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Abstract

Robust covariant local feature detectors are important

for detecting local features that are (1) discriminative of the

image content and (2) can be repeatably detected at consis-

tent locations when the image undergoes diverse transfor-

mations. Such detectors are critical for applications such

as image search and scene reconstruction. Many learning-

based local feature detectors address one of these two prob-

lems while overlooking the other. In this work, we propose

a novel learning-based method to simultaneously address

both issues. Specifically, we extend the covariant constraint

proposed by Lenc and Vedaldi [8] by defining the concepts

of “standard patch” and “canonical feature” and lever-

age these to train a novel robust covariant detector. We

show that the introduction of these concepts greatly simpli-

fies the learning stage of the covariant detector, and also

makes the detector much more robust. Extensive experi-

ments show that our method outperforms previous hand-

crafted and learning-based detectors by large margins in

terms of repeatability.

1. Introduction

Local feature detectors play a critical role in computer

vision applications such as image registration [29], image

matching [2] and image retrieval [26]. Traditionally, local

feature detectors were carefully hand-crafted to deal with

scale and viewpoint changes [9, 16]. More recently, ma-

chine learning based detectors [8, 24, 25] have been pro-

posed to deal with challenging issues such as temporal

variations in webcam sequences [24]. Even though ma-

chine learning based methods have achieved great success

in many computer vision problems such as object recogni-

tion, the research of learning-based local feature detectors

is still quite preliminary.

Given an image, a local feature detector outputs a set of

features1, i.e., a set of points or a set of ellipses in the image.

1Note that a feature is different from a feature descriptor. The latter is

a vector describing a local patch of an image.

A good local feature detector should satisfy two important

properties: (1) it can discover local discriminative informa-

tion in the image, and (2) it can repeatably detect consistent

patterns when the scene undergoes diverse transformations.

The second property means that given an image that has un-

dergone a geometric transformation, a good detector should

output the feature same as the ones generated from the un-

transformed image, subject to the same geometric transfor-

mation as the one applied to the image. Such property is

called the covariant constraint of the local feature detector

and has been studied in [8].

Most of the learning-based detectors only focus on one

of the two properties mentioned above. Some feature de-

tectors are learned using manually labeled data or the out-

put of off-the-shelf detectors as discriminative training fea-

tures [6, 24, 21, 5]. However, the covariant constraint is

difficult to embed in such a training pipeline, and this often

leads to inability in handling transformations that are not

presented in the training data. Other feature detectors are

designed to primarily focus on the covariant constraint [8],

but does not place equal emphasis on extraction of discrim-

inative local content - a key property of “good” local fea-

tures.

In this work, we propose a novel learning-based method

to solve both issues. Specifically, we extend the covariant

constraint proposed by Lenc and Vedaldi [8] by defining

the concepts of “standard patch” and “canonical feature”.

The standard patches define discriminative patches and the

standard position and shape of the canonical feature (e.g.

a unit circle) inside the standard patch. We will show such

explicit concepts make the learning process more robust and

less sensitive to the initialization setting. Furthermore, we

theoretically prove that the covariant constraint for all the

patches sampled from images is equivalent to the covariant

constraint for all standard patches. We show that this greatly

simplifies the learning stage.

The learning framework in both our work and [8] is to

train a transformation predictor instead of a predictor for the

existence of the local feature. Thus, the covariant constraint

of the local feature detector becomes the covariant con-
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(a) Transformation Predictor (b) Inverse transform to standard patch

(c) Feature detection by predicting transformation

Figure 1. The relationship among image patch, transformation and feature. (Top) Given an image patch, we propose a transformation

prediction network to predict a transformation (gi) whose inverse (g−1

i
) can warp the image patch xi to a standard patch x̄. (Bottom) The

predicted transformation itself can also be used to map the canonical feature (dashed circle) to the feature (ellipse) observed in each image

patch. Since each feature is covered by multiple overlapping image patches, the outputs from multiple image patches can be aggregated to

predict the most likely location and shape of the feature.

straint of the transformation predictor. The latter is much

easier to formulate, see Section 3.2 for details.

