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Abstract

Blind deconvolution is the problem of recovering a con-

volutional kernel a0 and an activation signal x0 from their

convolution y = a0 ⊛ x0. This problem is ill-posed with-

out further constraints or priors. This paper studies the

situation where the nonzero entries in the activation sig-

nal are sparsely and randomly populated. We normalize

the convolution kernel to have unit Frobenius norm and

cast the sparse blind deconvolution problem as a nonconvex

optimization problem over the sphere. With this spherical

constraint, every spurious local minimum turns out to be

close to some signed shift truncation of the ground truth,

under certain hypotheses. This benign property motivates

an effective two stage algorithm that recovers the ground

truth from the partial information offered by a suboptimal

local minimum. This geometry-inspired algorithm recovers

the ground truth for certain microscopy problems, also ex-

hibits promising performance in the more challenging image

deblurring problem. Our insights into the global geometry

and the two stage algorithm extend to the convolutional dic-

tionary learning problem, where a superposition of multiple

convolution signals is observed.

1. Introduction

Blind deconvolution aims to recover two unknown sig-

nals: a kernel a0 and some underlying signal x0 from their

convolution y = a0 ⊛ x0. Blind deconvolution is ill-posed

in general: there are infinitely many pairs of signals render-

ing the same convolution. To render the problem well-posed,

one may exploit prior knowledge about the structure of a0

and x0. For example, the underlying signal x0 is sparse in

many realistic applications:

Microscopy data analysis: In the crystal lattice of

nanoscale materials, there exist randomly and sparsely dis-

tributed “defects”, whose locations and signatures encode
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crucial information about the electronic structure of the ma-

terial. Accurate recovery of such information can facilitate

investigation of the detailed structure of materials [4].

Neural spike sorting: Neurons communicate by firing

brief voltage spikes, whose characteristics reflect important

features of the neuron. These spikes occur randomly and

sparsely in time. Neurophysiologists are interested in as-

signing stereotyped spikes to putative cells, as well as in

knowing their respective spike times [7, 14].

Image deblurring: Motion blur can be modeled as the

convolution of a latent sharp image and a kernel capturing

the motion of the camera, usually assumed to be invariant

across the image [8]. The inverse process of recovering the

original sharp image from a blurry image has been widely

studied [6, 12]. Many well-performing approaches lever-

age the observation that sharp natural images typically have

(approximately) sparse gradients [3, 13, 18].

All of these applications lead to instances of the sparse

blind deconvolution (SBD) problem. The dominant algo-

rithmic approach to SBD involves nonconvex optimization1.

Nonconvex formulations for deconvolution can be derived

via several probabilistic formalisms (ML/MAP, VB, ect.),

or simply from heuristics. For example, in image deblur-

ring, the kernel a can be modeled as residing on a simplex

[9, 11, 13, 16]. This is natural from a modeling prospective2,

but problematic for optimization: natural formulations of

deconvolution over the simplex admit trivial global minimiz-

ers (corresponding to spiky convolutional kernels a = δ)

[2, 18], which provide no information about the ground truth.

Practical remedies for this problem include exploiting addi-

tional data priors [9, 16, 24] or careful initialization via edge

restoration or multi-scale refinement [11, 25], to avoid the

trivial spiky global minima.

In contrast, motivated by a careful comparison of MAP

1In signal processing, a number of elegant convex relaxations of the

problem have been developed [1, 5, 15]. However, these approaches typ-

ically require stronger prior information (subspace constraint rather than

sparsity) or exhibit suboptimal scalings.
2Since entries of a roughly represent the fraction of the camera exposure

time at a given location.
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and VB approaches, [23, 26] propose to instead constrain

a to have unit Frobenius norm – i.e., to reside on a high-

dimensional sphere.3 This choice is arguably more appro-

priate for applications – such as microscopy – in which the

kernel a have negative entries. For image deblurring, a can

be assumed to be nonnegative, and the sphere constraint

seems less natural from a modeling perspective.

