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Abstract

Deep Convolution Neural Networks (DCNNs) are capa-

ble of learning unprecedentedly effective image representa-

tions. However, their ability in handling significant local

and global image rotations remains limited. In this paper,

we propose Active Rotating Filters (ARFs) that actively

rotate during convolution and produce feature maps with

location and orientation explicitly encoded. An ARF acts

as a virtual filter bank containing the filter itself and its

multiple unmaterialised rotated versions. During back-

propagation, an ARF is collectively updated using errors

from all its rotated versions. DCNNs using ARFs, referred

to as Oriented Response Networks (ORNs), can produce

within-class rotation-invariant deep features while main-

taining inter-class discrimination for classification tasks.

The oriented response produced by ORNs can also be

used for image and object orientation estimation tasks.

Over multiple state-of-the-art DCNN architectures, such

as VGG, ResNet, and STN, we consistently observe that

replacing regular filters with the proposed ARFs leads to

significant reduction in the number of network parameters

and improvement in classification performance. We report

the best results on several commonly used benchmarks 1.

1. Introduction

The problem of orientation information encoding has

been extensively investigated in hand-crafted features, e.g.,

Gabor features [15, 17], HOG [9], and SIFT [31]. In

Deep Convolution Neural Networks (DCNNs), the inherent

properties of convolution and pooling alleviate the effect of

local transitions and warps; however, lacking the capability

to handle large image rotation limits DCNN’s performance

in many visual tasks including object boundary detection

[16, 32], multi-oriented object detection [6], and image

classification [20, 23].

1Source code is publicly available at zhouyanzhao.github.io/ORN

Figure 1. An ARF is a filter of the size W × W × N , and

viewed as N-directional points on a W × W grid. The form of

the ARF enables it to effectively define relative rotations, e.g., the

head rotation of a bird about its body. An ARF actively rotates

during convolution; thus it acts as a virtual filter bank containing

the canonical filter itself and its multiple unmaterialised rotated

versions. In this example, the location and orientation of birds in

different postures are captured by the ARF and explicitly encoded

into a feature map.

Due to the lack of ability in fully understanding rota-

tions, the most straightforward way for DCNN to decrease

its loss is “learning by rote”. The visualization of convolu-

tional filters [11, 46] indicates that different rotated versions

of one identical image structure are often redundantly

learned in low-level, middle-level, and relatively high-level

filters, such as those in the VGG-16 model trained on

ImageNet [10]. When object parts rotate relatively to

objects themselves, e.g., bird’s head to its body, it requires

learning multiple combinations of each orientation-distinct

component with more convolutional filters. In such cases,

the network could give up understanding the concept of the

whole object and tend to use a discriminative part of it to

make the final decisions [47]. The learning-by-rote strategy

needs a larger number of parameters to generate orientation-

redundant filters, significantly increasing both the training

time and the risk of network over-fitting. Besides, the

training data is not sufficiently utilized since the limited

instances are implicitly split into subsets, which could

increase the possibility of filter under-fitting. To alleviate

such a problem, data augmentation, e.g., rotating each
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training sample into multi-oriented versions, is often used.

Data augmentation improves the learning performance by

extending the training set. However, it usually requires

more network parameters and higher training cost.

In this paper, we propose Active Rotating Filters (ARFs)

and leverage Oriented Response Convolution (ORConv)

to generate feature maps with orientation channels that

explicitly encode the location and orientation information of

discriminative patterns. Compared to conventional filters,

ARFs have an extra dimension to define the arrangement

of oriented structures. During the convolution, each ARF

rotates and produces feature maps to capture the response

of receptive fields from multiple orientations, as shown in

Fig. 1. The feature maps with orientation channels carry

the oriented response along with the hierarchical network

to produce high-level representations, endowing DCNNs

the capability of capturing global/local rotations and the

generalization ability for rotated samples never seen before.