Figure 1 illustrates our approach. The whole image is di-

vided into patches (say 32×32 pixels) using a sliding win-

dow. A deep learning-based model is applied to each patch

to predict a transformation (Figure 1(a)). The transforma-

tion has two important properties: (1) the inverse of the

transformation maps the observed image patch to a standard

patch (Figure 1(b)). And (2) it can predict the position and

the shape of the transformed feature (e.g. an ellipse) inside

the image patch by applying the predicted transformation to

the canonical feature (the dashed circle in Figure 1(c)). If

there exists a “good” feature in the image, according to the

covariant constraint, all the image patches containing the

feature (patches containing the feature that have undergone

different transformations) will “point” to the same feature.

The final estimation of the feature can be readily determined

by further analyzing the overlapped predictions (see Fig-

ure 1(c) and Section 5). In this paper, we will theoretically

and experimentally show the superior performance of fea-

ture detectors based on this new formulation.

Formulating the feature detection as transformation pre-

diction provides several unique benefits. First of all, the

covariant constraint of the feature detector can be directly

embedded into the optimization criterion of the training pro-

cess, enabling robust feature detection under diverse trans-

formations. Second, powerful machine learning models

such as deep neural networks can be used to train the trans-

formation predictor.

Our work makes the following contributions:

1. We define a novel formulation based on the new con-

cepts of “standard patch” and “canonical feature” to

place equal focus on discriminativeness and covariant

constraint. This makes the proposed detector able to

detect discriminative and repeatable features under di-

verse image transformations.

2. Instead of restricting our method to a specific type of

local feature, i.e. point or blob, our approach is sup-

ported by the general theory of transformation group.

It makes our approach applicable to a diverse set of

features and transformations.

3. Extensive experiments over multiple standard bench-

marks show that our method outperforms previous

methods of both hand-crafted and learned detectors by

large margins.

2. Related Work

Hand-Crafted Detectors. Previous works have shown

that some image structures can be preserved under dif-

ferent kinds of transformations. Different kind of detec-

tors are therefore proposed to detect different image struc-
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tures to achieve covariance for different transformations.

For example, corner detectors [4, 12, 28] are covariant to

translation and rotation. Blob detectors [9, 1] are covari-

ant to scale changes. Moment based detectors, such as

Harris-Affine [13] and Hessian-Affine [14, 16] further ex-

tend the blob detector to be covariant to affine transforma-

tion. MSER [11], LLD [18] and ASIFT [17] are also covari-

ant to affine transformations. The main drawback of these

feature detectors are that they are hand-crafted and thus not

trainable to fit different applications.

Learning-Based Detectors. As we mentioned in Section 1,

learning a local feature detector needs to solve two prob-

lems: (1) how to define discriminative patterns in the image,

and (2) how to detect such patterns under different condi-

tions. Most of the learning based detectors focus on solving

the first problem. Kienzle et al. [6] propose to learn feature

detector from manually labeled data. Rosten et al. [21] pro-

pose to learn a fast feature detector from the FAST detector

aiming at speeding up the detection. Hartmann [5] et al.

propose to learn a keypoint detector with keypoints retained

through Structure-of-Motion pipeline. The state-of-the-art

method TILDE [24] learns from pre-aligned images of the

same scene at different time and seasons. TILDE stacks all

the aligned images and collects keypoints at the positions

where the SIFT detector provides high confidence in most

of the images and uses the keypoints for training. Since it

also collects points missed by SIFT, it performs better than

SIFT on the evaluated datasets. TaSK [22] also learns from

pre-aligned images.

These approaches are good at predicting good feature for

the scene that are similar to the training data. Since the co-

variant constraint is not embedded in training, such detec-

tors may fail in the case when the scene is processed by

unseen transformations.

Some works focus on improving the repeatability of the

detector. FAST-ER [21] uses simulated annealing to op-

timize the parameters of the FAST detector [21] to im-

prove the repeatability. Trujillo and Olague [23, 19] pro-

pose to use genetic programming to optimize the repeata-

bility. Lenc and Vedaldi [8] propose to train feature detec-

tor directly from the covariant constraint. By considering

the relation of the feature and the transformation, they turn

the feature detection problem to a transformation regres-

sion problem. Thus, the covariant constraint can be directly

learned by Siamese neural networks.

