
Outlier-Robust Tensor PCA

Pan Zhou∗ Jiashi Feng∗

∗ National University of Singapore, Singapore

pzhou@u.nus.edu elefjia@nus.edu.sg

Abstract

Low-rank tensor analysis is important for various real

applications in computer vision. However, existing meth-

ods focus on recovering a low-rank tensor contaminated

by Gaussian or gross sparse noise and hence cannot effec-

tively handle outliers that are common in practical tensor

data. To solve this issue, we propose an outlier-robust ten-

sor principle component analysis (OR-TPCA) method for

simultaneous low-rank tensor recovery and outlier detec-

tion. For intrinsically low-rank tensor observations with ar-

bitrary outlier corruption, OR-TPCA is the first method that

has provable performance guarantee for exactly recovering

the tensor subspace and detecting outliers under mild con-

ditions. Since tensor data are naturally high-dimensional

and multi-way, we further develop a fast randomized algo-

rithm that requires small sampling size yet can substantially

accelerate OR-TPCA without performance drop. Experi-

mental results on four tasks: outlier detection, clustering,

semi-supervised and supervised learning, clearly demon-

strate the advantages of our method.

1. Introduction

In this work, we consider outlier-robust tensor principle

component analysis (OR-TPCA) – a new problem for tensor

data analysis. As shown in Fig. 1, suppose we are given a

3-way tensor datum X ∈ R
n1×n2×n3 that is a mixture of

clean low-rank tensor L0 and sparse outlier noise E0:

X = L0 + E0.

OR-TPCA aims to address such a problem, i.e. how to ex-

actly recover the low-rank tensor L0 (or its column space)

in presence of outliers. This problem is important in many

real applications, such as image/video denoising and in-

painting [1, 2], data mining [3], collaborative filtering [4],

text analysis [5], etc. On one hand, recent research [6]

shows that high dimensional tensor data of interest, such as

videos and image collections, are usually intrinsically low-

rank or approximately so. Thus, low-rank tensor data anal-

ysis is seeing increasingly more applications. On the other

hand, outliers or sample-specific corruptions are common

in real data due to sensor failures, malicious tampering, or

Outlier-corrupted tensor Intrinsically low-rank tensor Outlier tensor

Figure 1: The problem solved by this work: isolate the clean

low-rank component from outliers for an outlier-corrupted

tensor.

other system errors [7, 8]. In these cases, large errors con-

centrate only on a number of samples or several parts of

data. These two factors together lead to the problem of re-

covering low-rank tensor data from outlier corruptions. But,

to date, most low-rank tensor analysis methods [2, 9–13]

simply assume the noise to be Gaussian or sparse and thus

cannot handle outliers or sample-specific corruptions. OR-

TPCA substantially generalizes outlier-robust matrix PCA

(OR-PCA) problems [7, 14, 15] by not only considering 2-

way data (matrix) and providing wider applications.

In this work, we develop the first algorithmic solution

to this problem both theoretically and practically. We per-

form robust low-rank analysis on the raw tensor data di-

rectly and propose an outlier-robust tensor principle compo-

nent analysis (OR-TPCA) method (sharing the name with

the problem) which recovers the tensor subspace and de-

tect outliers through polynomial-time convex optimization.

We also provide theoretical performance guarantee for OR-

TPCA: under mild conditions, OR-TPCA can recover the

column space of L0 and detect outliers exactly.

Moreover, since tensor data are naturally multi-way and

high-dimensional, e.g. long video sequences and millions-

of-image collection, algorithm efficiency is critical in prac-

tical applications. Therefore, we develop a fast OR-TPCA

algorithm. It first randomly samples a small fraction of sam-

ples and exactly recovers the underlying subspace from the

sampled data that is also shared by the entire data. Thus,

the recovered low-rank subspace is the desired one, and by

utilizing it, outliers in remaining data can also be effectively

detected. We further prove that when the size of randomly

sampled data is lower bounded by a positive constant which

is much less than the overall data number, fast OR-TPCA

2263

exactly recovers the tensor column space and detect out-

liers. In fact, this is the first algorithm that can exactly solve

a tensor low-rank recovery problem in linear time (w.r.t. the

data size) with theoretical guarantees.