Instead of introducing extra functional modules or

new network topologies, our method implements the prior

knowledge of rotation to the most basic element of DCNNs,

i.e., the convolution operator. Thus, it can be naturally

fused with modern DCNN architectures, upgrading them to

more expressive and compact Oriented Response Networks

(ORNs). With the orientation information that ORNs

produce, we can either apply SIFT-like feature alignment

to achieve rotation invariance or perform image/object

orientation estimation. The contributions of this paper are

summarized as follows:

• We specified Active Rotating Filters and Oriented Re-

sponse Convolution, improved the most fundamental

module of DCNN and endowed DCNN the capability

of explicitly encoding hierarchical orientation infor-

mation. We further applied such orientation infor-

mation to rotation-invariant image classification and

object orientation estimation.

• We upgraded successful DCNNs including VGG,

ResNet, TI-Pooling and STN to ORNs, achieving

state-of-the-art performance with significantly fewer

network parameters on popular benchmarks.

2. Related Works

2.1. Hand­crafted features.

Orientation information has been explicitly encoded in

classical hand-crafted features including Weber’s Law de-

scriptor [5], Gabor features [15, 17], SIFT [31], and LBP

[33, 1]. SIFT descriptor [31] and its modification with

affine-local regions [25] find the dominant orientation of

a feature point, according to which statistics of local gra-

dient directions of image intensities are accumulated to

give a summarizing description of local image structures.

With dominant orientation based feature alignment, SIFT

achieves invariance to rotation and robustness to moderate

perspective transforms [2, 12]. Starting from the gray

values of a circularly symmetric neighbor set of pixels in

a local neighborhood, LBP derives an operator that is by

definition invariant against any monotonic transformation

of the gray scale [33, 1]. Rotation invariance is achieved

by minimizing the LBP code value using the bit cyclic

shift. Other representative descriptors including CF-HOG

[38] that uses orientation alignment and RI-HOG [30] that

leverages radial gradient transform to be rotation invariant.

2.2. Deep Convolutional Neural Networks.

Deep Convolution Neural Networks have the capability

of processing transforms including moderate transitions,

scale changes, and small rotations. Such capability is

endowed with the inherent properties of convolutional op-

erations, redundant convolutional filters, and hierarchical

spatial pooling [35, 20]. More general pooling operations

[26] permit to consider invariance to local deformation that

however does not correspond to specific prior knowledge.

Data augmentation. Given rich, and often redundant,

convolutional filters, data augmentation can be used to

achieve local/global transform invariance [42]. Despite

the effectiveness of data augmentation, the main drawback

lies in that learning all the possible transformations of

augmented data usually requires more network parameters,

which significantly increases the training cost and the risk

of over-fitting. Most recent TI-Pooling [23] alleviates

the drawbacks by using parallel network architectures for

the considered transform set and applying the transform

invariant pooling operator on their outputs before the top

layer. The essence of TI-Pooling comprises multi-instance

learning and weight sharing which help to find the most

optimal canonical instance of the input images for training,

as well as reducing the redundancy in learned networks.

Nevertheless, with built-in data augmentation, TI-Pooling

requires significantly more training and testing cost than a

standard DCNN.

Spatial Transform Network. Representatively, the

spatial transformer network (STN) [20] introduces an ad-

ditional network module that can manipulate the feature

maps according to the transform matrix estimated with a

localisation sub-CNN. STN contributes a general frame-

work for spatial transform, but the problem about how to

precisely estimate the complex transform parameters by

CNN remains not being well-solved [14, 34]. In [21, 36],

the Convolutional Restricted Boltzmann Machine (C-RBM)

induces transformation-aware filters, i.e., it yields filters

that have a notion with which specific image transformation

they are used. From the view of group theory, Cohen et

al. [8] justified that the spatial transform of images could

be reflected in both feature maps and filters, providing a

theoretical foundation for our work. Most recent works
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Figure 2. An ARF F is clockwise rotated by θ to yield its rotated variant Fθ in two steps: coordinate rotation and orientation spin.

[43, 13] have tried rotating conventional filters to perform

rotation-invariant texture and image classification; however,

without upgrading conventional filters to multi-oriented

filters with orientation channels, their capability about cap-

turing hierarchical and fine-detailed orientation information

remains limited.