3. Preliminary

3.1. Feature and Transformation

A feature f is an abstract geometric structure which de-

scribes geometric properties such as position and shape.

The most commonly used features are point (position), cir-

cle (position and scale) and ellipse (position, scale and

shape). A class of features F contains different features

of the same type (e.g. points at all possible positions).

A geometric transformation g is a function whose do-

main and range are sets of points. Some examples are trans-

lation, rotation and scaling. A transformation group G con-

tains a set of transformations. We define three transforma-

tion operators:

• ⊗ applies a transformation on a feature. For example,

g ⊗ f1 = f2 means moving and warping f1 by g to

generate a new feature f2.

• ∗ applies a transformation on an image or image patch,

such as translating, rotating and shearing the image

(patch).

• ◦ is the composition of transformations, which is also

the group operation in G. For example, g ◦ h is the

transformation of applying h and then g: (g ◦h)⊗ f =
g ⊗ (h⊗ f).

Transformations in G have the following properties:

• For any g and h in G, g ◦ h is also in G.

• There is an identity element e in G. For any g in G,

g−1 is also in G and g−1 ◦ g = e.

• The ◦ operation in G is associative.

Typical transformation groups include translation group, ro-

tation group and affine group. Considering the theory of

transformation group provides us a tool to build a general

theory framework for learning feature detector on any trans-

formation group.

Feature and transformation are closely related. There is

one important case, when there exists a bijection between

the feature and the transformation. Let f0 ∈ F be a fixed

canonical feature, we say a class of features F resolves a

group of transformation G, when

Definition 1 F resolves G if

1. For any f ∈ F , there exists g ∈ G, such that g⊗f0 = f .

2. For any g ∈ G, g ⊗ f0 ∈ F .

3. For any g1, g2 ∈ G, g1 ⊗ f0 = g2 ⊗ f0 ⇒ g1 = g2.

For example, the class of point resolves the translation

group and the class of orientated ellipse resolves the affine

group without reflection. F resolving G gives us several

good properties. By detecting the feature f = g⊗f0, we can

estimate the transformation performed on the image. The

image patch containing f then can be normalized to a “stan-

dard patch” (a patch containing the canonical feature f0) by

applying g−1 to the original image patch. Thus, the descrip-

tor extracted from the standard patch would be invariant to

the group of transformation G.
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3.2. Learning Covariant Detector

Following previous works [24, 25], we train a detector

from small image patches, one patch x ∈ X is supposed

to have at most one local feature. X is the set of all the

image patches. Given an image patch x, one intuitive way to

train a feature detector is to train a classifier or regressor to

predict a confidence score (real number) for the presence of

a local feature in x [24, 25]. Since a transformation cannot

be applied to a real number, it is challenging to factor the

covariant constraint into this approach.

Recently, Lenc and Vedaldi [8] proposed a novel frame-

work for training a covariant local feature detector from

scratch by explicitly embedding covariant constraint into

the loss function. In the rest of this section, we will briefly

review this work and discuss limitations and ways for im-

provement. We define the feature detector as:

Definition 2 A feature detector ψ : x 7→ f maps an image

patch x to a feature f in or overlapped with x.

Thus, the covariant constraint of the feature detector can be

defined as:

Definition 3 A feature detector ψ : x 7→ f is said to be

covariant, if

∀x ∈ X , g ∈ G : ψ(g ∗ x) = g ⊗ ψ(x). (1)

Directly dealing with the feature is intuitive but cumber-

some. However, when F resolves G, it is possible to deal

with transformation instead of feature, since there exists a

bijective mapping between F and G. Thus, the transforma-

tion regressor φ : x 7→ g can substitute the role of feature

detector ψ. (1) can be rewritten as:

∀x ∈ X , g ∈ G : φ(g ∗ x) = g ◦ φ(x). (2)