Recently, based on t-SVD [16, 17] and tensor tubal

rank [18], Lu et al. [2] extend R-PCA [11] from 2-way ma-

trix to 3-way tensor data and consider the robust tensor PCA

(R-TPCA) problem:

min
L,E

‖L‖∗ + λ‖E‖1, s.t. X = L+ E ∈ R
n1×n2×n3 ,

where ‖L‖∗ and ‖E‖1 are tensor nuclear and ℓ1 norms, re-

spectively. However, R-TPCA still assumes that noise is

sparse and uniformly distributed across E0. It cannot effec-

tively handle outlier corruptions. Besides, we focus on a

different problem and thus there exist critical differences in

theory analysis and guarantees. OR-TPCA solves a prob-

lem that is more difficult for getting theoretical guarantee.

Indeed, exact recovery is impossible in presence of mali-

cious corruptions. The best one can hope for is to cap-

ture exactly or approximately some structures of the prob-

lem [14,15]. Also our approach differs in key analysis tech-

niques, which we believe will prove much more broadly ap-

plicable and thus be of general interest.

The contributions of this paper are as follows:

1) We propose a novel outlier-robust tensor principle

component analysis (OR-TPCA) method for low-

rank tensor analysis. OR-TPCA handles outliers and

sample-specific corruptions which fail other low-rank

tensor analysis methods.

2) We prove that OR-TPCA succeeds with high probabil-

ity requiring mild conditions, even in challenging situ-

ations where the rank of L0 and the number of outliers

E0 are as high as O(n/ log(n)) and O(n) respectively.

Here n is the dimension along which outliers are dis-

tributed.

3) The developed fast OR-TPCA algorithm has low com-

plexity that is linear w.r.t. data size, and has provable

recovery guarantee.

2. Notations and Preliminaries

2.1. Notations

For brevity, we summarize the main notations in Ta-

ble 1. The conjugate transpose A∗ ∈C
n2×n1×n3 of a ten-

sor A ∈ C
n1×n2×n3 is obtained by conjugate transposing

each frontal slice and then reversing the order of transposed

frontal slices 2 through n3. I∈R
n×n×n3 denotes the iden-

tity tensor whose first frontal slice is the n×n identity ma-

trix, and other frontal slices are all zeros.

Now we consider the Discrete Fourier transformation

(DFT) on tensor which is core to the tensor related defi-

nitions in Sec. 2.2. Let Ā ∈ C
n1×n2×n3 represent the DFT

of A ∈ R
n1×n2×n3 along the 3rd dimension. We can com-

pute Ā by the Matlab command Ā = fft(A, [], 3) and use

Table 1: Summary of main notations in the paper.
A A tensor. a A vector.
A A matrix. a A scalar.

I The identity tensor. A∗ The conjugate transpose of A.

Aijk The (i, j, k)-th entry of A. Ā The DFT of A.
A(i,:,:) The i-th horizontal slice ofA‖A‖1 ‖A‖1 =

∑
ijk

|Aijk|.
A(:,i,:) The i-th lateral slice of A. ‖A‖∞ ‖A‖∞ = maxijk |Aijk|.
A(:,:,i) The i-th frontal slice of A. ‖A(:,i,:)‖F ‖A(:,j,:)‖F =

√∑
ik
|Aijk|2.

A
(i)

A
(i) = A(:, :, i). ‖A‖2,1 ‖A‖2,1=

∑
j
‖A(:, j, :)‖F .

A(i,j,:)The (i, j)-th tube of A. ‖A‖F ‖A‖F =
√∑

ijk
|Aijk|2.

rank(A) The rank of matrix A. ‖A‖∗ Sum of the singular values ofA.

‖A‖F ‖A‖F =
√∑

i,j
A2

ij
.

Θ The index of outliers in E . PΘ The projection onto Θ.

P
Θ⊥ The projection onto Θ⊥.

