
Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution

Jiawei Zhang13∗ Jinshan Pan2 Wei-Sheng Lai3 Rynson W.H. Lau1 Ming-Hsuan Yang3

Department of Computer Science, City University of Hong Kong1

School of Mathematical Sciences, Dalian University of Technology2

Electrical Engineering and Computer Science, University of California, Merced3

Abstract

In this paper, we propose a fully convolutional network

for iterative non-blind deconvolution. We decompose the

non-blind deconvolution problem into image denoising and

image deconvolution. We train a FCNN to remove noise

in the gradient domain and use the learned gradients to

guide the image deconvolution step. In contrast to the ex-

isting deep neural network based methods, we iteratively

deconvolve the blurred images in a multi-stage framework.

The proposed method is able to learn an adaptive image

prior, which keeps both local (details) and global (struc-

tures) information. Both quantitative and qualitative evalu-

ations on the benchmark datasets demonstrate that the pro-

posed method performs favorably against state-of-the-art

algorithms in terms of quality and speed.

1. Introduction

Single image non-blind deconvolution aims to recover a

sharp latent image given a blurred image and the blur ker-

nel. The community has made active research effort on this

classical problem in the last decade. Assuming the cam-

era motion is spatially invariant, a blurred image y can be

modeled as a convolution using a blur kernel k and a latent

image x:

y = k ∗ x+ n, (1)

where n is additive noise and ∗ is the convolution operator.

In non-blind deconvolution, we solve x from y and k. This

is an ill-posed problem since the noise is unknown.

Conventional approaches, such as the Richardson-Lucy

deconvolution [20] and the Wiener filter [33], suffer from

serious ringing artifacts and thus are less effective to deal

with large motion and outliers. Several methods focus

on developing effective image priors for image restora-

tion, including Hyper-Laplacian priors [14, 15], non-local

means [2], fields of experts [23,24,26,27], patch-based pri-

ors [30,39] and shrinkage fields [25]. However, these image

∗email: zhjw1988@gmail.com

priors are heavily based on the empirical statistics of nat-

ural images, and they typically lead to highly non-convex

optimization problems. Meanwhile, most of the aforemen-

tioned methods have high computational costs.

Recently, deep neural networks have been applied to im-

age restoration [28, 35]. However, these methods need to

re-train the network for different blur kernels, which is not

practical in real-world scenarios.

Different from existing methods, we propose an iterative

FCNN for non-blind deconvolution, which is able to auto-

matically learn effective image priors and does not need to

re-train the network for different blur kernels. The proposed

method decomposes the non-blind deconvolution into two

steps: image denoising and image deconvolution. In the

image denoising step, we train a FCNN to remove noise

and outliers in the gradient domain. The learned image gra-

dients are treated as image priors to guide image deconvo-

lution. In the image deconvolution step, we concatenate a

deconvolution module at the end of the FCNN to remove

the blur from the input image. We cascade the FCNN into

a multi-stage architecture to deconvolve blurred images in

an iterative manner. The proposed FCNN adaptively learns

effective image priors to preserve image details and struc-

tures. In order to effectively suppress ringing artifacts and

noise in the smooth regions, we propose to optimize the

FCNN with a robust L1 loss function instead of a com-

monly used L2 loss function. In addition, we optimize the

hyper-parameters in the deconvolution modules. Extensive

evaluations on the benchmark datasets demonstrate that the

proposed method performs favorably against state-of-the-

art algorithms in terms of quality and speed.

2. Related Work

Non-blind deconvolution has been studied extensively

and numerous algorithms have been proposed. In this sec-

tion, we discuss the most relevant algorithms and put this

work in proper context.

