ity could be introduced into our model based on the kernel

technique, which will be considered in our future work. 2)

For P-subproblem, although the strict correctness is given

under the complete case (i.e., with P being a square matrix),

the promising results are observed with low-dimensional

projection in practice. Moreover, given other constraints

(e.g., ||P(:, j)||2 ≤ 1) instead of PPT = I, ADMM can

be used to solve this subproblem [10]. Though similar per-

formance achieved, the inner ADMM makes the algorithm

more complex.

4. Experiments

4.1. Experiment Setting

We employ both synthetic data and real-world datasets

for evaluation. Synthetic data is used to validate the effec-

tiveness of using multiple views. These real-world datasets

are as follows: MSRCV1 [28] consists of 240 images and

8 object classes. We select 7 classes, i.e., tree, building, air-

plane, cow, face, car and bicycle, and extract 6 types of fea-

tures: CENT (view1), CMT (view2), GIST (view3), HOG

(view4), LBP (view5), (SIFT (view6) from each image to

construct different view features. Scene-15 [8] dataset con-

tains 15 scene categories with both indoor and outdoor en-

vironments, 4485 images in total. Three common image

features GIST (view1), PHOG (view2), and LBP (view3)

are used similar to [5]. ORL1 contains 10 different images

of each of 40 distinct subjects. For Yale and ORL, three

types of features: intensity (view1), LBP (view2) and Ga-

bor (view3) are used. Each category has 200 to 400 im-

ages. LandUse-21 [29] consists of satellite images from 21

categories, 100 images each. The features used are same

to Scene-15. Still DB [14] consists of 467 images with 6

classes of actions. Three features are extracted, i.e., Sift

Bow (view1), Color Sift Bow (view2) and Shape contex-

t Bow (view3). BBCSport2 consists the documents from

the BBC Sport website corresponding to sports news in 5

topical areas, which is associated with 2 views [27].

We compare our method with the following baselines.

SPCBestSV is the standard spectral clustering with the best

single view. LRRBestSV is the LRR [18] with the best single

view. Min-Disagreement [6] creates a bipartite graph and

is based on the minimizing-disagreement idea. We report

the 2-view best results due to its limitation. Co-Reg SPC

[16] co-regularizes the clustering hypothesis to enforce dif-

ferent views to be consistent. RMSC [27] recovers a shared

low-rank transition probability matrix as input to the stan-

dard Markov chain.

For evaluation metrics, we use NMI (normalized mutu-

al information), ACC (accuracy), F-measure and RI (rand

index) to comprehensively evaluate the performance. Note

that, higher values indicate better performance for all met-

rics. For the compared methods, we tune all the parameters

to best performances. For our method, we set the dimension

of the latent representation K = 100 and tune the parameter

λ from {0.001, 0.01, 0.1, 1, 10, 100, 1000} for all datasets.

1http://www.cl.cam.ac.uk/research/dtg/

attarchive/facedatabase.html
2http://mlg.ucd.ie/datasets/
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Table 1: Performance comparison of clustering.