In this paper, we study the geometry of sphere-

constrained sparse blind deconvolution. Our goal is to un-

derstand when simple algorithms based on nonconvex op-

timization can exactly recover the convolutional kernel a

and x. This goal is motivated by the applications described

above – in particular, microscopy data analysis – in which

there is a strong, physical sparsity prior and a clear, physi-

cal notion of the ground truth. We develop our theory and

algorithms under the assumption that a is a short kernel, and

that x is sparsely and randomly supported. We demonstrate

through a theoretical analysis of certain (idealized) cases and

lots of numerical experiments that when these assumptions

are satisfied, the proposed algorithm correctly recovers a,

and hence x. These results stem from a striking geometric

property of sphere-constrained SBD: although the problem

is still nonconvex, every local minimizer ā is very close to a

signed shift-truncation of the ground truth kernel a0. This

observation provides a geometric explanation of how the

sphere constraint can facilitate sparse blind deconvolution.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the intrinsic symmetry associated to the

convolutional operator and its implication on the geome-

try of sphere-constrained SBD. Section 3 introduces the

optimization-based two stage algorithm and some related

technical details. Section 4 discusses two other important

extensions in image deblurring and convolutional dictionary

learning. Section 5 gives experimental corroboration of our

theory, and shows promising results on microscopy data anal-

ysis, image deblurring, and convolutional dictionary learning.

Section 6 discusses directions for future work.

For simplicity, we assume the convolutional signals are

one dimensional in both problem formulation and technical

proof, while all the results apply to two dimensional signals.

Throughout this paper, vectors v ∈ R
k are indexed as v =

[v0, v1, · · · , vk−1], and [·]m denotes the modulo operator

of m. We use ‖·‖ to denote the operator norm, and ‖·‖p to

denote the entry wise ℓp norm. A projection on the Frobenius

sphere is denoted with PS [·] =
·

‖·‖F

, and a projection onto

subset with index I is denoted with (·)I .

3[23] contains a wealth of additional ideas about the role of sparsity-

promoting priors in obtaining good local minima, and on the probabilistic

underpinnings of deconvolution. Our experiments support the viewpoint

that the key insight in [23] is the role of the spherical constraint in avoiding

bad minimizers.

2. Symmetry and Global Geometry

Without loss of generality, we assume the observation

data y is generated via a circular convolution ⊛ of the ground

truth a0 ∈ R
k and x0 ∈ R

m:

y(a0,x0) = a0 ⊛ x0 = ã0 ⊛ x0 ∈ R
m. (1)

Here, ã0 ∈ R
m denote the zero padded m-length version of

a0, which can be expressed as ã0 = ιa0 with ι : Rk → R
m

be a zero padding operator. Its adjoint ι∗ : Rm → R
k acts

as a projection to lower dimensional space by keeping the

first k components. Equivalently, we can write

y(a0,x0) = Cã0
x0 = Cx0

ã0. (2)

Here, Cv ∈ R
m×m is the circulant matrix generated from

vector v, whose j-th column is a cyclic shift sj−1[v] of the

vector v:

sτ [v] (i) = v([i− τ ]m), ∀ i ∈ [0, · · · ,m− 1]. (3)

2.1. Symmetries and Symmetry Breaking

The SBD problem exhibits a scaled-shift symmetry, which

derives from the symmetries of the convolution operator.

Namely, given a pair (a0,x0) satisfying y = a0 ⊛ x0, for

any nonzero scalar α and integer τ

y = (αsτ [ã0])⊛
(
α−1s−τ [x0]

)
. (4)

Note that a scaled shift α−1s−τ [x0] of a sparse signal x0

remains sparse, and that a scaled shift αsτ [ã0] of a length-k
kernel a0 still has k-nonzero entries. So, these symmetries

are intrinsic to the SBD problem, as formulated here. We

can only hope to recover (a0,x0) up to this symmetry.

The presence of nontrivial symmetries is a hallmark of

bilinear problems arising in practice – see, e.g., [20, 21] for

examples from dictionary learning and generalized phase

retrieval. Symmetries render straightforward approaches to

convexify the problem ineffective.4 They also raise chal-

lenges for nonconvex optimization: equivalent symmetric

solutions correspond to multiple disconnected global optima.

This creates a very complicated objective landscape, which

could potentially also contain spurious local optimizers. Cer-

tain highly symmetric nonconvex problems arising in signal

processing do not exhibit spurious minimizers [20, 21], how-

ever, proving this can be challenging.

Symmetry breaking. We employ a weak symmetry break-

ing mechanism by constraining a ∈ S
k−1 5: we reduce the

4Given any set of points where the convex objective function achieves

equal values, the function value will be no larger at any convex combination

of them.
5This is motivated in part by [20], which demonstrates that a certain

formulation of the dictionary learning problem over the sphere has no

spurious local minimizers, even for relatively dense target representations.

The “simplex constrained” analogue of that work, which optimizes over

hyperplanes, requires the target solution to be much sparser [19].
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scale ambiguity to a sign ambiguity, by constraining a to

have unit Frobenius norm; we mitigate the shift ambiguity

by constraining a to be supported on the first k entries.