Since non-blind deblurring is an ill-posed problem, it re-

quires some assumptions or prior knowledge to constrain

the solution space. The early approaches, e.g., Wiener

deconvolution [33], assume that the value of every pixel

13817

mailto:zhjw1988@gmail.com

deconvolution

module
deconvolution

module

blurred image initial deconvolution

noisy

horizontal gradients

noisy

vertical gradients

denoised

horizontal gradients

denoised

vertical gradients

shared FCNN weights deconvolution

kernel

Figure 1. The network structure. Our network first deconvolves the blurry input image by the deconvolution module and then performs

convolutions to the vertical and horizontal gradients to generate the results with less noise. After that, the deconvolution module is applied

to the denoised gradients to generate the clear image. The gradients of the clear image will then become the inputs of convolutions in the

next iteration. We iteratively perform the above steps three times and estimate the final deblurred image. See text for more details.

should follow Gaussian distribution. However, this assump-

tion does not hold for natural images as the distribution of

real-world image gradient is heavy-tailed. To develop an

image prior that fits the heavy-tailed distribution of nat-

ural images, the Hyper-Laplacian prior is proposed [15].

As solving the image restoration with the Hyper-Laplacian

prior is time-consuming, Krishnan and Fergus [14] propose

an efficient algorithm based on a half-quadratic splitting

method.

To learn good priors for image restoration, Roth and

Black [23] learn a group of fields of experts (FOEs) to fit

the heavy-tailed distribution of natural images. The FOE

framework is further extended by [25, 26]. However, meth-

ods with fields of experts usually lead to complex optimiza-

tion problems. Solving these problems are usually time-

consuming.

The Gaussian Mixture Model (GMM) has also been de-

veloped to fit the heavy-tailed distribution of natural image

gradient. Fergus et al. [9] use a mixture of Gaussians to

learn an image gradient prior via variational Bayesian in-

ference. Zoran and Weiss [39] analyze the image priors in

image restoration and propose a patch based prior based on

GMM. This work is further extended by Sun et al. [30].

Although good results have been achieved, solving these

methods needs heavy computation loads.

Recently deep learning has been used for low-level im-

age processing such as denoising [3, 8, 10, 34], super-

resolution [6,11,12,21,22,32,37], dehazing [19] and edge-

preserving filtering [16, 17, 36]. For non-blind deblurring,

Schuler et al. [28] develop a multi-layer perceptron (MLP)

approach to remove noise and artifacts which are produced

by the deconvolution process. Xu et al. [35] use a deep

CNN to restore images with outliers. This method uses sin-

gular value decomposition (SVD) to reduce the number of

parameters in the network. However, it needs to fine-tune

the network for every kernel as it uses SVD of the pseudo

inverse kernel as the network initialization. Different from

existing CNN-based method, we develop an effective iter-

ative FCNN for non-blind deconvolution. We cascade the

FCNN into a multi-stage architecture to deconvolve blurred

images in an iterative manner to preserve the details of the

restored images. Moreover, our method does not retain

model for each blur kernel.

3. Proposed Algorithm

In this section, we present our algorithm that learns ef-

fective image priors for non-blind image deconvolution. We

first review half-quadratic optimization in image restoration

and then introduce our method.

3.1. Motivation

The half-quadratic splitting framework has been widely

used in non-blind deblurring methods [14, 25, 26, 39]. We

first review this method in image restoration and then moti-

vate our method. The conventional model of image restora-

tion is defined as:

min
x

λ

2
‖y − x ∗ k‖22 +

∑

l=h,w

ρ(pl ∗ x), (2)

where ph, pw are the horizontal and vertical gradient opera-

tors, respectively. ρ(·) is the regularization of image gradi-

ent of x. With the half-quadratic splitting method, model (2)

3818

Table 1. The architecture of FCNN in one iteration.

name kernel size stride pad kernel number

conv1 5× 5 1 2 64

conv2 3× 3 1 1 64

conv3 3× 3 1 1 64

conv4 3× 3 1 1 64

conv5 3× 3 1 1 64

conv6 3× 3 1 1 1

can be reformulated as:

min
x,z

λ

2
‖y − x ∗ k‖22 + β

∑

l=h,w

‖zl − pl ∗ x‖
2
2 + ρ(zl), (3)

where zl is an auxiliary variable and β is a weight. The half-

quadratic optimization with respect to (3) is to alternatively

solve:

min
z

β
∑

l=h,w

‖zl − pl ∗ x‖
2
2 + ρ(zl), (4)

and

min
x

λ

2
‖y − x ∗ k‖22 + β

∑

l=h,w

‖zl − pl ∗ x‖
2
2. (5)

