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Abstract

Learning robust regression model from high-dimensional

corrupted data is an essential and difficult problem in many

practical applications. The state-of-the-art methods have

studied low-rank regression models that are robust against

typical noises (like Gaussian noise and out-sample sparse

noise) or outliers, such that a regression model can be

learned from clean data lying on underlying subspaces.

However, few of the existing low-rank regression methods

can handle the outliers/noise lying on the sparsely cor-

rupted disjoint subspaces. To address this issue, we pro-

pose a low-rank-sparse subspace representation for robust

regression, hereafter referred to as LRS-RR in this paper.

The main contribution include the following: (1) Unlike

most of the existing regression methods, we propose an ap-

proach with two phases of low-rank-sparse subspace recov-

ery and regression optimization being carried out simulta-

neously;(2) we also apply the linearized alternating direc-

tion method with adaptive penalty to solved the formulated

LRS-RR problem and prove the convergence of the algo-

rithm and analyze its complexity; (3) we demonstrate the

efficiency of our method for the high-dimensional corrupted

data on both synthetic data and two benchmark datasets

against several state-of-the-art robust methods.

1. Introduction

As one of the most important machine learning tech-

nique, multivariate linear regression attempts to model the

relationship between dependent variables and independent

variables by fitting a linear mapping to observed samples.

Generally, the Ordinary Least Squares (OLS) regression is

represented as minT ||Y−TX||2F , where X denotes the in-

dependent variables, Y the dependent variables, and T the

mapping relationship between X and Y.

In many real-world applications, such linear regression

models suffer from two drawbacks: lack of robustness to

outliers/noises and the curse of dimensionality. A typical

solution to the former is to estimate noises under an as-

sumed parametric distribution such as Gaussian, whereas

a solution to the latter is to select appropriate features by

using dimensionality reduction such as Principal Compo-

nent Analysis(PCA). However, if there exist a small number

of gross outliers among the samples, the estimate of model

parameters would drift obviously. Moreover, the linear re-

gression models often do not work well in processing high-

dimensional data. For regression tasks on high-dimensional

data like face images, we often cannot collect and label

enough samples.

As a matter of fact, outliers/noise are due to three

sources: the first, statistically salient data; the second, mis-

collected noised data; and the third, occluded multi-class

data. Almost all the existing regression methods tackle the

outlier/noise problem by getting rid of the first and second

types under an assumption of noise distribution, whereas by

”Gambling”. The third type of outlier can be dealt with by

using maximum likelihood. Obviously, only the first type of

outlier can arguably follow a parametric distribution. The

second and the third types should be treated as sparsely cor-

rupted data. In the meantime, the third type is also caused

by linearly non-separable problem, which requires a sys-

tematic solution to handle multiple subspaces/multi-classes.

Recently the robust methods have been studied widely to

overcome the impact of outliers/noise, such as robust meth-

ods based on least sum of squares [32, 30] and methods

using the least median of squares[3, 32] in the field of statis-

tics. Approaches via subset selection have been studied in

many computer vision applications, like Random Sample

Consensus(RANSAC) [35, 8]) which randomly picks sam-
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ples to construct a clean model. These methods tend to be

expensive in computing when the number of samples and

the dimension of sample space are large, and may conse-

quently fail if there are limited inliers. There are also some

methods that improve the robustness of Linear Discriminant

Analysis (LDA)[16, 9, 22, 41]. Although these methods can

remove outliers that are far away from the good samples

in each dimension, however, they cannot tackle the partial

sample corruptions that occur only in some of the dimen-

sions.

Low-rank regression models can reduce noise and detect

outliers partially, though they are firstly proposed to solve

the curse-of-dimensionality problem. Many low-rank re-

gression models [4, 38, 2, 6] have been studied to incorpo-

rate the correlations among different dimensions, and these

models have been proved to be very effective by consid-

ering the low-rank structure in real applications. Cai et.

al. [6] show that the low-rank regression is equivalent to

the regularized regression in a learned LDA projected sub-

space, which can reduce normal distribution outliers/noise.