In general, sτ [ã0] are not be supported on the first k
entries, hence constraining a to be supported on the first k
entries removes the shift symmetry. However, effects of such

shift symmetry still persist. Since the restriction ι∗sτ [ã0]
to the first k entries can be convolved with the sparse signal

s−τ [x0] to produce a near approximation to y:

(ι∗sτ [ã0])⊛ s−τ [x0] ≈ y, (5)

especially when the shift |τ | is small. We will see that (i)

these symmetric solutions ι∗sτ [ã0] persist as local minima

of a natural optimization formulation of the SBD problem,

but that (ii) under conditions, these are the only local minima.

2.2. Global Geometry on the Sphere

We study the following objective function, which can

be viewed as balancing sparsity of x with fidelity to the

observation y: 6

min
a∈Sk−1,x

ψ(a,x)
.
= 1

2‖y − a⊛ x‖22 + λr(x). (6)

When x0 is long and random, it’s more convenient to study

this function through its “marginalization”

ϕ(a)
.
= min

x
ψ(a,x), (7)

which is defined over the sphere S
k−1.

In Figure 1, we plot the function value of ϕ(a) on the

sphere a ∈ S
2: red and blue imply larger and smaller objec-

tive value respectively and there are several local minima.

For this highly nonconvex function, the ground truth a0

achieves the global minimum, while other local minima

ā are very close to certain signed shift truncations of the

ground truth. Figure 1 (right) exhibits an example of a local

minimum in a higher-dimensional problem.

Analysis under Restricted Settings. Demonstrating that

this observation holds in general is challenging: for most

reasonable choices of the regularizer r, there is no closed

form expression for the objective ϕ(a). We develop an

analysis under several simplifying assumptions. Throughout,

we let r(x) be the ℓ1 norm, although similar conclusions

hold for other sparsifying regularizers. With this choice, we

can simplify the objective ϕ by dividing the sphere Sk−1 via

the sign-support pattern of the minimizing x∗(a):

x∗(a) = argmin
x

1
2 ‖y − a⊛ x‖22 + λ ‖x‖1 . (8)

Let I and σ denote the support and sign of x∗

I = supp (x∗) , σ = sign(x∗), (9)

6Similar formulation can be found in lot of sparse representation prob-

lems [17].

then the whole sphere can be divided via the sign support

pattern

S
k−1 =

⋃

σ

Rσ, Rσ = {a | sign(x∗(a)) = σ} . (10)

On each Rσ where the sign support pattern σ remains the

same, the stationary condition for minimizer x∗(a) implies

x∗
I(a) = (C∗

aCa)
−1
I (C∗

ay − λσ)I . (11)

Plugging above expression back to the original objective

function ϕ(a) yields

ϕσ(a) = − 1
2 (C

∗
ay − λσ)

∗
I (C

∗
aCa)

−1
I (C∗

ay − λσ)I

+ 1
2 ‖y‖

2
2 . (12)

Although the objective function ϕ(a) can be substantially

simplified by removing the x variable in this way, it still

maintains a complicated dependence on a. To obtain some

preliminary insights, we make two simplifications for easier

calculation whilst preserving similar geometrical properties:

Simplification I: x0 = δ. We maximally simplify the

underlying sparse signal as a single spike δ and the observa-

tion will be y = a0 ⊛ x0 = ã0. This case itself is trivial,

but its function geometry is a basic but important case to be

understood. Also, as the dimension of the sparse signal x0

increases, the function geometry will converge to this case.

Simplification II: C∗
aCa → I . For a random a ∈ S

k−1,

its expectation satisfies E {C∗
aCa} = I . Here, we simply

use the identity matrix to replace any C∗
aCa and therefore

reduce the complexity of Equation 12.

With these two simplifications, the original objective prob-

lem can be replaced with the following:

minimize ϕ̂(a) subject to a ∈ S
k−1, (13)

where

ϕ̂(a)
.
= min

x

1
2 ‖ã0‖

2
2 +

1
2 ‖x‖

2
2 − 〈ã⊛ x, ã0〉+ λ ‖x‖1 .