We note that (4) is actually a denoising problem while (5)

is a deconvolution with respect to x. If the solution for zl
is obtained, the clear image can be efficiently computed by

fast Fourier transform (FFT) as:

x = F−1

(

γF(k)F(y) +
∑

l=h,w F(pl)F(zl)

γF(k)F(k) +
∑

l=h,w F(pl)F(pl)

)

, (6)

where F(·) and F−1(·) denote the Fourier transform and its

inverse transform, respectively. F(·) is the complex conju-

gate of Fourier transform, and γ = λ
2β is the hyperparame-

ter in deconvolution.

We note that the main problem is how to define a good

image prior for (4). In the following, we propose an effec-

tive algorithm based on FCNN to learn an effective image

prior for (4).

3.2. Network Architecture

The proposed network architecture for non-blind decon-

volution is shown in Figure 1. The input of our network

includes a blurry image and the corresponding blur kernel.

The proposed network first applies the deconvolution oper-

ation on the blurry image via a deconvolution module and

then performs convolutions to the vertical and horizontal

gradients to generate the results with less noise. The de-

noised image gradients are treated as image priors to guide

the image deconvolution in the next iteration.

Denoising by FCNN. We note that though the output of de-

convolution x from (6) is sharp, it usually contains noise

and significant ringing artifacts (see Figure 2(k)). To solve

this problem, we develop a FCNN and apply it to the ver-

tical and horizontal gradients to remove noise and ringing

artifacts. Applying FCNN to the vertical gradients and hor-

izontal gradients usually leads to different network weight

parameters. Similar to [36], we transpose the vertical gra-

dients so vertical and horizontal gradients can share the

weights in the training process. Table 1 shows the details

of the proposed network in one iteration. We add a rectified

linear unit (ReLU) after every convolution layer as activa-

tion function except the last one. Although we use the same

network architecture in different iterations, the weights are

different for different iterations.

Deconvolution module. The deconvolution module is used

to restore the sharp image. It is defined by (5). In the pro-

posed network, it is applied to the gradient denoising out-

puts from FCNN to guide image restoration.

3.3. Loss Function for FCNN Training

Since it is very difficult to train the network in an end-

to-end manner, we iteratively train the weights of FCNN.

That is, we first train the network weights and then fix these

weights when performing the deconvolution. After the de-

convolution module, we train the network weights in the

next iteration. This training procedure is achieved by mini-

mizing the loss function L:

L(▽hx,▽wx, x0; θ) =
1

N

N
∑

i=1

(‖f(▽hx
(i); θ)−▽hx

(i)
0 ‖1

+ ‖f(▽wx
(i); θ)−▽wx

(i)
0 ‖1),

(7)

where f(·) is the denoising mapping learned by FCNN, θ is

the FCNN weights, ▽hx = ph ∗ x, ▽wx = pw ∗ x, N is

the number of training samples in every batch, ‖ · ‖1 is L1

norm and x0 is the ground truth image.

3.4. Hyper­parameters Training

In order to get optimal hyper-parameters γ for the decon-

volution module (5), we train them in an end-to-end manner

with fixed FCNN weights. The hyper-parameters training

process is achieved by minimizing the loss function as:

Lh =
1

N

N
∑

i

‖x(i) − x
(i)
0 ‖1, (8)

where x is the output of the final deconvolution module.