However, these methods cannot deal with outliers or large

noise outside of the main subspace, which is the focus of

recent robust subspace recovery methods, like robust prin-

ciple analysis [7]. These methods usually remove noise

in independent variables in an unsupervised manner, thus

lacking of correlation with dependent variables. More re-

cently, Low-Rank Robust Regression (denoted as LR-RR

here) [19] has been proposed to learning a robust regression

model in the clean low-rank sample space highly correlated

to output variables. Although LR-RR can reduce most arbi-

trary sparse outliers/noise both within the domain subspace

and outside of it, it tends to be sensitive to outliers/noise

among a set of disjoint subspaces. An independent sub-

space and a set of disjoint subspaces are illustrated in Fig.

1. It can be seen that if the outliers or noise occur from

non-orthogonal subspaces, the LR-RR tends to fail.

Our work is inspired by the low-rank robust regression

[19], low-rank-sparse subspace clustering [36] and some

earlier rank minimization methods like Robust Principal

Component Analysis (RPCA) [7]. In this paper, we aim

to detect intra-sample outliers within disjoint subspaces

for robust regression. We propose a new robust regres-

sion method via Low-Rank-Sparse-Representation (LRSR),

which not only recovers the low-rank disjoint subspaces but

also performs a robust regression via sparsity optimization.

In Section 2, we review several regression approaches

and give a new view from subspace learning, including

Least Square Regression(LSR) methods [37, 40], Ride Re-

gression [29], Least Absolute Shrinkage and Selection Op-

erator(LASSO) [12], Least Angle Regression [10], rank-

reduced regression methods — Low-Rank Regression [38]

and Low-Rank Ridge Regression [6], subspace-learning re-

gression — Principal Component Regression (PCR) [34],

LDA [31], Support Vector Regression (SVR)[39], Rele-

vance Vector Machine Regression (RVM)[13], Partial Least

Squares (PLS) Regression [1], Canonical Correlation Anal-

ysis (CCA)[15], Robust PCA[7] and LR-RR[19]. In Section

3, we first give a further explanation about solving Low-

Rank-Spares Regression in disjoint subspaces. Second, we

propose a low-rank-sparse regression method via the frame-

work of Low Rank subspace Sparse Representation (LRSR)

by a supervised manner. Section 4 is dedicated to conver-

gence analysis for the proposed algorithms. In Section 5, we

introduce the evaluation metric — Relative Absolute Error

(RAE) for regression and conduct experiments on synthetic

data. Moreover, we evaluate our methods against the state-

of-the-art methods RPCA+LSR [4] and LR-RR [19] on two

benchmark datasets.

2. Subspace view of Regression Approaches

High-dimensional data like face images or shapes often

lie in low-dimensional subspaces, with some entries of the

samples are often corrupted. The noises or outliers often

exist both inside and outside the main subspaces (orthogo-

nal to main subspaces).Typically, there are two steps in sub-

space approaches to regression, namely, subspace recovery

and regression Optimization. The former aims to extract

the principal dimensions that data have spanned, while the

latter aims to learning robust regression model from the re-

covered clean observations.

2.1. Subspace View of Typical Regression Models

To some extent the classical regression methods are re-

lated to supervised subspace learning like LSR [37, 40],

Ride Regression [29], LASSO [12] and Least Angle Re-

gression [10]. Generally, LSR learns a series of linear

mappings from input variables and output variables, which

can be represented as a group of hyperplanes lying on cer-

tain subspaces. Ride Regression adds an ℓ2 norm term to

regularize the regression model, which is a biased regres-

sion method. The learned hyperplane is a balance between

the sample space and uniform space (spanned by all unit

vectors).LASSO can select a sparse linear mapping of fea-

tures from the whole sample space, which can be retreated

as a linear representation within the subspace spanned by

the selected feature space by LASSO. LARS also learns

a sparse linear regression model within a selected feature

subspace. Principal Component Regression [34] learns co-

efficients matrix from subspace spanned by principal com-

ponents of input variables, while LDA [31] learns the most

discriminant subspace of input variables that appears to con-

tain all of the class variability. Compared to unsupervised

PCR, LDA is a supervised subspace learning method, re-

sulting in better classification or regression result. In the

SVR method, an output variable is represented as the lin-

ear or non-linear combination of support vectors, which is

7446



−4

−2

0

2

4

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

 

 

Clean Subspace1

Corrupted Subspace1

Corrupted smaples(within subspaces)

Corrupted smaples(out of subspaces)

(a) LR-RR

−3

−2

−1

0

1

2

3
−3 −2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

6

 

 