In this case, the minimizing x∗(a) has a simple closed form

solution:

x∗(a) = SOFTλ [C
∗
aã0] = SOFTλ

[
Č∗

a0
ιa

]
, (14)

here, SOFTλ [u] = sign(u)max {|u| − λ, 0} is the entry-

wise soft-thresholding operator and Ča0
∈ R

m×m is the

reversed circulant matrix for a0 defined via

Ča0
=

[
s0 [ã0] s−1 [ã0] . . . s−(m−1) [ã0]

]
. (15)

On a constant sign support pattern σ, ϕ̂(a) can be written

into a simpler quadratic form:

ϕ̂σ(a) = − 1
2 ‖(C

∗
aã0 − λσ)I‖

2
2
+ 1

2 ‖ã0‖
2
2 . (16)

For this surrogate ϕ̂(a), we can show that if λ is sufficiently

large compared to the magnitude of x0, every strict local

minimizer is a signed shift truncation of the ground truth:
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Figure 1: Geometry on the ℓ2 ball for fixed a0 and generic x0. Left: the objective ϕ(a) in a low dimensional setting a ∈ S
2 – dark blue

represents small values while dark red represents large values. All local minima are close to signed shift truncations of the ground truth a0,

with a0 itself achieving global minimum. The green lines indicate regions where a are ill-posed as convolutional kernels. Right: a shift

truncation a achieves a local minimum of ϕ(a) in a high dimensional setting. Shown here is the ground truth y = a0 ⊛ x0,a0, and x0

(top right) versus their respective recovered quantities a⊛ x,a, and x (bottom right).

Theorem 2.1. Define the set of possible supports of mini-

mizer x∗ with

I =
{
supp

(
SOFTλ

[
Č∗

a0
ιa

])
| a ∈ S

k−1
}
. (17)

For each nonempty support I =
{
i1 < i2 < · · · < i|I|

}
, let

WI =

[
ι∗s−i1 [ã0]

‖ι∗s−i1 [ã0]‖F

∣∣∣∣∣
ι∗s−i2 [ã0]

‖ι∗s−i2 [ã0]‖F

∣∣∣∣∣. . .
∣∣∣∣∣

ι∗s−i|I| [ã0]∥∥ι∗s−i|I| [ã0]
∥∥
F

]

Suppose that λ < 1 and that for every nonempty I ∈ I,

‖W ∗
I WI − I‖ <

λ2

6
, (18)

then every local minimum ā of ϕ̂ over Sk−1 satisfies either

ā ∈ R0 (in which case ā is also a global maximum), or

ā = ±
ι∗sτ [ã0]

‖ι∗sτ [ã0]‖F
= ±PS [ι

∗s−τ [ã0]] (19)

with x⋆(ā) = ±SOFTλ [‖ι
∗sτ [ã0]‖F ] s−τ [x0] for some

shift τ .

Proof. Please refer to the supplement.

This theorem says that the only local minima in this ideal

case are signed shift truncations of the ground truth a0,

with certain choice of λ. Moreover, on those local min-

ima ā, the minimizing sparse x⋆(ā) correspond to the soft

thresholded, oppositely shifted ground truth x0. The quan-

tity ‖W ∗
I WI − I‖ measures the orthogonality of different

shifts of a0. In particular, if a0 is benign enough in the

sense that any two different shifts of a0 are uncorrelated, or

‖W ∗
I WI − I‖ → 0 for any I , then any nonzero λ guaran-

tees the desired geometry. On the other hand, for a fixed

a0, both |I| and |I| becomes smaller as λ increases, there-

fore the constraint ‖W ∗
I WI − I‖ < λ2

6 is more likely to be

satisfied.

A similar result holds when x0 is separated enough that

copies of the kernel do not overlap. It also holds if x0 is

a long, sufficiently sparse random vector. For example, if

the entries of x0 satisfy a Bernoulli-Gaussian distribution

x0(i) = Ω(i)v(i), with Ω(i) ∼ Ber(θ) and v(i) ∼ N (0, 1),
and the probability θ diminishes sufficiently quickly with

k. We conjecture that this phenomenon holds much more

broadly. In particular, determining how slowly θ can dimin-

ish with k is an open problem.

Comparison with the simplex (ℓ1) constraints. In com-

parison, the objective value of the same function but with

the convolutional kernel a constrained on the ℓ1 norm ball

is shown in Figure 2.

Figure 2: Geometry on the ℓ1 ball: The trivial spike convo-

lutional kernel achieves global minimum and the ground truth

[ 1
3
, 1
3
, 1
3
] becomes a local minimum.

There is a significant difference induced by these two

constraints: the trivial spike kernel (a = δ) becomes the

global minima and other meaningful solutions become local

minima with the ℓ1 norm constraint [2], while the spheri-

cal constraint always renders spurious local minima close

to some signed shift truncation of the ground truth. This

important empirical knowledge of the structure of the local

minima enables us to infer the ground truth from any local

minima.