Datasets Methods NMI ACC F-measure RI

MSRCV1

SPCBestSV 57.42 ± 3.16 66.82 ± 5.08 53.54 ± 4.31 86.35 ± 0.63

LRRBestSV 49.21 ± 1.14 59.34 ± 0.13 45.31± 0.44 84.71 ± 0.08

Min-Disagreement 60.64 ± 0.32 69.21 ± 3.43 57.48 ± 0.47 88.18 ± 0.09

Co-Reg 56.92 ± 1.25 65.30 ± 1.66 53.71 ± 2.15 89.21 ± 0.30

RMSC 58.57 ± 0.65 69.10 ± 0.71 57.63 ± 1.62 87.97 ± 0.21

Ours 65.34 ± 1.05 80.55 ± 1.28 65.17 ± 1.71 90.40 ± 0.22

ORL

SPCBestSV 90.35 ± 1.62 77.73 ± 3.36 71.12 ± 4.34 98.61 ± 0.23

LRRBestSV 88.56 ± 0.72 77.65± 0.41 73.12± 0.68 97.10± 0.07

Min-Disagreement 81.66 ± 0.14 73.45 ± 4.08 66.30 ± 0.31 96.65 ± 0.17

Co-Reg 84.56 ± 1.41 60.89 ± 1.88 63.38 ± 2.37 97.30 ± 0.22

RMSC 89.76 ± 1.98 75.20 ± 2.84 70.11 ± 4.34 97.53 ± 0.23

Ours 93.10 ± 1.16 81.94 ± 1.71 75.83 ± 0.91 98.83 ± 0.22

Scene-15

SPCBestSV 28.32 ± 1.43 30.15 ± 1.29 21.23 ± 1.42 89.14 ± 0.13

LRRBestSV 30.02 ± 0.19 30.72± 0.26 20.98± 0.23 88.35 ± 0.13

KernelAddition 27.51 ± 0.42 31.01 ± 0.75 20.35 ± 0.42 88.89 ± 0.07

Min-Disagreement 36.99 ± 1.67 41.38 ± 2.57 26.09 ± 1.31 90.03 ± 0.24

Co-Reg 36.41 ± 0.05 37.39 ± 0.00 25.92 ± 0.00 89.66 ± 0.03

RMSC 25.41 ± 0.95 27.79 ± 1.47 17.95 ± 0.85 88.70 ± 0.30

Ours 38.20 ± 0.65 37.55 ± 0.44 28.15 ± 0.71 89.68 ± 0.06

LandUse-21

SPCBestSV 33.63 ± 0.93 29.71± 0.89 19.19± 0.61 92.04± 0.64

LRRBestSV 32.16 ± 0.53 28.76 ± 0.23 19.04 ± 0.41 91.21 ± 0.06

Min-Disagreement 27.95 ± 0.05 25.39 ± 1.40 15.25 ± 0.04 82.39 ± 0.01

Co-Reg 29.63 ± 0.06 25.52 ± 0.00 16.78 ± 0.00 88.26 ± 0.05

RMSC 32.88 ± 0.26 28.96 ± 0.49 18.92 ± 0.48 91.19 ± 0.06

Ours 35.29 ± 0.30 31.00 ± 0.53 20.46 ± 0.50 91.54 ± 0.06

Still DB

SPCBestSV 10.45± 0.78 29.42± 0.94 22.14± 0.64 73.29± 0.58

LRRBestSV 10.91 ± 0.30 30.62 ± 0.39 24.01 ± 0.52 72.39 ± 0.01

Min-Disagreement 9.67 ± 0.05 33.62 ± 1.40 22.30 ± 0.04 73.48 ± 0.04

Co-Reg 9.93 ± 0.16 26.31 ± 0.24 22.61 ± 0.35 73.16 ± 0.02

RMSC 10.57 ± 0.56 28.54 ± 2.03 23.17 ± 2.12 72.59 ± 0.46

Ours 13.59 ± 0.32 32.76 ± 0.29 26.92 ± 0.55 74.11 ± 0.01

BBCSport

SPCBestSV 71.54 ± 0.60 83.60 ± 3.56 76.78 ± 0.38 89.10 ± 0.09

LRRBestSV 69.02 ± 0.19 78.72± 0.26 76.98± 0.23 87.35 ± 0.13

Min-Disagreement 77.61 ± 0.19 79.71 ± 4.92 26.09 ± 1.31 90.03 ± 0.24

Co-Reg 71.76 ± 0.05 73.31 ± 0.58 76.64 ± 0.14 89.14 ± 0.03

RMSC 81.28 ± 0.95 85.78 ± 1.47 86.62 ± 0.85 92.19 ± 0.30

Ours 82.59 ± 0.65 90.07 ± 0.44 88.65 ± 0.71 94.53 ± 0.06

We run 30 times for each method and report the mean values

and standard deviations.

4.2. Results on Synthetic Data

We firstly evaluate our method on synthetic data. Each

matrix is firstly generated with each element independent-

ly sampled from a uniform distribution on the [0, 1] inter-

val. We generate the synthetic data which consists of 6

clusters (or subspaces). The numbers of samples in these

subspaces are {25,30,35,40,45,50}, respectively. We firstly

generate the matrix H ∈ RK×N uniformly as the laten-

t representation, with the dimensionality K = 90 and the

data point number N = 225. The subspaces have disjoint

features with 10,12,14,16,18 and 20 features, respectively.

Then two different views are generated according to the la-

tent representation matrix H with X(v) = P(v)H + E(v).

We consider two types of noise for E(v), i.e., the global

noise E
(v)
g and the sample-specific noise E

(v)
s . Formally,

we have E(v) = E
(v)
s + αE

(v)
g . For the sample-specific

noise, E
(v)
s , we randomly generate a matrix and then se-

lect randomly a few columns (20 in experiments), setting

the other columns with zeros. While for the global noise,

we randomly generate an matrix E
(v)
u and multiply it with

a coefficient α to control the noise magnitude. As shown

in Fig. 2(a), under different degrees of noise, with the help

4284



Table 2: Comparison between single view and the learned multi-view latent representation.