3. Oriented Response Networks

Oriented Response Networks (ORNs) are deep con-

volutional neural networks using Active Rotating Filters

(ARFs). An ARF is a filter that actively rotates dur-

ing convolution to produce a feature map with multiple

orientation channels. Thus, an ARF acts as a virtual

filter bank with only one filter being materialized and

learned. With ARFs, ORNs require significantly fewer

network parameters with negligible computation overhead

and enable explicitly hierarchical orientation information

encoding.

In what follows, we address three problems in adopting

ARFs in DCNN. First, we construct a two-step technique to

efficiently rotate an ARF based on the circular shift property

of Fourier Transform. Second, we describe convolutions

that use ARFs to produce feature maps with location and

orientation explicitly encoded. Third, we show how all

rotated versions of an ARF contribute to its learning during

the back-propagation update stage.

3.1. Active Rotating Filters

An Active Rotating Filter (ARF) is a filter of the size

W × W × N that actively rotates N − 1 times during

convolution to produce a feature map of N orientation

channels, Fig. 2. Therefore, an ARF F can be virtually

viewed as a bank of N filters (N×W×W×N ), where only

the canonical filterF itself is materialized and to be learned,

and the remaining N−1 filters are its unmaterialized copies.

The n-th filter in such a filter bank, n ∈ [1, N − 1], is

obtained by clockwise rotating F by 2πn
N

.

An ARF contains N orientation channels and is viewed

as N -directional points on a W × W grid. Each element

in an ARF F can be accessed with
−→
Fij

(n) where 0 ≤

|i|, |j| ≤ W−1
2 , 0 ≤ n ≤ N − 1, i, j, n ∈ N. An ARF F is

clockwise rotated by θ to yield its rotated variantFθ through

the following two steps, coordinate rotation and orientation

spin.

Coordinate Rotation. An ARF rotates around the

origin O, Fig. 2, and the point at (p, q) in Fθ is calcu-

lated from four neighbors around (p′, q′) in F , ( p′ q′ ) =

( p q )
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

, using bilinear interpolation

−−−→
F ′

θ,pq = (1− µ)(1− ω)
−−→
Fuv + (1− µ)ω

−−−−→
Fu,v+1

+ µ(1− ω)
−−−−→
Fu+1,v + µω

−−−−−−→
Fu+1,v+1,

(1)

where u = ⌊p′⌋, v = ⌊q′⌋, µ = p′ − u, ω = q′ − v. Note

that points outside the inscribed circle are padded with 0.

Orientation Spin. As discussed, an ARF can be viewed

as N -directional points on a grid. Each N -directional

point
−−−→
F ′

θ,pq is the N -points uniform sampling of a desired

oriented responseF ′
θ,pq(α), which is a continuous periodic

function of angle α with period 2π. After the coordinates

rotation, it still requires a clockwise spin by θ to yield
−−−→
Fθ,pq ,

which is, in fact, the quantization of F ′
θ,pq(α − θ), Fig. 2.

Therefore, such spin procedure can be efficiently tackled

in Fourier domain by using the circular shift property of

Discrete Fourier Transforms (DFT),

X(k) ≡ DFT{
−−−→
F ′

θ,pq
(n)}

=

N−1
∑

n=0

−−−→
F ′

θ,pq
(n)e−jk 2πn

N , k=0,1,...,N−1,
(2)

−−−→
Fθ,pq

(n) ≡ IDFT{X(k)e−jkθ}

=
1

N

N−1
∑

k=0

X(k)ejk(
2πn

N
−θ), n=0,1,...,N−1.