3. A Two-Stage Algorithm

Inspired by the geometric property that every local min-

imum of the simplified problem (2.2) is a signed shift-

truncation of the ground truth a0, we present a two stage

algorithm for reliable recovery of the ground truth a0 in
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this section. In the first stage, the algorithm recovers some

signed shift truncation of the ground truth, and the following

stage infers the ground truth from this partial recovery.

3.1. Stage I: Find the Signed Shift Truncation

Theorem 2.1 suggests that λ needs to be relatively large

to guarantee that all local minimizers are signed shift trun-

cations of the ground truth. However, this is not sufficient

to guarantee the success of an optimization algorithm due

to the non-differentiability of the ℓ1 regularizer at x⋆ = 0.

Because of this non-differentiability, when λ is too large,

there is a nonzero measure set of a where ‖C∗
ay‖∞ ≤ λ

and therefore x⋆(a) = 0. These a are not correlated with

any signed shift truncation of a0 and are the global maxima

of ϕ. The objective function is constant over this region, so

there is no way to escape using only local information.

One way to cope with this flat global maxima region is

to replace the sparsity penalty function with a differentiable

one. A natural choice is the µ-huber loss function, which

can be seen as an ℓ1 penalty but with a rounded bottom for

|xi| ≤ µ:

hµ(x) =
∑

|xi|≤µ

(
x2i
2µ

+
µ

2

)
+

∑

|xi|>µ

|xi| (20)

As we choose µ ≪ λ, the µ-huber function closely ap-

proximates the ℓ1 norm, which still maintaining the effect

of “smoothing” the flat region. The flat region for the ℓ1

penalty objective occurs when x∗(a) = 0, correspondingly

we define a region as Rh,0 with small x∗(a) such that

Rh,0 := {a ∈ S
k−1 : ‖x∗(a)‖∞ ≤ µ}. (21)

Within the Rh,0 region, the original objective function can

be rewritten into a simpler form:

ϕhµ
(a) = 1

2‖y − a⊛ x‖22 +
λ
2µ‖x‖

2
2 +

µn
2 , (22)

thus the optimality condition for x∗ implies

x∗(a) =
(
C∗

aCa + λ
µ
I
)−1

C∗
ay ≈ µ

λ
C∗

ay. (23)

Plugging x∗(a) back to (6) and ignoring the higher order

term O(µ
2

λ2 ) yields

ϕhµ
(a) ≈ − µ

2λ ‖y ⊛ a‖22 +
1
2 ‖y‖

2
2 +

µn
2 . (24)

In this case, minimization of the objective function

ϕhµ
(a)within region Rh,0 is equivalent to finding the max-

imum eigenvalue of the matrix ι∗C∗
yCyι with the corre-

sponding leading eigenvectors e1(ι
∗C∗

yCyι) achieving the

local minima. However, these points can be excluded from

Rh,0 by setting λ < minv∈e1(ι∗C∗
y
Cyι)

∥∥C∗
yιv

∥∥
∞

.7

7A computationally easier upper bound would be

√

λ1(ι∗C∗
y
Cyι)

k
.

Note that in some scenario, there exists a local minima appearing in either

region Rh,0 or Rc
h,0 regardless of how we set λ. Such extreme case

happens when the ground truth convolutional kernel is only supported on a

small consecutive portion of its full size, hence a tight estimate of the kernel

size is preferred.

Figure 3: Zero Padding a Signed Shift Truncation The original

signed shift truncation (left) and the corresponding zero padded

one (right).

With above modifications, the original flat local max-

ima region Rh,0 becomes concave and always have a direc-

tion of negative curvature for the algorithm to escape Rh,0.

Hence, the first stage of the algorithm can find a signed

shift-truncation of the ground truth ā = ± ι∗sτ [ã0]
‖ι∗sτ [ã0]‖F

as

desired.