Datasets Methods NMI ACC F-measure RI

MSRCV1

View1 51.95 ± 3.12 54.00 ± 5.94 47.91 ± 4.30 83.80 ± 0.41

View2 15.27 ± 2.14 27.15 ± 2.87 19.77 ± 1.65 75.52 ± 0.28

View3 62.03 ± 0.72 70.42 ± 0.51 58.95 ± 0.85 88.39 ± 0.13

View4 53.45 ± 1.41 60.63 ± 1.69 49.79 ± 2.13 85.57 ± 1.46

View5 43.67 ± 0.60 49.90 ± 0.90 37.77 ± 0.56 80.89 ± 0.26

View6 38.03 ± 2.15 52.42 ± 1.98 38.95 ± 1.55 82.39 ± 0.81

LatentRepresentation 71.67 ± 1.56 80.76 ± 1.71 68.92 ± 1.09 90.64 ± 0.06

Scene-15

View1 28.60 ± 0.31 30.03 ± 0.42 20.92 ± 0.66 89.17 ± 0.12

View2 25.06 ± 0.35 26.44 ± 0.24 18.18 ± 0.32 88.53 ± 0.07

View3 16.84 ± 0.33 27.40 ± 0.36 14.44 ± 0.45 88.29 ± 0.03

LatentRepresentation 25.56 ± 0.60 33.71 ± 0.49 21.99 ± 0.29 90.32 ± 0.07

ORL

View1 77.83 ± 0.86 56.68 ± 1.59 44.90 ± 1.90 97.05 ± 0.16

View2 86.13 ± 0.91 68.38 ± 3.35 59.79 ± 2.86 97.92 ± 0.22

View3 79.50 ± 1.69 60.68 ± 2.45 48.47 ± 3.45 97.29 ± 0.28

LatentRepresentation 85.83 ± 0.81 68.46 ± 2.77 59.85 ± 2.78 97.95 ± 0.20

LandUse-21

View1 27.60 ± 1.34 20.95 ± 1.58 14.14 ± 2.07 88.67 ± 0.21

View2 26.78 ± 1.91 20.81 ± 2.38 12.95 ± 2.11 87.75 ± 0.12

View3 27.95 ± 1.26 21.76 ± 1.47 14.07 ± 1.56 89.96 ± 0.07

LatentRepresentation 31.27 ± 1.11 23.68 ± 1.34 15.81 ± 0.60 90.85 ± 0.68

Still DB

View1 11.68 ± 1.19 29.79 ± 0.77 23.70 ± 1.01 71.27 ± 1.42

View2 6.53 ± 0.10 28.31 ± 0.28 23.69 ± 1.69 67.09 ± 2.51

View3 5.97 ± 0.15 27.52 ± 0.50 22.16 ± 0.67 68.78 ± 0.85

LatentRepresentation 12.09 ± 0.40 31.11 ± 0.93 23.79 ± 0.18 73.04 ± 0.58

BBCSport

View1 59.64 ± 17.04 64.17 ± 15.26 62.43 ± 13.46 73.73 ± 15.41

View2 23.17 ± 16.86 44.85 ± 8.47 44.47 ± 7.80 42.69 ± 12.36

LatentRepresentation 62.18 ± 12.42 66.66 ± 12.15 63.96 ± 12.18 76.72 ± 11.30

(a) View1:CENTRIST (b) View2:COLOR (c) View3:GIST

(d) View4:HOG (e) View5:LBP (f) View6:SIFT (g) Latent Representation

Figure 3: Visualization of different views and latent representation with t-SNE.

of multiple views our method achieves much more promis-

ing results compared with the result that only using single

view. Fig. 2(b) is a visualization example of similarity ma-

trices corresponding to single view (left) and multiple views
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(b) Visualization of similarity matrices: single feature (left) and multiple

features (right).

Figure 2: Robustness experiment on synthetic data.
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Figure 4: Parameter tuning with respect to λ.

(right) respectively with α = 0.5. Clearly, the similarity

matrix corresponding to multiple views better reveals the

underlying cluster structure.