Clean Subspace1

Clean Subspace2

Corrupted Subspace1

Corrupted Subspace2

Corrupted smaples(within subspaces)

Corrupted smaples(out of subspaces)

(b) LRS-RR

Figure 1. Corrupted Subspaces. (a) All data are within a subspace, as LR-RR assumes; (b) All data are distributed among two overlapping

subspaces, as LRS-RR assumes. In case (a), the LR-RR works well; In case (b), it tends to fail because that there are some samples lying

on more than one subspace, which is not considered by LR-RR.

equivalent to the low-rank representation in the subspace

only spanned by support vectors. The dimension of this

subspace is equal to the one of a matrix concatenated by

all the support vectors. Similar to SVR, Relevance Vector

Machine Regression [13] can also be treated as a regression

model among the subspace represented by all the relevance

vectors.

The PLS [1] finds a linear regression model by project-

ing the input variables and response variables onto a new

distinguishing space. Because both the X and Y data are

projected to the new subspace, PLS is a bilinear subspace

regression model. Different from PLS, CCA projects both

X and Y data onto a mutual subspace that is related to mu-

tual information between X and Y data. Both the PLS and

the CCA are supervised subspace learning methods that can

be used for regression. Moreover, Lang et. al. [23] establish

explicit connections between LS, PCR and PLS, and a finite

number of other related methods, regression/prediction pro-

cess of which can be referred to a general cyclic subspace

regression. Several rank-reduced regression models have

been proposed recently, such as Low-Rank Regression [38]

and Low-Rank Ridge Regression [6]. Cai et. al. [6] have

proven that low-rank regression is equivalent to regression

in a regularized LDA subspace. There are also several non-

linear regression methods like Orthogonal Forward Regres-

sion [18, 17] and K-Nearest Neighbors (K −NN ) regres-

sion [20]. The former type of methods takes a set of radial

basis functions based on input variables as the linear sub-

space, the dimension of which is equal to the number of

radial basis functions. Then an output vector can be repre-

sented as a linear combination of projected samples within

the subspace. Instead of using a kernel function directly,

K − NN represents a sample as the linear combination of

its neighbors. It is a local linear model and can be treated

as a linear representation in a local subspace, the rank of

which is not larger than the neighborhood size K.

2.2. Subspace Recovery

Given that data corrupted with gross errors and outliers

are ubiquitous in modern applications, how to recover clean

data is essential for robust regression. Robust subspace re-

covery is a basic problem, in which we assume the clean

data set was sampled from several fixed subspaces while

outliers/corrupted data may be spread throughout the whole

ambient space. One attempt is to recover the underlying

fixed subspaces from the corrupted observed data. Mod-

eling high-dimension data in low-dimensional subspaces is

the most useful paradigm in subspace recovery. PCA can

be regarded as a subspace recovery technique minimizing

the sum of squared errors of data points under the assump-

tion that data are from a single fixed unknown subspace.

However, its sensitivity to grossly corrupted observations

often jeopardizes its robustness. That is, a single grossly

corrupted entry in the data could render the estimated sub-

space far from the true one.

Various methods like [11, 21] have been proposed to

augment the accuracy of subspaces recovery. As a break-

through, RPCA [7] provides clear analysis of exact low-

rank recovery with an unspecified rank and the certain ratio

of large-scale sparse corruptions. Given a large data ma-

trix X, it may be decomposed as X = D + E, where D

has low rank and E is sparse. To estimate the two com-
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ponents, RPCA minimizes a weighted combination of the

nuclear norm and the ℓ1 norm, formulated as follows:

min
D,E

‖D‖
∗
+ λ‖E‖1,

s.t. X = D+E,
(1)

where X ∈ R
m×n, D denotes the matrix of clean data lying

in a low-dimensional subspace and E can be considered as

the deviation of X from the intrinsic low-dimensional sub-

space. For example, in video analysis, E represents moving

objects in the low-dimensional background.

The Alternating Direction Method (ADM) algorithm

[24] can achieve much higher accuracy and better conver-

gence performance than other algorithms [25, 5] when solv-

ing the optimization problem (1). However, RPCA only re-

covers an independent subspace in an unsupervised manner

and can not remove noises or outliers inside the subspace.

Therefore, RPCA tends to transform data points into a com-

mon low-dimensional subspace which may result in weak-

ening the distances between samples of different subjects

and the principal angles between subspaces in a practical

application.