3.2. Stage II: Infer the Ground Truth

The second stage of the algorithm aims to recover the

ground truth from its signed shift truncation ā. To recover

the truncated part, we first put ā in a higher dimensional

sphere by zero padding (Figure 3), and then recover the

ground truth a0 on a higher dimensional sphere. Intuitively,

as ā still captures a considerable portion of the ground truth

a0 (the zero padded ā is close to the shifted a0 in a higher

dimensional space), the zero padded ā serves as a good

initialization. This intuition is made rigorous in the following

lemma:

Lemma 3.1. Let λrel = λ/ ‖x0‖∞, suppose the ground

truth a0 satisfies

|〈a0, ιsτ 6=0 [ã0]〉| < λ2rel−
(
2 + 1/λ2rel

)√
1− λ2rel (25)

for any nonzero shift τ , and x0 is separated enough such

that any two nonzero components are at least 2k entries

away from each other. If initialized at some a ∈ S
k−1 that

|〈a,a0〉| > λrel, a gradient descent algorithm minimizing

ϕ(a) recovers the signed ground truth ±a0.

Proof. Please refer to the supplement.

This lemma says when the initial point a is close enough

to the ground truth, the gradient always points to a0 as

long as |〈a0, ιsτ 6=0 [ã0]〉| is sufficiently small. Theorem

2.1 suggests that the first stage of the algorithm finds one

local minimum ā that |〈ā,a0〉| ≥ λrel. Hence, the second

stage of the algorithm, which minimizes the same objective

function but on a higher dimensional sphere, recovers the

ground truth up to sign shift ambiguity as desired.

To ensure accurate recovery, it is important to take the

effect of λ on the function geometry into consideration. A

larger λ encourages a sparser x and induces a simpler and

smoother function landscape, which effectively eliminates

undesirable local minima that are not close to any signed
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shift truncations, as shown in Figure 4. On the other hand, a

smaller λ emphasizes more on the accurate recovery of the

signal, therefore the global minima of (6) will be closer to

the ground truth when λ decreases.
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Figure 4: Function Geometry with Varying λ: The objective

ϕ(a) over the hemisphere for λ = 10−1, 10−3, 10−6. Here a0 =
PS2 [[1, 8, 2]] and x0 ∼ Ber(.1) ⊙ N (0, 1). The ground truth

kernel a0 and its shift-truncations PS2 [[8, 2, 0]], PS2 [[0, 1, 8]] are

shown in red, and sign-flips PS2 [−[8, 2, 0]], PS2 [−[0, 1, 8]] are

shown in magenta. Notice that each signed shift truncation shown

on the hemisphere is close to a corresponding local minima, while

as the objective landscape becomes less regularized as λ shrinks.

This geometric effect induced by λ suggests a contin-

uation method in the second stage of the algorithm. We

start with a relatively big λ for smoother function geometry,

which encourages the algorithm to converge to one mean-

ingful local minimum close to some signed shift truncation

of the ground truth. Then run the same algorithm with de-

creasing sequence of λ to produce a finer approximation

of the ground truth. The overall algorithm is described in

Algorithm 1.

Algorithm 1 Nonconvex Sparse Blind Deconvolution

Ensure: Observation data y, regularization parameter λ0
and λmin, continuation parameter β > 1

1: Solve a(0) = argminϕλ0
(a) on S

k−1 with random

initialization

2: Set λ1 = λ0, zero pad a(0) to a(1) and a(1) ∈ S
k′−1

(k′ > k).
3: while λk > λmin do

4: Solve a(k+1) = argminϕλk
(a) on S

k′−1 with ini-

tialization a(k).

5: λk+1 = λk/β
6: end while

We need to note that solving a = argminϕλ(a) in Al-

gorithm 1 involves iteration between (i) finding the marginal-

ization over x∗(a) step, and (ii) updating a based on the

gradient/Hessian of ϕλ(a). This could be very computation-

ally consuming, a more efficient variant would be to optimize

over the cross space of a and x together. The corresponding

algorithm can be easily adapted to fit into the same general

framework. The only things we want to emphasize in the

proposed algorithm are the dimension lifting of the sphere

and the continuation of λ.

4. Further Extensions

In this section, we extend our algorithm to handle two

other deconvolution problems of practical interests: image

deblurring and convolutional dictionary learning. The pro-

posed two stage algorithm can be modified and applied to

these more complicated applications.

4.1. Image Deblurring

Image deblurring aims to recover a sharp natural image

from its blurred observation due to unknown photographic

processes such as camera shake or defocus. Although the

natural images are not necessarily sparse, it is widely ac-

knowledged that their gradients are approximately sparse.