As the forward propagation of the deconvolution module

is defined by (6), we can obtain the gradient in backward

3819

(a) Clean image (b) Blurry image (c) Intensity domain output (d) Gradient domain output

(e) Local regions of (a) (f) Intensity: Initial results (g) Intensity: 1st iteration (h) Intensity: 2nd iteration (i) Intensity: 3rd iteration

(j) Local regions of (b) (k) Gradient: Initial results (l) Gradient: 1st iteration (m) Gradient: 2nd iteration (n) Gradient: 3rd iteration

Figure 2. Visual results produced after each iteration in different domains. (a) shows the clean image. (b) shows the blurry image. (c) and

(d) are results produced from the intensity and gradient domains, respectively. (e) and (f) are the extracted local regions of (a) and (b),

respectively. (f) shows the initial deconvolution result when the network is applied on the intensity domain. (g)-(i) show the corresponding

refined results through different numbers of iterations. (k) shows the initial deconvolution result when the network is applied on the gradient

domain. (l)-(n) show the corresponding refined results through different numbers of iterations. This demonstrates that our network is more

effective in reducing noise through several iterations in the gradient domain.

propagation by

∆zl =F

(

F(pl)F
−1(∆x)

γF(k)F(k) +
∑

l=h,w F(pl)F(pl)

)

, (9)

where ∆x =
x(i)−x

(i)
0

|x(i)−x
(i)
0 |

.

The gradient that is used to train the hyper-parameters γ

can be written as:

∆γ =

(

DH−EG

(γG+H)2

)⊤

L
h
x, (10)

where D, H, E, G, and L
h
x denote the vector forms

of D, H , E, G and Lh
x, respectively, in which D =

F(k)F(y), E =
∑

l=h,w F(pl)F(zl), G = F(k)F(k),

H =
∑

l=h,w F(pl)F(pl), and Lh
x = F−1(∆x). The de-

tailed derivations of (9) and (10) are included in the supple-

mental material.

4. Analysis and Discussion

In this section, we analyze the effect of the iterative-wise

FCNN, show why we use the gradient domain, and validate

the proposed loss function used in the proposed network.

4.1. Effect of the Iterative­wise FCNN

In the proposed method, we iteratively solve the decon-

volution and denoising part. That is, the network parameters

of FCNN are trained at each iteration. With this manner, the

high-quality results can be obtained.

Figure 3 shows an example which demonstrates the ef-

fectiveness of the iterative-wise FCNN. As shown in Fig-

ure 3(a), the result generated by one-iteration network con-

tains some artifacts and has a lower PSNR value. In con-

trast, these artifacts are reduced by the iterative FCNN

which accordingly lead to a much clearer image with higher

PSNR value (Figure 3(b)). Noted that one-iteration network

is different from the first iteration stage of the proposed

three-iteration network such as Figure 2(l). We optimize the

3820

(a) One-iteration network (b) Three-iteration network

PSNR: 29.26 dB PSNR: 29.75 dB

Figure 3. The effectiveness of the iterative-wise FCNN. Using only

one iteration does not remove the noise. See Section 4.1 for de-

tails.

Figure 4. The 1st iteration FCNN denoising gradient training loss

with 1% noise. The converged L2 norm training loss is higher than

L1 norm.

FCNN weights and deconvolution hyper-parameters for the

network with only one iteration. More quantitative results

are presented in Section 5.3 with different noise levels.

4.2. Gradient Domain versus Intensity Domain

The denoising part is mainly used to remove noise and

ringing artifacts while keeping textures. We note that the

image gradient is able to model the details and structures

of images. Thus, we train the network in image gradient

domain instead of intensity domain. We train two three-

iteration networks to generate the restored results based

on intensity domain and gradient domain respectively. As

shown in Figure 2, the results reconstructed from intensity

domain (the second row) contain several noise and artifacts

relative to that from gradient domain (the third row).