2.3. Regression Optimization

Robust regression methods aim at learning a robust

regression model from observations corrupted by out-

liers/noise. An idea solution is the removal of outliers/noise

by a supervised learning method as follow:

min
T

‖(Y −TD̂)‖2F

s.t. X = D+E, D̂ =
[

D;1T
]

.
(2)

where D is an idea clean data embedded within the main

low-rank subspaces, and E represents outliers/noise both

small Gaussian noise and large scale outliers, inside or out-

side main subspaces. A representative method is Low-Rank

Robust Regression by Huang et al. [19]. The LR-RR re-

veals a single low-rank subspace from data by seeking the

low-rank representation with sparse noise as follows:

min
T,D,E

η

2
‖W(Y −TD̂)‖2F + rank(D) + λ‖E‖0

s.t. X = D+E, D̂ =
[

D;1T
]

.
(3)

where W ∈ R
dy×dy is a diagonal matrix that weights

the output dimensions, T ∈ R
dy×(dx+1) is the regres-

sion matrix (the extra dimension is for the regression bias

term). η and λ are scalars that weight the first and third

term in Eq.3 respectively. LR-RR explicitly avoids pro-

jecting the outlier matrix E to the output space by learn-

ing the regression T only from the augmented noise-free

data D̂ =
[

D;1T
]

∈ R
(dx+1)×n. The second term D is

a low-dimensional subspace constraint, as a good prior for

many computer vision applications. The third term E en-

sures noise/outliers to be sparse.

Although LR-RR cleans the data in a supervised manner,

it does not work well for corrupted input data from disjoint

subspaces, as mentioned above.

3. Low Rank Subspace Sparse Representation

for Regression

In this section, we first propose a low-rank-sparse model

for robust disjoint subspace regression, and then utilize an

efficient linearized alternating direction method with adap-

tive penalty (LADMAP) [27] to solve the proposed model.

3.1. The LRS­RR Regression model

As analyzed above, low rank representation can cap-

ture global information critical for revealing the structure

of lower dimensional subspace and removing large distur-

bances in the original data. LR-RR has excellent perfor-

mance in regard to analyzing corrupted data drawn from

independent subspaces. However, using the original data

contaminated with large noises as the dictionary is by no

means a good choice. Moreover, LR-RR often fails in the

case of disjoint subspaces or overlapping subspaces. For ex-

ample, in the synthesized data used in the experiment shown

in Fig. 1, the first and the second subspaces are intersected

with each other, thus we sometimes get some wrong recov-

ery points. Although LR-RR performs very well with data

from orthogonal subspaces, it is weaker than LRS-RR in re-

covering the global subspace structures from the corrupted

data. The result of LR-RR in synthetic data in Fig. 1 shows

that LR-RR cannot remove the impact of large noises within

disjoint subspaces.

Based on the analyses and observations above, we pro-

pose a method to combine the low rank and sparse repre-

sentations for subspace regression, especially for the cases

when the subspaces are not independent and data are cor-

rupted by large noise. For example, the corruptions caused

by the uneven illumination result in that a relatively large

number of within-class data points drifting to other sub-

spaces. Therefore, methods like LR-RR may bring points

from different subspaces into the same subspace with the

uneven illumination corruption. Nevertheless, LR-RR is

better at handling corruptions than RPCA does due to su-

pervised learning. However, we cannot ensure the face im-

age subspaces are orthogonal to or independent from each

other. Therefore, we extend the framework by learning a

clean dictionary-the basis for subspaces-that satisfies the

condition of sparse noise. The model proposed is defined
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as follows:

ĴLRS-RR = min
T,D̂,A,Z,J,E

η

2

∥

∥

∥
W(Y −TD̂)

∥

∥

∥

2

F
+ ‖A‖

∗

+ ‖Z‖
∗
+ λ2 ‖J‖1 + λ1 ‖E‖1

s.t. X = AZ+E, D̂ =
[

AZ;1T
]

, Z = J,J ≥ 0.