Let y = a0 ⊛ x0 denote the observed blurry image, which

is the convolution of the original sharp image x0 and the

blurring kernel a0. Because of the linearity of the convolu-

tion operator, the gradient of the blurred image equals the

convolution of the kernel and gradient of the original sharp

image, which is usually sparse as desired

∇xy = a0 ⊛∇xx0, ∇yy = a0 ⊛∇yx0. (26)

Here, ∇x and ∇y denote derivatives in the x and y direc-

tions. In this application, ∇xx0 and ∇yx0 are the underly-

ing sparse signals, and the blind image deblurring problem

can be cast as solving:

min
a∈S

k−1

+
,x1,x2

{
1
2‖∇xy − a⊛ x1‖

2
2 + λr(x1) (27)

+ 1
2‖∇yy − a⊛ x2‖

2
2 + λr(x2)

}
.

Here, Sk−1
+ denotes the intersection of the unit sphere and

the positive orthant. In this application, the non-negativity of

the blurring kernel removes the sign ambiguity. We observe

in experiments that local minimizers are all near some shift

truncation of the ground truth kernel. The same two stage

algorithm can therefore be applied to infer the ground truth.

4.2. Convolutional Dictionary Learning

Convolutional dictionary learning (CDL) is an important

problem in machine learning for images, speeches, as well as

scientific problems like microscopy data analysis and neural

spike sorting. The observation signal y is the superposition

of convolutions of N pairs of kernels a0n and corresponding

coefficients x0n:

y =
∑N

n=1a0n ⊛ x0n. (28)

Blind deconvolution can be seen as a special case of CDL

with N = 1. If the coefficients x0n are sparse, a natural way

to extend our knowledge of SBD would be to assume all N
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convolutional kernels having unit Frobenius norm and cast it

as minimizing following objective function over the product

of N spheres:

min
an∈Sk−1

min
xn

1
2‖y−

∑N

n=1an⊛xn‖
2
2+λ

∑N

n=1r(xn). (29)

We anticipate that all the local minima are near signed shift

truncations of the ground truth, provided the target kernels

a0n are sufficiently diverse. The modified two stage algo-

rithm still manages to capture the partial information offered

by local minima and hence recovers the ground truth. Ex-

perimental results are provided in Section 5.4 to corroborate

this claim.

5. Experiments

In this section, we investigate the performance of our

algorithm on both synthetic and real data. We first report

a systematic investigation, performed in [4], of the perfor-

mance of our algorithm on synthetic data, which are designed

to mimic properties of the microscopy data analysis problem.

In Sections 5.2-5.4, we present experiment results showing

how our method performs on real data from microscopy and

image deblurring.

5.1. Evaluation on Synthetic Data

Noise-free data: we generate the noise-free observation sig-

nal of size m = 256 × 256 through circular convolution

between a kernel of size k and a random underlying activa-

tion signal with a Bernoulli distribution with sparsity θ, i.e.

xi
i.i.d.
∼ Ber(θ), or x ∼ Ber(θ). We plot the kernel recovery

error for varying kernel size k and sparsity level θ in the left

of Figure 5 [4]. Each point on the diagram is the average

of 20 independent measurements. The algorithm performs

excellently in the blue regions, but begins to fail in the red

regions, where either the kernel size is large or the under-

lying activation signal is dense. The region where typical

STM measurements are performed are bounded below by the

white dashed line, where the proposed algorithm achieves

satisfying performance.

Noisy data: we generate convolutional signals by convolv-

ing fixed kernel of dimension k, k/m = 0.14 with the ran-

dom activation map x ∼ Ber(θ) of dimension m, and apply-

ing additive Gaussian noise. We test the performance of our

algorithm for varying sparsity θ and noise power. The result

is shown in Figure 5 (right): the algorithm achieves noise-

robust recovery when the sparsity constraint is satisfied.

5.2. Microscopy Data Analysis

We apply our algorithm on experimental microscopy data

obtained from a NaFeCoAs sample. Our results shown in

Figure 6 indicate that the proposed algorithm manages to re-

cover the missing details of the ripples in the Fourier domain

of the defect, which encode the physical scattering processes

of electrons at work.

Figure 5: Recovery accuracy [4]. Left: phase transition diagram

from noise-free simulated results. Right: performance of algorithm

1 in the presence of additive noise in the measurement; the error

increases for small θ due to a lack of samples, whereas extremely

large θ leads to algorithmic failure.

Figure 6: STM Data Analysis. From left to right: the microscopy

images, extracted convolutional kernels (defect patterns), and their

respective Fourier magnitude images.

5.3. Image Deblurring

We test our algorithm on the image deblurring dataset

from [13], solving (28) to recover the convolutional kernel.