4.3. Effect of the Loss Function

Most of existing CNN based low-level vision methods

use the L2 norm based reconstruction error as the loss func-

tion e.g. [6]. However, the L2 norm is not robust to outliers

and usually leads to results contain noise and ringing arti-

facts [38]. To overcome the limitations of L2 norm based

reconstruction error, we use an L1 norm based reconstruc-

L
2

lo
ss

L
1

lo
ss

G
ro

u
n

d
T

ru
th

Vertical Gradient Horizontal Gradient

Figure 5. Visual comparison of gradient generation under different

loss functions. The input blurry image is with 1% noise. The

vertical and horizontal gradient trained using L2 loss and L1 loss

are shown in the first and second rows, respectively. The ground

truth gradient is shown in the last row. The gradient noise can be

effectively reduced using L1 loss.

tion error as the loss function, i.e., (7).

To validate the effect of the L1 norm loss function, we

train the proposed network with the L2 norm based recon-

struction error and the L1 norm based reconstruction error

using the same settings for the first iteration. As shown in

Figure 4, the method with the L1 norm based reconstruc-

tion error converges better than that of the L2 norm based

reconstruction error. Figure 5 shows that using L1 norm

based reconstruction error is able to remove noise and ar-

tifacts compared to that of L2 norm based reconstruction

error.

5. Experimental Results

We evaluate the proposed algorithm against the state-

of-the-art methods using benchmark datasets for non-

blind deconvolution. The MATLAB code is available at

https://sites.google.com/site/zhjw1988/.

5.1. Training

Parameter settings. To train the network, we optimize

the hyper-parameters and the weights of FCNN iteratively.

Specifically, the weights of FCNN are trained iteration

by iteration with fixed hyper-parameters and then hyper-

parameters are trained in an end-to-end manner with fixed

3821

https://sites.google.com/site/zhjw1988/

Figure 6. Examples of randomly generated kernels for training.

weights of FCNN . We implement the proposed algorithm

using the MatConvNet [31] toolbox. We use Xavier initial-

ization for the FCNN weights of each layer. The initial val-

ues in the hyper-parameters training stage are randomly ini-

tialized. (But keeping the later iteration has smaller hyper-

parameter than the former one.) Stochastic gradient descent

(SGD) is used to train the network. The learning rate in the

training of FCNN is 0.01. For the learning rate in the hyper-

parameter training stage, we set it to be 10 in the last decon-

volution module and 10,000 in other modules. The momen-

tum value for both FCNN and hyper-parameters training is

set to be 0.95. Since hyper-parameters are easily stuck into

local minimal. We train the network with several hyper-

parameter initializations and select the best one.

Training dataset. In order to generate enough blurred im-

ages for training, we use BSD500 dataset [1]. and randomly

crop image patches with a size of 256 × 256 pixels as the

clear images. The blurred kernels are generated according

to [4], whose size ranges from 11 to 31 pixels. We gen-

erate blurred kernels according to [4], where the size of

blur kernels ranges from 11 to 31 pixels. Some examples

of our randomly generated kernels are shown in Figure 6.

After obtaining these generated blur kernels, we convolve

the clear image patches with the blur kernels and Gaussian

noise to obtain the blurry image patches. We also train three

networks with 1%, 3% and 5% of noise.

Test dataset. For the test dataset, we use the 80 ground

truth clear images from the dataset by Sun et al. [29] and

eight blur kernels from the dataset by Levin et al. [15].

Thus, we have 640 blurred images in total. We evaluate

all the methods on the blurred images with different Gaus-

sian noise level which includes 1%, 3% and 5%. In addition

to use the ground truth kernels from the dataset by Levin et

al. [15], we also use the estimated blur kernels from the

state-of-the-art blind deblurring method [18] to examine

the effectiveness of the proposed method.

5.2. Convergence Property

We quantitatively evaluate the convergence properties of

our method and empirically find that our method converges

well after three iterations as shown in Table 2. More itera-

tions do not generate better restoration results.