(4)

where W ∈ R
dy×dy is a diagonal matrix that weights the

output dimensions, T ∈ R
dy×(dx+1) is the regression ma-

trix (the extra dimension is for the regression bias term), A

is a clean low-rank dictionary, the cols of which span the

main subspaces, and Z is a coefficient matrix as the low-

rank representation of clean samples by dictionary A. η,

λ2, λ1 are scalars that weight the first, fourth, and fifth term

in Eq.4 respectively. E represents the sample-specific cor-

ruptions. As rank(A∗Z∗) ≤ min{rank(A∗), rank(Z∗)},

A∗Z∗ is the low rank recovery of the original data. Instead

of low-rank data with sparse noise model in LR-RR, low-

rank representation with sparse noise is taken as the con-

straint term in our model.

Benefiting from low-rank representation model [28],

LRS-RR can handle outliers/noise lying in disjoint sub-

spaces. AZ explicitly avoids projecting the outlier matrix

E to the output space by learning the regression T only

from the augmented noise-free data D̂ =
[

AZ;1T
]

∈

R
(dx+1)×n. Note that there are infinite possible decompo-

sitions of X into AZ and E. LRS-RR thus adds the second,

third, fourth and fifth terms in Eq.4 to constrain the possible

solutions. The second term constrains the dictionary A to

lie in low-dimensional disjoint subspaces. The third and

fourth terms constrain the representation to be low-rank-

sparse. The fifth term regularizes E to be sparse.

3.2. LADMAP solution for LRS­RR model

The optimization problem (4) can be solved using an

Augmented Lagrange Muliplier (ALM) technique. First we

write its ALM form as follows,

ĴLRS-RR

= min
T,D̂,A,Z,J,E

η

2

∥

∥

∥
W(Y −TD̂)

∥

∥

∥

2

F
+ ‖A‖

∗

+ ‖Z‖
∗
+ λ2 ‖J‖1 + λ1 ‖E‖1

+ 〈Y1,X−AZ−E〉+
µ1

2
‖X−AZ−E‖

2

F
(5)

+ 〈Y2, D̂−
[

AZ;1T
]

〉+
µ2

2

∥

∥

∥
D̂−

[

AZ;1T
]

∥

∥

∥

2

F

+ 〈Y3,Z− J〉+
µ3

2
‖Z− J‖

2

F
,

where Y1 ∈ R
dx×n, Y2 ∈ R

(dx+1)×n and Y3 ∈ R
n×n

are Lagrange multiplier matrices, and µ1, µ2 and µ3 are the

penalty parameters. According to the LADMAP method

[27], Eq.5 can be rewritten as,

ĴLRS-RR = min
T,D̂,A,Z,J,E

η

2

∥

∥

∥
W(Y −TD̂)

∥

∥

∥

2

F
+ ‖A‖

∗

+ ‖Z‖
∗
+ λ2 ‖J‖1 + λ1 ‖E‖1

+
µ1

2
‖X−AZ−E+Y1/µ1‖

2
F

+
µ2

2

∥

∥

∥
D̂−

[

AZ;1T
]

+Y2/µ2

∥

∥

∥

2

F

+
µ3

2
‖Z− J+Y3/µ3‖

2
F .

(6)

For each of the six matrices T, D̂,A,Z,J,E to be solved

in particularly Eq. 6, the cost function is convex if the re-

maining five matrices are kept fixed. Eq. 6 can be solved

iteratively via the following subproblems:

1. Fixing D̂,A,Z,J,E, solve (6) for T by the following

problem, denoted by LRS-RR-1,

min
T

η

2

∥

∥

∥
W(Y −TD̂)

∥

∥

∥

2

F
(7)

which is an ordinary least square regression problem, whose

solution is,

T = (D̂(D̂)T + γIdx+1)
−1Y(D̂)T, (8)

where λ is a positive scalar for regularizing the solution to

T.

2. Fixing T,A,Z,J,E, solve (4) for D̂ by the following

problem, denoted by LRS-RR-2,

min
D̂

η

2

∥

∥

∥
W(Y −TD̂)

∥

∥

∥

2

F
+

µ2

2

∥

∥

∥
D̂−

[

AZ;1T
]

+Y2/µ2

∥

∥

∥

2

F
.

(9)

which is also an ordinary least square regression problem,

to which the solution of which is,

D̂ = [ηTTWTWT+µ2Id]
−1[ηTTWTWY−Y2+µ2[AZ;1T]].

(10)

3. Fixing T, D̂,Z,J, solve (6) for A and E by the fol-

lowing problem, denoted by LRS-RR-3,

min
A,E

‖A‖
∗
+ λ1 ‖E‖1

+
µ1

2
‖X−AZ−E+Y1/µ1‖

2
F

+
µ2

2

∥

∥

∥
D̂−

[

AZ;1T
]

+Y2/µ2

∥

∥

∥

2

F
.