4.3. Results on Real Datasets

Table 1 gives the clustering results for different cluster-

ing methods. In a big picture, our approach outperform-

s all the baselines with a large margin. Take the MSR-

CV1 dataset for example, our method outperforms the sec-

ond performer, Min-Disagreement, about 4.7% and 11.3%

in terms of NMI and accuracy, respectively. It should be

noted that, the performances of most compared method-

s are not robust on different datasets. For example, Min-

Disagreement achieves the best performance on Still DB

in terms of ACC due to the combination of the best two

views. However, the performances on the other datasets are

not such promising.

To further investigate the improvement of our method,

we conduct k-means on each single view and the learned la-

tent representation, respectively. According to the results in

Table 2, the clustering performances with latent representa-

tion are usually better than those of each single view, which

empirically proves that the latent representation is more rea-

sonable than each single view. To be more intuitive, we vi-

sualize different views and the learned latent representation

with t-Distributed Stochastic Neighbor Embedding (t-SNE)

[21] for the dataset MSRCV1 as shown in Fig. 3. It is ob-

served that the figure is well consistent with the clustering

results in Table 2. Specifically, Fig. 3(c)-(d) (corresponding

to view-3 and view-4) reveals the underlying cluster struc-

ture much better and the clustering performances are much

higher on view-3 and view-4 than the other views. Fig.

3(g) (corresponding to latent representation) clearly demon-

strates the advantage of the learned latent representation, for

example, the clusters in red, dark blue, cyan and yellow are

more compact than those of each single view.

We also give the parameter tuning experiment (on BBC-

Sport) as shown in Fig. 4. It is observed that the perfor-

mance of our method is relatively stable and promising s-

ince a relatively large value (λ ≥ 0.01) is sufficient.

5. Conclusions

We introduce multi-view latent representation to explore

multiple views of data, based on which the subspace clus-

tering is improved. Our main novelty is making use of the

complementarity among different views for subspace clus-

tering, and the multi-view latent representation encodes the

complementarity under the assumption that each view is o-

riginated from one underlying latent representation. This is

different from most of existing methods which reconstruct

data points directly within each single view. The learned

multi-view latent representation and the self-representation

based clustering improve each other well. Our method is

relatively robust due to the latent representation based on

multiple views and structure sparsity. In the future, large s-

cale data will be considered and nonlinearity by kernel tech-

nique will be introduced into our model.

Acknowledgment

This work was partly supported by National Program

on Key Basic Research Project (2013CB329304), National

High-tech R&D Program of China (2014BAK11B03),

National Key Research and Development Plan

(No.2016YFB0800603) and National Natural Science

Foundation of China (61602337, 61502332, 61432011,

61422213).

4286



References

[1] R. H. Bartels and G. Stewart. Solution of the matrix

equation AX+ XB= C. Communications of the ACM,

15(9):820–826, 1972.

[2] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value

thresholding algorithm for matrix completion. SIAM

Journal on Optimization, 20(4):1956–1982, 2010.

[3] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang.

Diversity-induced multi-view subspace clustering. In

CVPR, pages 586–594, 2015.

[4] C. Cortes, M. Mohri, and A. Rostamizadeh. Learning

non-linear combinations of kernels. In NIPS, pages

396–404, 2009.

[5] D. Dai and L. Van Gool. Ensemble projection for

semi-supervised image classification. In ICCV, 2013.

[6] V. R. de Sa. Spectral clustering with two views.

In ICML workshop on learning with multiple views,

pages 20–27, 2005.

[7] E. Elhamifar and R. Vidal. Sparse subspace cluster-

ing: Algorithm, theory, and applications. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

35(11):2765–2781, 2013.

[8] L. Fei-Fei and P. Perona. A bayesian hierarchical mod-

el for learning natural scene categories. In CVPR.

[9] H. Gao, F. Nie, X. Li, and H. Huang. Multi-view sub-

space clustering. In ICCV, pages 4238–4246, 2015.

[10] S. Gu, L. Zhang, W. Zuo, and X. Feng. Projective

dictionary pair learning for pattern classification. In

NIPS, 2014.

[11] Y. Guo. Convex subspace representation learning from

multi-view data. In AAAI, 2013.

[12] H. Hu, Z. Lin, J. Feng, and J. Zhou. Smooth represen-

tation clustering. In CVPR, pages 3834–3841, 2014.

[13] J. Huang, F. Nie, and H. Huang. Spectral rotation ver-

sus k-means in spectral clustering. In AAAI, 2013.

[14] N. Ikizler, R. G. Cinbis, S. Pehlivan, and P. Duygulu.

Recognizing actions from still images. In ICPR, 2008.
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