(3)

To smoothly process all rotation angles, ARFs require

a considerable amount of orientation channels. In practice,

thanks to the orientation ‘interpolation’ by multi-layer pool-

ing operations, we can use a limited amount of orientations
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to guarantee the accuracy. The successful practice of

DCNNs, e.g., VGG [37] and ResNet [18, 19], shows that

the stacks of multiple small filters are more expressive

and parameters-efficient than large filters. Moreover, when

using the combination of small filters and a limited number

of orientation channels, the computational complexity of ro-

tating ARF can be further reduced, since both the coordinate

rotation and the orientation spin can be calculated by the

circular shift operator and implemented via high-efficient

memory mapping under reasonable approximations. Take

a 3 × 3 × 8 ARF F̂ as an example, calculations of its θ

clockwise rotated version F̂θ are formulated as

−−−−→
F̂ ′

θ,〈i〉 =
−−−−−−−−−−−→
F̂ ′

〈(i−k) mod N〉, i∈I,
−→
F̂θ

(n) =
−→
F̂ ′

θ
((n−k) mod N), n=0,1,...,N−1,

(4)

where ∀k ∈ N, θ = k 2π
N
, N = 8 and I =

(

7 0 1
6 2
5 4 3

)

is a

mapping table that defines the index of each surrounding

element, which means
−−→
F̂〈0〉 ≡

−−→
F̂0,1,

−−→
F̂〈1〉 ≡

−−→
F̂1,1,

−−→
F̂〈2〉 ≡

−−→
F̂1,0,

−−→
F̂〈3〉 ≡

−−−→
F̂1,−1 and so on.

Given the above, we use 1 × 1 and 3 × 3 ARFs with 4
and 8 orientation channels in most experiments.

3.2. Oriented Response Convolution

An ARF actively rotates N −1 times during convolution

to produce a feature map of N orientation channels, and

such feature map explicitly encodes both location and

orientation information. As an ARF is defined as the size

W × W × N , both an ARF F and an N -channel feature

map M can be viewed as N -directional points on a grid.

With ARF, we define the Oriented Response Convolution

over F andM, denoted as M̃ = ORConv(F ,M). The

output feature map M̃ consists of N orientation channels

and the k-th channel is computed as

M̃(k) =

N−1
∑

n=0

F
(n)
θk
∗M(n), θk = k

2π

N
, k=0,...,N−1, (5)

where Fθk is the clockwise θk-rotated version of F , F
(n)
θk

and M(n) are the n-th orientation channel of Fθk and M
respectively.

According to (5), the k-th orientation channel of the

output feature map M̃ is generated by θk rotated versions

of the materialised ARF. It means that in each oriented

response convolution, the ARF proactively captures image

response in multiple directions and explicitly encodes its

location and orientation into a single feature map with

multiple orientation channels, visualized in Fig. 3. (5)

also demonstrates that each orientation channel of the ARF

contributes to the final convolutional response respectively,

endowing ORNs the capability of capturing richer and more

fine-detailed patterns than a regular CNN.

Figure 3. Example feature maps produced by one ARF at each

layer of an ORN trained on the rotated MNIST dataset, with digit

‘4’ in different rotations as the inputs (one network layer per

row, one input per column). The right-most column magnifies

sample regions in feature maps. It clearly shows that a feature

map explicitly encodes position and orientation. At the second

layer, an image is extended to an omnidirectional map to fit

ORConv. At the second-to-last (ORConv4) layer, deep features

are observed in similar values but in different orientations, which

demonstrates that orientation information is extracted by ORNs.

The last (ORAlign) layer performs SIFT-like alignment to enable

rotation-invariance (Best viewed zooming on screen).

3.3. Updating Filters

During the back-propagation, error signals δ(k) of all

rotated versions of the ARF are aligned to δ
(k)
−θk

using (1)

and (2), and aggregated to update the materialised ARF,

δ(k) =
∂L

∂Fθk

, θk = k
2π

N
, k=0,1,...,N−1,

F ← F − η

N−1
∑

0

δ
(k)
−θk

,

(6)

where L stands for training loss and η for learning rate.

An ARF acts as a virtual filter bank containing the ma-

terialized canonical filter itself and unmaterialised rotated

versions. According to (6), the back-propagation collec-

tively updates the materialised filter only, so that training

errors of appearance-like but orientation-distinct samples

are aggregated. In low-level layers, such collective updating
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