(11)

which is a slight variation of low-rank representation prob-

lem [28], and the linear ADM solution is,

Ak+1 =D1/βA
(Ak − FA

k/βA),

Ek+1 =Sλ1/µ1
(X−AkZ+Y1/µ1),

(12)
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where D is the singular value thresholding[5], S is the

shrinkage operator [42], βA = (µ1 + µ2)τA/2, τA >
ρ(ZTZ) is the proximal parameter, ρ(ZTZ) denotes the

spectral radius of ZTZ, and FA
k is the derivative by Ak

for the second and third terms in Eq. 11,

FA
k = ((µ1 + µ2)A

kZ− µ1(X−E)−Y1

− (µ2D̂+Y2)(1:dx,·))Z
T.

(13)

4. Fixing T, D̂,A,E, solve (6) for Z and J by the following

problem, denoted by LRS-RR-4,

min
Z

‖A‖
∗
+ ‖Z‖

∗
+ λ2 ‖J‖1

+
µ1

2
‖X−AZ−E+Y1/µ1‖

2
F

+
µ2

2

∥

∥

∥
D̂−

[

AZ;1T
]

+Y2/µ2

∥

∥

∥

2

F

+
µ3

2
‖Z− J+Y3/µ3‖

2
F .

(14)

Similar to Eq. 11, the above optimization problem is also a

variation of low-rank representation problem, to which the

LADMAP solution is,

Zk+1 =D1/βZ
(Zk − FZ

k/βZ)

Jk+1 =max(Q,0)
(15)

where βZ = (µ1 + µ2 + µ3)τZ/2, τZ > ρ(AAT) is the

proximal parameter, ρ(AAT) denotes the spectral radius

of AAT, and FZ
k is the derivative by Zk for the second,

third and fourth terms in Eq. 14,

FZ
k =AT((µ1 + µ2)A

k+1Zk − µ1(X−E)

−Y1 − (µ2D̂+Y2)(1:dx,·))

+ µ3(Z
k − Jk) +Y3

(16)

and Qk+1 is a shrinkage operator, defined as

Qk+1 = Sλ2/µ3
(Zk+1 +Y3/µ3) (17)

Finally, the Lagrange multiplier matrices Y1,Y2,Y3 and

regularization terms µ1, µ2, µ3 are updated based on

LADM,

Yk+1

1
=Yk

1 + µk+1

1
((X)−Ak+1Zk+1 −Ek+1)

Yk+1

2
=Yk

2 + µk+1

2
((D)− [Ak+1Zk+1;1T])

Yk+1

3
=Yk

3 + µk+1

3
((Z)k+1 − Jk+1)

µk+1
1 =min(µmax, ρµ

k
1)

µk+1
2 =min(µmax, ρµ

k
2)

µk+1
3 =min(µmax, ρµ

k
3)

(18)

where ρ is a positive scalar.

4. Convergence Analysis and Computation

Complexity Analysis

4.1. Convergence Analysis

Because LRS-RR-1 and LRS-RR-2 are ordinary least

square problems, we mainly introduce two theorems regard-

ing the convergence of the augmented Lagrangian multi-

plier algorithms for subproblems LRS-RR-3 and LRS-RR-

4.

Subproblem LRS-RR-3 is similar to the transposed stan-

dard LR-RR model, thus the convergence analysis in [27]

can be applied to this model. We present a convergence the-

orem below.

Theorem 1. If {µ1}, {µ2} are non-decreasing and up-

per bounded, τA > ρ(ZZT ), then the sequence
(

Ak,Ek,Yk
1 ,Y

k
2

)

generated by (12)–(13) converges to a

KKT point of LRS-RR-3.

For the LRS-RR-4 model (15), there are two blocks of

primary variables. For the cases of less than three blocks of

primary variables, a naive linearized version of ADM tends

to converge. A slight difference is that the variable Z is

non-negative by constraining Z = J,J ≥ 0. Following the

convergence analysis in [27, 26], we immediately have the

following theorem

Theorem 2. If {µ1}, {µ2}, {µ3} are non-decreasing and

upper bounded, τZ > ρ(ATA), then the sequence
(

Zk,Jk,Yk
3

)

generated by (15)–(17) converges to a KKT

point of LRS-RR-4.