B(E)
{Ẽ : Ẽ(:,i,:)=

E(:,i,:)
‖E(:,i,:)‖F

(i

PU (A)PU (A) = U ∗ U∗ ∗ A. ∈ Θ); Ẽ(:, i, :)=0 (i �∈ Θ)}.

the inverse DFT to obtain A = ifft(Ā, [], 3). We define

Ā ∈ C
n1n3×n2n3 as

Ā = bdiag(Ā) =

⎡
⎢⎣
Ā(1)

Ā(2)

. . .
Ā(n3)

⎤
⎥⎦ ,

where bdiag(·) unfolds the tensor Ā to a block diagonal

matrix Ā. We further define the block circulant matrix

bcirc(A) ∈ R
n1n3×n2n3 of A as

bcirc(A) =

⎡
⎢⎣
A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎤
⎥⎦ . (1)

The definitions of Ā and bcirc(A) are the basis of tensor

rank and nuclear norm that will be introduced subsequently.

2.2. Preliminaries

Aiming at recovering the low-rank tensor component, we

first introduce two widely used definitions on tensor rank,

i.e. the tensor average and tubal rank.

Definition 2.1. (Tensor average and tubal rank) [2, 19]

For an arbitrary tensor A ∈ R
n1×n2×n3 , assume r =

(rank(Ā(1)); · · · ; rank(Ā(n3))) ∈ R
n3 . The tensor aver-

age rank ranka(A) of A is defined as

ranka(A)=
1

n3

n3∑

i=1

ri=
1

n3
rank(Ā)=

1

n3
rank(bcirc(A)).

The tensor tubal rank rankt(A) is defined as the number of

nonzero singular tubes of S, i.e.,

rankt(A) = #{i : S(i, i, :) �= 0} = max (r1, · · · , rn3
),

where S is from the t-SVD (see below) of A = U ∗S ∗V∗.

As minimizing the tensor average or tubal rank is NP-

hard, we use the tensor nuclear norm to relax the tensor

average rank as in [2]. Before that, we first introduce the t-

product definition, according to which we can compute the

product between 3-way tensors.

Definition 2.2. (T-product) [17] The t-product between

A ∈ R
n1×n2×n3 and B ∈ R

n2×n4×n3 is defined as A ∗
B = fold(bcirc(A)·unfold(B)) ∈ R

n1×n4×n3 , where

unfold(A)=[A(1);A(2);· · · ;A(n3)]∈Rn1n3×n2 and its in-

verse operator fold is defined as fold(unfold(A))=A.

2264

Based on the definition of t-product, we can develop fol-

lowing necessary concepts. A tensor P ∈ R
n×n×n3 is

orthogonal if P∗∗P = P∗P∗ = I . A tensor is f-diagonal

if each of its frontal slices is a diagonal matrix.

Definition 2.3. (T-SVD) [17] For an arbitrary tensor A ∈
R

n1×n2×n3 , it can be factorized by T-SVD as A = U ∗
S ∗ V∗, where U ∈ R

n1×n1×n3 and V ∈ R
n2×n2×n3 are

orthogonal, and S ∈ R
n1×n2×n3 is f-diagonal.

Now we can give the definition of tensor nuclear norm,

which is the convex envelop of the tensor average rank.

With this property, we use tensor nuclear norm to depict

the low-rank structure of a tensor.

Definition 2.4. (Tensor nuclear norm) [2] The tensor nu-

clear norm ‖A‖∗ of a tensor A ∈ R
n1×n2×n3 is defined as

the sum of singular values of all the frontal slices of Ā, i.e.,

‖A‖∗ =
1

n3

n3∑

i=1

‖Ā(i)‖∗ =
1

n3
‖Ā‖∗ =

1

n3
‖bcirc(A)‖∗,

which is the convex envelop of the tensor average rank

within the unit ball.

Next, we introduce the tensor column space which is re-

lated with our theoretical results.

Definition 2.5. (Tensor column space) For an arbi-

trary tensor A ∈ R
n1×n2×n3 , assume that r =

(rank(Ā(1)); · · · ; rank(Ā(n3))) ∈ R
n3 , r = maxi ri and

the t-SVD of A is A = U ∗ S ∗V∗. Then its column space

Range(A) is spanned by UA ∈ R
n1×r×n3 , where the first

ri columns of each slice ŪA(:, :, i) consist of the first ri
columns of Ū(:, :, i) and the remaining columns are 0s.