Lenc and Vedaldi [8] proposed to directly use the co-

variant constraint to train the feature detector. In order to

optimize the covariant constraint, they randomly sample n

patches {xi}, i = 1, . . . , n, from training images. For each

training patch xi, a transformation gi is randomly generated

and applied to xi. The transformed image patch is further

cropped to make it the same size as xi. The cropped patch is

denoted as gi ∗xi. The image patch, the transformation and

the transformed image patch form a training triplet. Given

n training triplets {(xi, gi ∗ xi, gi)}, i = 1, . . . , n, they

defined the learning problem as:

φ = argmin
φ

n∑

i=1

d(φ(gi ∗ xi), gi ◦ φ(xi))
2, (3)

where d(·, ·) is the distance between two transforma-

tions [27]. In practice, they parameterized the transforma-

tion as a matrix, and used the matrix Frobenius norm of the

transformations’ difference as the distance of two transfor-

mations. Thus, the loss of the covariant constraint can be

realized as:

ℓcovariant =

n∑

i=1

‖ φ(gi ∗ xi)− gi ◦ φ(xi) ‖2F . (4)

The learning objective can be rewritten as:

φ = argmin
φ

n∑

i=1

‖ φ(gi ∗ xi)− gi ◦ φ(xi) ‖2F . (5)

The problem can be solved by Siamese neural networks.

Detecting local features in the whole image can be done by

applying the local feature detector to all the image patches

in the image, see Section 5.3 for the details.

The main drawback of this work is that the solution of

(5) may be not unique. Let’s assume that φ∗(·) is a solution

of (5), or φ∗(·) minimizes (4). Firstly, we assume the group

operation ◦ is addition, which is the case for many transfor-

mation groups, such as translation group. For any g′ ∈ G,

let φ′(·) = φ∗(·) + g′, then

‖ φ′(gi ∗ xi)− (gi + φ′(xi)) ‖2F
= ‖ φ∗(gi ∗ xi) + g′ − (gi + φ∗(xi) + g′) ‖2F
= ‖ φ∗(gi ∗ xi)− (gi + φ∗(xi)) ‖2F ,

(6)

which means φ′(·) is also a solution to (5). When the group

operation ◦ is multiplication, which is the case for many

transformation groups, such as similarity group, for any

g′ ∈ G, such that ‖ g′ ‖2F≤ 1, let φ′(·) = φ∗(·)g′, we

have,

‖ φ′(gi ∗ xi)− giφ
′(xi) ‖2F

= ‖ φ∗(gi ∗ xi)g
′ − giφ

∗(xi)g
′ ‖2F

≤ ‖ φ∗(gi ∗ xi)− giφ
∗(xi) ‖2F ‖ g′ ‖2F .

(7)

Since 0 ≤‖ g′ ‖2F≤ 1, φ′(·) is also a solution or even a bet-

ter solution to (5). This drawback may result in two issues:

(1) the training is sensitive to the initialization of the neu-

ral network, different initializations may lead to different φ,

and (2) since the solution may differ from the “correct” so-

lution by a fixed transformation, the feature detected by the

detector may also differ from the canonical feature by the

transformation. This may move a good local feature to a

useless one.

In this paper, we prove this problem can be solved by

embedding the standard patches into the training pipeline.

We further show that the concept of standard patches can

greatly simplify the covariant constraint.

4. Learning From Standard Patches

Generally speaking, standard patches are patches that

are discriminative and diverse enough for learning to regress

the target transformation group. However, to find out the

exact set of standard patches is not an easy problem. Fol-

lowing previous works [24, 5] that used the results of an
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existing off-the-shelf detector as anchors, we adopt a simi-

lar strategy to choose the potential standard patches. In this

section, we denote a standard patch as x̄, and the set of stan-

dard patches as X̄ .

As mentioned in Definition 1, canonical feature is the

reference feature mapped to the identity in the transforma-

tion group. Theoretically, the canonical feature can be cho-

sen arbitrarily. For better clarify, in this paper, the canonical

feature is defined as the central point of the standard patch

(for point detection) or the inscribed circle in the standard

patch (for blob detection). For each transformation group,

the canonical feature is uniquely defined.

If any of the standard patch is sent to the feature detector,

the output of the feature detector is the canonical feature.