Please refer to the proof in [26]. Finally we have the

following convergence for LRS-RR-1–LRS-RR-4.

4.2. Computation Complexity Analysis

In the iterations of LRS-RR-1 – LRS-RR-4, the com-

putational costs are mainly matrix inversion and SVD. For

the data matrix X ∈ R
dx×n, the computation complex-

ity of full SVD is O(dxn
2)(dx > n). Each iteration of

LRS-RR-3 mainly includes SVD — O(dxn
2) and matrix

multiplication of Ak+1Z — O(dxn
2). Then the whole

computational complexity for LRS-RR-3 is O(t1 ∗ 2dxn
2)

and t1 is the iteration number of LRS-RR-3. Similar to

LRS-RR-3, since rank(Z) <= rank(X) the whole com-

putation complexity for LRS-RR-4 is O(t1 ∗ 2dxn
2) and

t1 is the iteration number. LRS-RR-1 and LRS-RR-2 con-

tains iterations of matrix inverse of D̂(D̂)T + γIdx+1 and

ηTTWTWT+µ2Idx
, whose complexity is O((dx + 1)

3
),

and O(dx
3), respectively. Hence, the total complexity for

LRS-RR is O(T ∗ (t1 ∗ 2dxn
2 + t1 ∗ (dx

3))).

5. Experiments

In this section, we evaluate the performance of our pro-

posed algorithms on both synthetic data and the data from
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Method RAET RAEY

LSR 0.269± 0.121 0.035± 0.012
RANSAC 0.256± 0.133 0.036± 0.013
RPCA+LSR 0.464± 0.030 0.051± 0.006
LR-RR 0.035± 0.015 0.015± 0.006
LRS-RR 0.005± 0.0005 0.011± 0.003

Table 1. RAE and its standard deviation on synthetic data (10 rep-

etitions).

real vision tasks. All the experiments were done on a PC

with the same hardware —i5 CPU(2.57 GHz), 8GB RAM

and operating system —WIN-10.

We compare our LRS-RR method against the state-of-

the-art approaches in four experiments for regression and

classification. The approaches include: (1) standard LSR;

(2) RANSAC [35]; (3) RPCA+LSR, which firstly performs

RPCA [7] on the input data and then learns the regression

model on the cleaned data using standard LSR; (4) LR-RR.

In the first experiment, synthetic data lying in the dis-

joint subspaces were used to validate and compare the our

method with the popular approaches, as well as to illustrate

the convergence of our method. In the second experiment,

we apply LRS-RR to the problem of head pose estimation

from partially corrupted images, and we also compare the

CPU computing time. The third experiment illustrates the

application of LRS-RR to reconstruction of corrupted faces.

5.1. Synthetic Data for Accuracy and Convergence
Validation

This section illustrates the benefits of RR in a synthetic

example. We generate 400 three-dimensional samples, 200

samples for one subspace and 200 for the other. The first

two components are generated from a uniform distribution

between [-6; 6]. The third dimension of the first sub-

space is generated by z = x+ y, and the other is gen-

erated by z = x− y, as two joint subspaces. We com-

pare our RR with five methods: (1)LSR; (2) RANSAC;

(3)RPCA+LSR, and (4) LR-RR. We randomly select 200

samples for training and used the remaining 200 data points

for testing. Both the training and testing sets contain half

of the corrupted samples. We compute the Relative Abso-

lute Error (RAE) between true regression matrix T∗ and

learned T : RAET = ‖T−T∗‖F / ‖T‖F , and the

RAE between true output Y∗ and learned Y : RAEY =
‖Y −Y∗‖Y / ‖F‖F , the result is shown in Tab. 5.1. It can

be seen that our method learns the most exact model, with

the smallest prediction errors among all the methods. Fig. 2

gives the plots of relative Frobenius norm errors of learned

dictionary D and separated noise E varying with iteration

number. It indicates that our methods can converge quickly.
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F( E(t) − E(t−1) ) / F(E (t−1) )

Figure 2. Convergence result of LRS-RR on Synthetic Data.