5.3. Comparisons with the State­of­the­Arts

We compare the proposed iterative FCNN with

other non-blind deblurring algorithms including HL [14],

Table 2. Average sum of squared differences (SSD) error of FCNN

output from different iterations with different noise levels. The

output error does not change significantly after two iterations.

iteration 1st 2nd 3rd

1% 0.0323 0.0313 0.0312

3% 0.0436 0.0422 0.0419

5% 0.0477 0.0463 0.0459

Table 3. Average PSNR and SSIM for 1% noise.

blur kernel ground truth Pan [18]

HL [14] 31.57/0.87 29.94/0.84

EPLL [39] 33.00/0.89 30.61/0.87

MLP [28] 31.82/0.86 28.76/0.80

CSF [25] 31.93/0.87 30.22/0.86

1-iteration 32.50/0.89 30.38/0.86

3-iteration 32.82/0.90 30.39/0.87

Table 4. Average PSNR and SSIM for 3% noise.

blur kernel ground truth Pan [18]

HL [14] 27.42/0.73 26.91/0.72

EPLL [39] 28.71/0.78 27.75/0.77

MLP [28] 26.26/0.60 25.04/0.57

CSF [25] 28.43/0.78 27.11/0.74

1-iteration 28.71/0.77 27.34/0.75

3-iteration 29.05/0.79 27.74/0.77

Table 5. Average PSNR and SSIM for 5% noise.

blur kernel ground truth Pan [18]

HL [14] 25.85/0.67 25.48/0.66

EPLL [39] 27.00/0.71 26.24/0.71

MLP [28] 24.62/0.51 22.32/0.45

CSF [25] 26.92/0.67 24.86/0.65

1-iteration 27.25/0.72 25.49/0.69

3-iteration 27.46/0.74 26.33/0.72

Table 6. Average PSNR and SSIM with ground truth kernels and

different noise levels.

noise level 1% 3% 5%

IDDBM3D [5] 32.88/0.89 29.00/0.79 27.43/0.73

NCSR [7] 32.78/0.89 27.69/0.66 24.79/0.49

3-iteration 32.82/0.90 29.05/0.79 27.46/0.74

EPLL [39], MLP [28], and CSF [25]. For the proposed

method, we also use the proposed algorithm with one-

iteration and three-iteration network for comparison. For

fairness, we use the online available implementation of

these methods and tuned the parameters to generate the best

possible results.

We first quantitatively evaluate the proposed method on

the dataset with 1% Gaussian noise using PSNR and SSIM

3822

1
%

n
o

is
e

PSNR / SSIM 30.45 / 0.84 32.05 / 0.88 31.20 / 0.85 30.89 / 0.85 32.06 / 0.88

3
%

n
o

is
e

PSNR / SSIM 27.58 / 0.79 29.34 / 0.84 25.57 / 0.51 28.66 / 0.75 29.75 / 0.85

5
%

n
o

is
e

PSNR / SSIM 24.16 / 0.71 26.04 / 0.77 23.91 / 0.48 26.09 / 0.67 27.26 / 0.80
(a) Ground Truth (b) HL [14] (c) EPLL [39] (d) MLP [28] (e) CSF [25] (f) 3-iteration network

Figure 7. Visual evaluation under different input noise levels. The proposed method performs favorably compared with existing non-blind

deblurring methods.

Table 7. Average time cost (seconds) with different image sizes

for three-iteration network. HL and EPLL run on a Intel Core i7

CPU and MLP, CSF and our method run on a Nvidia K40 GPU.

image size HL EPLL MLP CSF ours

[14] [39] [28] [25]

512× 400 0.31 209.58 0.80 0.08 0.02

1024× 800 0.71 953.52 2.98 0.09 0.03

1536× 1200 2.11 N/Aa 6.73 0.33 0.06

aOur computer does not have enough memory to deconvolute a

1536× 1200 image by EPLL.

as the metrics. As shown in Table 3, our method out-

performs HL [14], MLP [28] and CSF [25] in terms of

PSNR and SSIM metrics. Although EPLL method performs

slightly better than the proposed method, this method is not

efficient as it needs to solve complex optimization prob-

lems. Furthermore, this method usually smooths details as

shown in Figure 7(c), while the proposed method generates

the results with much clearer textures (Figure 7(f)). We fur-

ther note that the PSNR and SSIM values of the proposed it-

erative FCNN are higher than those of the proposed method

with only one iteration, which demonstrates the effective-

ness of the iterative FCNN method. In addition, we use the

estimated blur kernels from Pan et al. [18] to evaluate the

proposed method. The PSNR and SSIM values in Table 3

demonstrate that the proposed method still performs well

and can be applied to method Pan et al. [18] to improve the

performance of restored results.