Formally, for all x̄ ∈ X̄ , ψ(x̄) = f0. Since the canonical

feature f0 ∈ F is mapped to the identity e in the transfor-

mation group G, we have, for all x̄ ∈ X̄ , φ(x̄) = e. Given

m standard patches, it is natural to design a loss to realize

this identity constraint:

ℓidentity =

m∑

j=1

‖ φ(x̄j)− e ‖2F . (8)

By considering (4) and (8), given n training patches

{xi}, i = 1, . . . , n, we can generate n triplets of patches

{(xi, gi ∗ xi, gi)}, i = 1, . . . , n, as mentioned in Section

3.2, together with m standard patches {x̄j}, j = 1, . . . ,m,

the learning problem is given by:

φ = argmin
φ

n∑

i=1

‖ φ(gi ∗ xi)− gi ◦ φ(xi) ‖2F

+ α

m∑

j=1

‖ φ(x̄j)− e ‖2F ,
(9)

where α is a trade-off parameter between the covariant con-

straint (4) and the identity constraint (8). The identity con-

straint performs as a regularization term. By anchoring the

transformation of the standard patches to identity, the non-

uniqueness issue mentioned in Section 3.2 is resolved.

In order to detect all possible features f ∈ F , the fea-

ture detector has to be covariant to all image patches of all

f ∈ F . It requires to collect a huge number of training

triplets to minimize the covariant loss in (9). The following

proposition greatly simplifies this problem:

Proposition 1 A transformation regressor φ is covariant

for all the patches, if and only if it is covariant for all the

standard patches. Formally,

∀x ∈ X , g ∈ G,φ(g ∗ x) = g ◦ φ(x) ⇐⇒
∀x̄ ∈ X̄ , g ∈ G,φ(g ∗ x̄) = g ◦ φ(x̄). (10)

Since X̄ is a subset of X , from left to right is trivial. Let’s

prove Proposition 1 from right to left. For all x ∈ X , there

exists one transformation g1 ∈ G that maps one standard

patch x̄ to x, x = g1∗x̄. Or the inverse of the transformation

g−1

1
maps the image patch x to its corresponding standard

patch x̄. Thus, for all g ∈ G,

φ(g ∗ x) = φ(g ∗ (g1 ∗ x̄)) = φ((g ◦ g1) ∗ x̄)
= (g ◦ g1) ◦ φ(x̄) = g ◦ (g1 ◦ φ(x̄))
= g ◦ φ(g1 ∗ x̄) = g ◦ φ(x).

(11)

The second equality is due to the composition in the trans-

formation group. The third and the fifth equalities are due to

the covariant constraint of the standard patches. The fourth

equality is based on the associative property of the transfor-

mation group.

Proposition 1 gives us a strong result that in order to

train a covariant feature detector for all the image patches,

we only need to train a covariant feature detector for all

the standard patches. Thus, the previous training prob-

lem (9) can be simplified as, given n standard patches

{x̄i}, i = 1, . . . , n, generating n triplets of training data

{(x̄i, gi ∗ x̄i, gi)}, i = 1, . . . , n, getting φ via,

φ =argmin
φ

n∑

i=1

(‖ φ(gi ∗ x̄i)− gi ◦ φ(x̄i) ‖2F

+ α ‖ φ(x̄i)− e ‖2F ),
(12)

which means we only need to train based on standard

patches instead of all possible patches.

5. Implementation

5.1. Collecting Training Data

In practice, we choose the output of TILDE [24] detector

as candidates of the standard patches. An empirical study

of choosing the results of different detectors as candidate

standard patches is shown in Section 6.3. Among all, the

state-of-the-art local feature detector TILDE-P24 [24] gives

us the best performance. We also notice that the model

trained with output of TILDE-P24 has the lowest identity

loss, compared with the models trained with the output of

other detectors, which shows the output of TILDE-P24 may

be more consistent to the identity constraint. For each out-

put feature of TILDE detector, a 32×32 image patch around

the feature is treated as one standard patch. In practice,

we keep a 51×51 image patch since generating the trans-

formed patch may use the neighboring pixels near the stan-

dard patch.