Method Pose Angle Err Time(s)

LSR 27.56o ± 23.60o 0.05

RANSAC 23.20o ± 20.39o 0.22

RPCA+LSR 20.45o ± 19.51o 0.25

LR-RR 1.97o ± 5.77o 3.03

LRS-RR 1.03o ± 5.65o 10.02

Table 2. Comparison of yaw angle error and standard deviation on

a subset of CMU PIE.

5.2. CMU PIE Database for Pose Estimation

This section demonstrates the performance of LRS-RR

in the problem of head pose estimation. A subset of the

CMU PIE database[33] is used, which contains over 5000

face images from 53 subjects. The face regions are labeled

carefully by hand. These faces cover 9 head poses(from

−90o to +90o, step 22.5o), each with a random lighting

direction. Each image is cropped around the face region

and resized to 48×48. We reshape each image into a vector

in the matrix X and the yaw angles of the images are used

as the output data Y = [cos(θ); sin(θ)].

Similar to the previous section, we have compared LRS-

RR with above methods: (1) RANSAC, (2) RPCA+LSR,

(3) RPCA+LSR, (4)LR-RR. The 53 subjects were randomly

divided into 5 folds for cross-validation and selection of

best parameters of these methods for fairness. Tab. 5.2

gives the the averaged angle error of different methods and

also shows the time cost for testing of different methods.

Though our method achieves least errors, the computing

process is still needs to be sped up. A visual result of pose

predilection is also illustrated in Fig. 3, indicating that our

method achieves more narrow prediction than popular low-

rank methods (which is not listed due to the paper’s layout).
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(a) RPCA+LSR (b) LR-RR (c) LRS-RR

Figure 3. Pose projection in the output space [cos(θ), sin(θ)]. The red ’+’ denotes the ground truth.

5.3. YaleB Database for Reconstruction of Cor­
rupted Faces

The YaleB database [14] contains over 2,300 frontal

face images of 38 subjects under different illumination

changes.There are 64 near-frontal images taken for each

subject. In this experiment, we use the cropped face im-

ages (196 × 128 pixels) of the first 15 subjects. First, we

calculate 20-dimensional eigenfaces using training images

as the input matrix X. Then for each tested face image, 10

blocks(30 × 30 pixels) are randomly selected as synthetic

corruption (set to 255, see the first column on the Fig. 4 for

reference). To evaluate the reconstruction accuracy, we first

calculate the real regression model with un-blocked tested

images by eigenfaces, and then we relearn the regression

models of different robust methods by taking eigenfaces as

the input matrix X and blocked tested images as responses

Y. Finally we calculate the output errors between learned

models and the real model, as well as the errors between

prediction of the real model response (Goal) and learned

models. As shown in Tab. 5.3, we compare face reconstruc-

tion accuracy of RANSAC, RPCA+LSR, LR-RR and our

LSR-RR. Some examples of face reconstruction by differ-

ent methods are also given in Fig. 4, which shows that our

method gets the most similar visual result to the prediction

goal.

Figure 4. Reconstruction of corrupted faces on YaleB.

Method Model Err Fitting Err

RANSAC 1.058± 0.040 0.185± 0.007
RPCA+LSR 1.075± 0.051 0.187± 0.007
LR-RR 1.069± 0.044 0.185± 0.006
LRS-RR 1.045± 0.049 0.164± 0.006

Table 3. Face Reconstruction error and standard deviation on

YaleB under synthetic corruption.

6. Conclusions and Future Work

This paper addresses the problem of supervised low-

rank-spare subspace representation for robust regression in

high-dimensional data and presents a LADMAP solution

for LRS-RR. Our method jointly learns a regression model

while removing the outliers/noise that are little correlated

with the regression responses. Compared to previous ro-

bust regressions under a low-rank subspace constraint, our

method can deal with outliers/noise inside or outside the

disjoint subspaces, and can obtain much more exact regres-

sion model in this complex situation. We illustrated the

benefits of LRS-RR in several computer vision problems

including head pose estimation and face reconstruction. We

showed that by filtering outliers/noise via a reasonably su-

pervised low-rank-spare subspace learning, our method can

recover the clean data better and outperforms state-of-the-

art approaches in both the random and low-rank ones. The

framework of LRS-RR is useful to solve high-dimensional

problems in many real-life applications. Moreover, our ap-

proach is extensible and can easily be integrated into other

regression methods, such as cascaded regression for face

alignment and tracking. However, the current LRS-RR is

time-consuming, the optimization algorithm will be paral-

lelized in our future work.
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