We further evaluate our method on the images with 3%

and 5% Gaussian noise. Tables 4 and 5 show the results by

different methods. Our method achieves better performance

compared with HL [14], MLP [28] and CSF [25] when the

noise level is high. In addition to PSNR and SSIM, our

method also generates much clearer images with fine tex-

tures as shown in Figure 7.

We also compare the proposed method with IDDBM3D

[5] and NCSR [7] under different noise levels in Table 6.

Since IDDBM3D and NCSR take about 20 and 35 minutes

respectively to deconvolute a 800 × 1024 image, we only

compare the proposed method with them with ground truth

kernels. It shows that the proposed algorithm achieves com-

parable results to the IDDBM3D and NCSR.

Runtime. The proposed method performs favorably against

3823

(a) blurry image (b) HL [14] (c) EPLL [39]

(d) MLP [28] (e) CSF [25] (f) 3-iteration network

Figure 8. Visual evaluation on the image from [13]. We have added 3% Gaussian noise. The proposed method performs favorably

compared with existing non-blind deblurring methods.

other state-of-the-art methods in terms of runtime. Table 7

summarizes the average runtime of representative methods

with different image resolutions. HL and EPLL are run

on an Intel Core i7 CPU and MLP, CSF and the proposed

method are run on a Nvidia K40 GPU.

5.4. Results on Real Blurry Images

We also test our three-iteration network for one real

blurry image from [13]. We add 3% Gaussian noise to the

original blurred image and use the network trained with this

noise level for this experiment. We use [18] to estimate ker-

nel of the blurry image. Figure 8 shows that CSF cannot

remove all the noise especially in flat regions and the result

of HL still contains blur residual. In contrast, our three-

iteration network achieves comparable performance com-

pared to EPLL.

6. Conclusion

We propose an efficient non-blind deconvolution al-

gorithm based on a fully convolutional neural network

(FCNN). The proposed method involves deconvolution part

and denoising part, where the denoising part is achieved

by a FCNN. The learned features from FCNN is able to

help the deconvolution. To remove noise and ringing arti-

facts, we develop an iterative-wise FCNN, which is able to

preserve image details. Furthermore, we propose a hyper-

parameters learning algorithm to improve the performance

of image restoration. The proposed method performs favor-

ably against state-of-the-art methods on both synthetic and

real-world images in terms of both quality and speed.

Acknowledgements. This work is supported in part
by the SRG grant from City University of Hong Kong
(No. 7004416), the National Natural Science Foundation
of China (No. 61572099 and 61320106008), the NSF
Career Grant 1149783 and gifts from Adobe and Nvidia.