To generate a training triplet (x̄i, gi ∗ x̄i, gi), given a

51×51 image patch, a 32 × 32 standard patch x̄i is ex-

tracted from the center of the large patch. Depending on

different transformation groups, gi can be generated by a

combination of (1) scaling in both x and y axes with two

factors uniformly sampled from [0.85, 1.15]; (2) shearing in

both x and y axes with two factors uniformly sampled from

[−0.15, 0.15]; (3) translation in both x and y axes with two

factors uniformly sampled from [−8, 8]; (4) rotation uni-

formly sampled from [0, 360◦]. Then gi is applied to the
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(a) Input image (b) Grid points (c) Transformed points (d) Density of the point (e) Output keypoints

Figure 2. Detecting local feature in the image using the transformation predictor.

Figure 3. Training pipeline of the proposed transformation predic-

tion network.

51×51 image patch to get a large transformed patch. We

get the final transformed patch gi ∗ x̄i by also cropping a

32×32 patch from the center of the large transformed patch.

In order to get enough variation, for each standard patch, we

generate 24 transformed triplets with different transforma-

tions. It should be noted that some patches may still lack

enough information to regress the required group of trans-

formation. For example, a corner at any scale may look the

same, and may not be able to discern the scale change. Such

ambiguity can be eliminated by pre-filtering the candidate

standard patches that lack cues to regress the required trans-

formation.

5.2. The Neural Network­Based Model

One benefit of formulating the feature detector as the

transformation predictor is that it provides the possibility

to use a powerful regressor such as deep neural networks

to predict the transformation. Considering the problem de-

fined in (12), both the standard patch and the transformed

patch will simultaneously go through the same regressor to

calculate the covariant loss. It is natural to use a modified

Siamese networks to solve this problem. Figure 3 shows the

training pipeline of the proposed method. Different from

the conventional Siamese structure, the “identity loss” de-

fined in (8) is calculated on the branch which processes the

standard patch.

Since the input of network is simply a 32×32 color im-

age patch and the detection time is also very important for

local feature detector, we only use a compact architecture

in our experiments. The first layer is a convolutional layer

of kernel size 5×5 and 32 output channels followed by a

2×2 max pooling layer. The second convolutional layer has

a kernel size of 5×5 and 128 output channels, it is also fol-

lowed by a 2×2 max pooling layer. The third convolutional

layer has a kernel size of 3×3 and 128 output channels. The

fourth convolutional layer has a kernel size of 3×3 and 256

output channels. The final layer is an 1×1 convolutional

layer with the number of output channels that equal to the

number of parameters in the regressed transformation. We

use the ReLU activation in all the convolutional layers.

5.3. Global Feature Detector

So far, we have only discussed the local feature detector

(or transformation predictor) for an image patch. To de-

tect all the features in the whole image, the transformation

predictor is applied at all image locations. Since our neu-

ral network has the “fully-convolutional” structure, it can

be applied to images with any size and aspect ratio. Fig-

ure 2 shows the case of point detector. The canonical fea-

ture in all the image patches define a dense grid in the im-

age (Figure 2(b)). Each green point is the center of an image

patch. The predicted transformation “moves” the canonical

feature to the closest local feature. Due to the covariant

constraint, all the image patches overlapped with a “good”

feature will transform their canonical feature to this fea-

ture (Figure 2(c)). The density of the points reflects the

stability of the local feature (Figure 2(d)). We use a voting

method to estimate the density of the points. Specifically,

each image patch votes to the grid points in Figure 2(b)

using bilinear interpolation. Non-maxima suppression is

applied to choose the grid point which is the local maxi-

mum in the vote map (Figure 2(e)). For detectors that are

covariant to more than translation, to avoid voting in high-

dimensional space, we only vote for the position of the local

feature, the final shape of the local feature is predicted by
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the patch associated with the chosen point.

Since the neural network can only process image patches

with a fixed size, our model can only resolve a small range

of scale changes. In order to improve the performance over

a larger scale range, features are extracted on a 5-level im-

age pyramid. The bottom level is the original image, and

image in an upper level is the image in current level down-

sampled by a factor of
√
2 with Gaussian smoothing.