To clearly separate the inaccuracy of the algorithm and the

universal blurring kernel model, all the experiments are done

on three kinds of blurred images: (i) synthetic blurred im-

ages generated by the convolution of sharp images and blurry

kernels; (ii) noisy blurred images generated by adding Gaus-

sian noise to the clean synthetic blurred images (SNR=100);

and (iii) real blurry images taken with camera shakes [13].

We compare with algorithms by Zhang et al.[26], Kr-

ishnan et al.[11], Sun et al.[22], and Liu et al.[16].8

Because of the shift ambiguity, we evaluate the accu-

racy of the recovered blurring kernel considering all pos-

sible shifts. The kernel recovery error is defined as

minτ ‖ι
∗sτ [ã] / ‖a‖1 − a0/ ‖a0‖1‖F , and the cumulative

distribution is shown in Figure 7.

We use the same non-blind deblurring algorithm from

[10], with the same parameter. We consider the blurred

image using the ground truth kernel to be the bench mark,

and evaluate the quality of the deblurred image by calculating

the Frobenius norm of its difference to such bench mark.

8We use the default parameters for these algorithms. It’s possible that

better performance could be obtained by tuning the parameters more care-

fully. In our algorithm, we fix the λ’s to be 0.1, 0.01, 0.001, 0.001 for all

the instances.
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Figure 7: Blur Kernel Recovery Error: Cumulative distributions

of recovered blur kernel error from synthetic (left), noised(middle)

and real (right) blurry images.

Results are shown are in Figure 8.

Figure 8: Non-blind Restoration Error: Cumulative distribu-

tions of deblurred image error from synthetic (left), noised(middle)

and real (right) blurry images.

Our algorithm achieves better convolutional kernel re-

covery for all three types of images, but its improvement

on deblurred image is less obvious, especially for real im-

ages. This could be due to (i) the convolutional kernel in

this dataset is not strictly uniform across the image, and (ii)

the non-blind deconvolution algorithm exploits the heavy-

tailed distribution of a natural image’s gradient and becomes

less sensitive to the accuracy of the recovered convolutional

kernel.

5.4. Convolutional Dictionary Learning

We show results of recovering multiple convolutional

kernels on both synthetic data (Figure 9) and real STM data

(Figure 10). In the synthetic data, the three convolutional

kernels are of size 16×16 and their corresponding activation

signals are generated through a Bernoulli model of sparsity

0.005. Results of both stages of the algorithm are shown

in Figure 9: the first stage returns kernels close to some

shift truncations of the ground truth, and the second stage

recovers the ground truth on a higher dimensional space.

Figure 9: Multi Kernel Blind Deconvolution on Synthetic Data:

Input image (left) and the recovered convolutional kernels of Stage

I and Stage II of the algorithm (right).

We repeat this experiment with microscopy data obtained

from a NaFeAs sample. The algorithm manages to differenti-

ate the two convolutional kernels (defect patterns), as shown

in Figure 10. For this material, the kernel orientations de-

pend on the history of the material (stress, temperature, etc.),

and using convolutional dictionary learning can be used to

automatically detect these features.

Figure 10: Multi Kernel Blind Deconvolution on Real STM

Image: Input image (left) and recovered convolutional kernels and

their corresponding activation signals (right).

6. Discussions

This work studies the global geometry of a nonconvex

optimization problem for SBD when the kernel is assumed

to have unit Frobenius norm. In this setting, we find that all

the local minima are benign, in the sense that they are close

to some signed shift truncation of the ground truth. With this

insight, we propose a two stage algorithm that recovers the

ground truth by exploiting the information hidden in local

minima.

This problem reveals the challenges faced when analyz-

ing the SBD problem via a geometrical approach. For prob-

lems enjoying stronger symmetry properties [20, 21], similar

approaches yield a global understanding of the function ge-

ometry and recovery guarantees. We expect that the weak

symmetries in SBD make a major contribution to the diffi-

culties encountered for this problem.

There are lots of additional further directions could be of

great interests for both theory and application: Our empirical

results show that the our characterization of local minima

carries through to the convolutional dictionary learning prob-

lem, which can also be efficiently solved by slight adaptation

of the proposed algorithm. However, the theory part is open,

it would be interesting to know how many kinds of kernels,

or what kinds of kernels are recoverable, probably by some

measures of incoherence, which is a common assumption in

dictionary learning problem.

Two other imperfections we encounter in scientific mea-

surement are resolution limit and measurement error, which

inspire us to consider (i) if it’s possible to integrate blind

deconvolution and super-resolution process together; (ii) if

we can come up with a robust blind deconvolution algorithm

to automatically rule out noisy entries.
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