3824

References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. TPAMI,

33(5):898–916, 2011. 6

[2] A. Buades, B. Coll, and J. Morel. A non-local algorithm for

image denoising. In CVPR, pages 60–65, 2005. 1

[3] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-

noising: Can plain neural networks compete with bm3d? In

CVPR, 2012. 2

[4] A. Chakrabarti. A neural approach to blind motion deblur-

ring. In ECCV, 2016. 6

[5] A. Danielyan, V. Katkovnik, and K. Egiazarian. Bm3d

frames and variational image deblurring. TIP, 21(4):1715–

1728, 2012. 6, 7

[6] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In ECCV,

2014. 2, 5

[7] W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally cen-

tralized sparse representation for image restoration. TIP,

22(4):1620–1630, 2013. 6, 7

[8] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image

taken through a window covered with dirt or rain. In ICCV,

2013. 2

[9] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

ACM TOG (Proc. SIGGRAPH), 25(3):787–794, 2006. 2

[10] V. Jain and S. Seung. Natural image denoising with convo-

lutional networks. In NIPS, 2009. 2

[11] J. Kim, J. Lee, and K. Lee. Accurate image super-resolution

using very deep convolutional networks. In CVPR, 2016. 2

[12] J. Kim, J. Lee, and K. Lee. Deeply-recursive convolutional

network for image super-resolution. In CVPR, 2016. 2

[13] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and

S. Harmeling. Recording and playback of camera

shake: Benchmarking blind deconvolution with a real-world

database. In ECCV, 2012. 8

[14] D. Krishnan and R. Fergus. Fast image deconvolution using

hyper-laplacian priors. In NIPS, 2009. 1, 2, 6, 7, 8

[15] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Under-

standing and evaluating blind deconvolution algorithms. In

CVPR, 2009. 1, 2, 6

[16] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint

image filtering. In ECCV, 2016. 2

[17] S. Liu, J. Pan, and M.-H. Yang. Learning recursive filters

for low-level vision via a hybrid neural network. In ECCV,

2016. 2

[18] J. Pan, Z. Lin, Z. Su, and M.-H. Yang. Robust kernel estima-

tion with outliers handling for image deblurring. In CVPR,

2016. 6, 7, 8

[19] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang.

Single image dehazing via multi-scale convolutional neural

networks. In ECCV, 2016. 2

[20] W. Richardson. Bayesian-based iterative method of image

restoration. JOSA, 62(1):55–59, 1972. 1

[21] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof. A deep

primal-dual network for guided depth super-resolution. In

BMVC, 2016. 2

[22] G. Riegler, M. Rüther, and H. Bischof. Atgv-net: Accurate

depth super-resolution. In ECCV, 2016. 2

[23] S. Roth and M. Black. Fields of experts: A framework for

learning image priors. In CVPR, pages 860–867, 2005. 1, 2

[24] U. Schmidt, J. Jancsary, S. Nowozin, S. Roth, and C. Rother.

Cascades of regression tree fields for image restoration.

TPAMI, 38(4):677–689, 2016. 1

[25] U. Schmidt and S. Roth. Shrinkage fields for effective image

restoration. In CVPR, 2014. 1, 2, 6, 7, 8

[26] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth.

Discriminative non-blind deblurring. In CVPR, 2013. 1, 2

[27] U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring

with integrated noise estimation. In CVPR, pages 2625–

2632, 2011. 1

[28] C. J. Schuler, H. Christopher Burger, S. Harmeling, and

B. Scholkopf. A machine learning approach for non-blind

image deconvolution. In CVPR, 2013. 1, 2, 6, 7, 8

[29] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel

estimation using patch priors. In ICCP, 2013. 6

[30] L. Sun, S. Cho, J. Wang, and J. Hays. Good image priors

for non-blind deconvolution - generic vs. specific. In ECCV,

pages 231–246, 2014. 1, 2

[31] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In ACM MM, 2015. 6

[32] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep

networks for image super-resolution with sparse prior. In

ICCV, 2015. 2

[33] N. Wiener. Extrapolation, interpolation, and smoothing of

stationary time series, volume 2. MIT Press, 1949. 1

[34] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting

with deep neural networks. In NIPS, 2012. 2

[35] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural

network for image deconvolution. In NIPS, 2014. 1, 2

[36] L. Xu, J. S. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-

aware filters. In ICML, 2015. 2, 3

[37] X. Yu and F. Porikli. Ultra-resolving face images by discrim-

inative generative networks. In ECCV, 2016. 2

[38] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions

for neural networks for image processing. TCI, 3(1):47–57,

2017. 5

[39] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. In ICCV, 2011. 1,

2, 6, 7, 8

3825