Like most CNNs, the proposed network architecture con-

tains pooling layer which down-samples the output size for

efficiency. In order to perform dense feature detection, one

solution is to remove the pooling layers. Another solution is

to reapply the CNN to slightly shifted images. The à trous

algorithm provides an efficient way to do that by reusing

precomputed results of previous denser layers [10, 20, 8].

In this work, we only consider the down-sampled output.

6. Experiments

6.1. Datasets and Settings

We use three datasets which are viewed as standard in

evaluating feature detectors in previous works.

Webcam [24] contains 6 sequences, each sequence has 140

images taken from the same scene. Among them, 100 im-

ages are for training, 20 images for validation and 20 images

for test. It contains drastic time and season changes of one

scene, including day and night, rain and snow, winter and

summer which are challenging for local feature detector.

EF [28] has 5 sequences of 38 images. Each sequence is a

scene observed under different conditions. The dataset con-

tains drastic illumination and background clutter changes.

VGG-Affine [15] is a traditional dataset for local feature

detector evaluation. It contains 8 sequences of 48 images

with varying viewpoints, lighting conditions and compres-

sion rates.

Our evaluation metric is the repeatability defined in [14]

which considers the position, scale and the shape of the fea-

ture. Given an image pair and the transformation between

two images, two regions in different images are deemed to

correspond if the overlap error of one region and the pro-

jected region (the region of the other image projected by

the ground-truth transformation) is less than 0.4. The re-

peatability is defined as the ratio of the number of corre-

spondences and the smaller number of regions in the pair of

images. Only the regions located in the part that are shared

by both images are considered.

The main drawback of the repeatability is that when the

number of the feature is high, the feature may be randomly

“matched” due to the high density of the features. Hence,

we calculate the repeatability on extracting both 1000 fea-

tures and 200 features per image.

We compare our approach to scale-covariant hand-

crafted feature detectors (SIFT [9], SURF [1], MSER [11],

Harris Laplace (HarLap) [14] and Hessian Laplace (Hes-

Lap) [14]), and affine-covariant feature detectors (Harris

Affine (HarAff) [14] and Hessian Affine (HesAff) [14]). We

also compare our approach with learned feature detectors

such as FAST [21], TILDE [24] and Covariant Point Detec-

tor (CovDet) [8]. Note that TILDE is currently the state-

of-the-art method. Three versions of TILDE [24] detectors

based on different regressors are used for evaluation: T-

CNN (based on convolutional neural network), T-P (based

on piece-wise linear regressor), and T-P24 (an approxima-

tion of T-P). For CovDet, we use the model provided by

[8]. For TILDE [24] and Covdet [8] detectors, we also ex-

tract keypoint from multi-scale image pyramid as described

in Section 5.3. Since larger feature always leads to higher

repeatability, in order to make fair comparison, for TILDE,

CovDet and our detector, as in [24], a scale of 10 is used as

the scale of the keypoint in each pyramid level.

Both TILDE and our method share the same training im-

ages from the Mexico subset of the Webcam dataset. For

TILDE, we use the model provided by the authors. For our

method, we run the T-P24 detector trained on the Mexico

subset on the training images (also in the Mexico subset),

then randomly extract about 5k patches from the detection

results and generate 120k training triplets as detailed in Sec-

tion 5.1. All the methods are evaluated on all the subsets

except Mexico subset in the Webcam dataset.

For network training, the learning rate is set to 0.01 and

the training batch size is 128. We found empirically that the

network usually converges after 5 epochs. With a TITAN X,

the training takes about 30 minutes based on our implemen-

tation with TensorFlow [3]. For detection, our implementa-

tion achieves 10 FPS for running our model on a 1000×700

pixels of image with a TITAN X GPU.