Since for a tensor A, its tensor nuclear norm is equiva-

lent to the sum of the nuclear norms of all frontal slices of

Ā, minimizing ‖A‖∗ means recovering the low-rank sub-

space of each frontal slice Ā(i) (i = 1, · · · , n3). Thus, the

column space of A is the union of the column spaces of all

the frontal slices Ā(i).

3. Outlier-Robust Tensor PCA

We first detail outlier-robust tensor PCA (OR-TPCA),

followed by its optimization, and finally analyze its perfor-

mance theoretically. Let n(1) = max(n1, n2) and n(2) =
min(n1, n2), which will be used in Sec. 3.2, 3.3 and 4.2.

3.1. Formulation of OR-TPCA

Without loss of generality, this paper assumes that out-

liers are distributed along the 2nd dimension of a tensor X ,

i.e., E(:, i, :) denotes the possible outliers. Note that outliers

can also be distributed along the other dimensions and the

developed approach and analysis can be applied directly. In

most cases outliers are very sparse compared with the data

size. So we can use tensor ℓ2,1 norm to characterize this

sparsity property. Then, OR-TPCA recovers the low-rank

tensor component through

min
L,E

‖L‖∗ + λ‖E‖2,1, s.t. X = L+ E , (2)

where ‖ · ‖∗ denotes the tensor nuclear norm.

By Definition 2.4, we know that the tensor nuclear norm

of L is equivalent to the nuclear norm (with a factor 1/n3)

of the block circulant matrix bcirc(L) in Eqn. (1). As

pointed out in [2], compared with other matricizations along

certain dimension, such as the Tucker rank [20], the block

circulant matricization may preserve more spacial relation-

ships among entries and thus better depict the low-rank

structure of the tensor. We also note that the tensor nuclear

norm is also equivalent to the sum of the nuclear norms of

all frontal slices of L̄, which is the DFT of L along the

3rd dimension. Thus, minimizing the tensor nuclear norm

of L is equivalent to recovering the underlying low-rank

structure of each frontal slice L̄(i) (i = 1, · · · , n3). This

means that it recovers the subspaces of data in Fourier do-

main, i.e., the subspaces of all the frontal slices L̄(i), while

the noise is distributed in the original space. If n3 = 1,

then the t-product of 3-way tensors reduces to the standard

matrix-matrix product and the tensor nuclear norm degen-

erates to the matrix nuclear norm. OR-TPCA will reduce to

OR-PCA [7, 14, 15]. So OR-PCA is a special case of ours.

3.2. Optimization

We use ADMM [21] to solve problem (2) because of

its efficiency and convergence guarantee in solving this

problem. The optimization is summarized in Algorithm 1.

See Supplementary Material for deduction details. At

each iteration, Lk+1 and Ek+1 have closed form solu-

tions and their computational complexity at each iteration

is O
(
n(1)n

2
(2)n3 + n1n2n3 log(n3)

)
. Note that the com-

putation and memory costs of OR-TPCA are much lower

than those of OR-PCA and R-PCA. This is because the

main computation and memory costs lie in SVDs involved

in these methods and OR-TPCA only requires n3 SVDs of

n1×n2 matrices (the lateral slices L
(i)
k+1), while in OR-PCA

and R-PCA, they have to compute the SVD of the whole

data matrix which is much larger and hence need much

more computational resource and memory. Note that our

optimization method can be implemented in parallel, since

at each iteration all lateral slices L̄
(i)
k+1 (i = 1, · · · , n3) of

L̄ can be parallelly updated which is the main computa-

tion cost when updating Lk+1, and when updating Ek+1,

its frontal slices Ek+1(:, i, :) (i = 1, · · · , n2) can also be

parallelly computed (see Supplementary Material). But for

fairness, we adopt the serial updating scheme in our imple-

mentation, which is also very fast (see Sec. 5.2.2).

3.3. Exact Subspace Recovery Guarantees

Similar to low-rank matrix recovery [7, 14, 15], exactly

separating X as the low-rank term L0 plus the outlier-

sparse term E0 is impossible in the following two cases:

(1) the true low-rank term L0 is sparse; (2) the true sparse

outliers E0 are low-rank. To avoid these cases, we need two

2265

mild conditions (assumptions).