6.2. Repeatability

Table 1 shows the average repeatability on different

datasets. Our method is a clear winner on almost all the set-

tings. In particular it outperforms the state-of-the-art learn-

ing based method T-P24 [24]. Although trained using the

output of T-P24, our detector further incorporates synthe-

sized patches in training and uses regressed transformation

to predict the location of the feature. These steps make our

detector surpass T-P24. Our method also outperforms the

baseline method CovDet [8]. The main differences between

our method and CovDet are the introduction of the iden-

tity loss (8) and the using of discriminative standard patches

instead of randomly sampled patches. It shows that defin-

ing which feature is discriminative by defining the standard

patches is very important for training a good local feature

detector. In summary, the superior performance of our de-

tector confirms the importance of (1) defining discrimina-

tive patches; (2) the covariant constraint.
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Method

Webcam EF VGG

#Feature #Feature #Feature

1000 200 1000 200 1000 200

SIFT 29.5 19.1 20.8 10.9 47.1 41.7

SURF 46.0 33.4 39.7 23.4 61.2 58.3

MSER 45.1 29.4 37.1 18.9 54.1 38.4

SFOP 43.8 25.6 36.1 21.7 51.2 44.9

HesLap 51.1 37.2 38.8 28.0 66.7 60.0

HarLap 48.2 44.5 35.7 33.4 60.5 55.5

HesAff 42.5 34.5 26.6 21.8 66.4 59.6

HarAff 38.4 33.6 22.7 20.2 57.3 55.7

FAST 56.3 41.1 32.0 28.9 53.8 44.1

T-P 35.4 29.0 26.3 16.3 54.6 46.1

T-P24 61.7 45.1 45.4 32.3 64.4 57.6

T-CNN 51.4 36.7 38.0 21.8 50.7 40.6

CovDet 49.9 32.2 42.7 23.8 62.0 48.0

Ours 68.4 52.6 46.6 36.3 70.2 61.2

Table 1. Repeatability (%) of different methods on all datasets.
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Figure 4. Repeatability (%) of our feature detector trained with

different standard patches.
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Figure 5. Repeatability (%) of our feature detector trained with

different α values.

6.3. Effects of Standard Patches and Identity Loss

Figure 4 shows the performance of our detector trained

with different standard patches. We collect standard patches

in 4 different ways: randomly sampled patches (Ours(R)),

detection result of SIFT detector (Ours(S)), detection result

of Hessian Affine detector (Ours(H)) and detection result of

T-P24 detector (Ours(T)). Randomly sampled patches per-

form the worst and T-P24 gives the best result.

In (12), the α parameter trades off the identity (8) and

covariant (4) constraints. The identity constraint is one of

the key contributions of our work. In Figure 5, we see that

an adequate choice of α leads to much better performance

than setting α to 0 or 100, i.e., using a single constraint.

Dataset
Detector

SIFT HesAff T-P24 CovDet Ours

Webcam 12.9 13.8 13.4 12.0 19.4

VGG 42.8 35.3 44.5 43.1 50.7

EF 10.2 5.4 5.2 4.8 6.2

Average 22.0 18.2 21.0 20.0 25.4

Table 2. Matching score (%) of different detectors.

6.4. Matching Score

To show the matching performance, we evaluate match-

ing score on the above three benchmark datasets via VL-

Benchmarks [7]. Matching score is the ratio between the

number of the correct matches and the smaller number of

the detected regions in the pair of images [16]. A match

is correct if the two corresponding regions (defined in Sec-

tion 6.2) are nearest neighbors in the descriptor space. Since

the goal of this experiment is to compare the detectors, not

the descriptor, SIFT descriptor [9] is used for all the detec-

tors. Table 2 summarizes the matching scores. Although

our detector achieves higher repeatability than SIFT detec-

tor, the matching score of our detector is lower than that of

SIFT detector in EF dataset. One possible reason is that EF

dataset contains drastic background clutter changes. The

feature detected by our detector may contain background

changes that can’t be matched via the descriptor.

7. Conclusion

Good local feature detectors should have two properties:

(1) detect discriminative image features, and (2) detect

the same feature under diverse transformations. Most of

the previous works only focus on one of the constraints

and ignore the other. In this work, we propose a new

method to simultaneously address the two properties by

extending the covariant constraint of [8] with the concept

of “standard patches”. We further prove that the covariant

constraint can be greatly simplified by the “standard

patches”. Our prototype implementation chooses the output

of the TILDE detector as the candidate of standard patches

and resulting in significantly improved result in terms

of repeatability. However, how to choose the “standard

patches” is still an open issue deserving more studies in the

future. Our prototype implementation can be downloaded

from https://github.com/ColumbiaDVMM/

Transform_Covariant_Detector.
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