Tensor Column-Incoherence Condition on Clean Low-

rank Data: This condition is widely used for evaluating

the sparsity of a matrix and we generalize it to tensors here.

For a tensor L ∈ R
n1×n2×n3 , suppose rankt(L) = r and

its skinny t-SVD is U ∗ S ∗ V∗. For U ∈ R
n1×r×n3 and

V ∈ R
n2×r×n3 , we have U∗ ∗ U = I and V∗ ∗ V = I .

Then the tensor column-incoherence condition with param-

eter μ1 is defined as

μ1 ≥
n2n3

r
max

i=1,··· ,n2

‖V∗ ∗ e̊i‖
2
F , (3)

where e̊i is of size n2 × 1 × n3 with the (i, 1, 1)-th entry

equal to 1 and the rest equal to 0s. μ1 measures how far the

tensor is from a column sparse one, and if μ1 is small, the

tensor L is not column sparse, hence avoiding the first case.

Unambiguity Condition on Outliers: To distinguish low-

rank term from outliers, we also require that outliers are

not in the subspace of the low-rank clean data and are not

low-rank [14, 15]. To avoid this case, similar to matrix OR-

PCA [15], we introduce an unambiguity condition on out-

liers E :
‖B(E)‖ ≤

√
log (n2)/4. (4)

Note that many noise models satisfy the above condition,

including i.i.d. Gaussian noise. Indeed, (4) holds as long

as the directions of the nonzero lateral slices of B(E) scat-

ter sufficiently randomly. No matter how many outliers are

present, (4) can guarantee the outliers to be not low-rank.

Main Results: Let Range(L0) denote the column space of

L0. Now we present our main results in Theorem 1.

Theorem 1. Assume Range(L0) = Range(PΘ⊥
0
(L0)) and

E0 �∈ Range(L0). Then any optimal solution (L0 +H ,

E0 −H) to problem (2) with λ = 1/
√

log (n2) exactly

recovers the tensor column space U0 of L0 and the support

set Θ0 of E0 with a probability at least 1 − c1n
−10
(1) , where

c1 is a positive constant, if the support set Θ0 is uniformly

distributed among all sets of cardinality |Θ0| and

rankt(L0) ≤
ρrn2

μ1 log (n(1))
and |Θ0| ≤ ρsn2,

where ρr and ρs are two constants, L0 + PΘ0
PU0

(H)
satisfies the column-incoherence condition (3) and E0 −
PΘ0

PU0
(H) satisfies the unambiguity condition (4).

The above results demonstrate that with high probabil-

ity OR-TPCA can exactly recover PΘ⊥
0
(L0), i.e., the clean

data in X , and the support set Θ0 of E0. But it does

not mean that OR-TPCA can never recover the corrupted

samples. Actually, if a sample is not severely corrupted,

it is possible to remove the noise, which is demonstrated

in [15, 22, 23] and our experiments (see Fig. 4). Besides,

Theorem 1 is also applicable when the 3rd dimension is 1.

So the theoretical guarantee of OR-PCA in [15] is also a

special case of our theorem.

Algorithm 1 Outlier-Robust Tensor PCA (OR-TPCA)

Input: Tensor data X ∈ R
n1×n2×n3 .

Initialize: L0=E0=J 0=0, λ=1/
√
log(n2), γ=1.1,

β0=1e− 5, βmax=1e+ 8, ǫ=1e− 8, and k=0.
While not converged do
1. Fix Ek. Update Lk+1 by

Lk+1 = argmin
L

‖L‖∗ +
βk

2
‖X −L− Ek +

J k

βk
‖2F .

2. Fix Lk+1. Update Ek+1 by

Ek+1 = argmin
E

λ‖E‖2,1+
βk

2
‖X−Lk+1−E+

J k

βk
‖2F .

3. J k+1 = J k + βk(X −Lk+1 − Ek+1).
4. βk+1 = min(γβk, βmax).
5. Check the convergence conditions:

‖ Ek+1 − Ek ‖∞≤ ε, ‖ Lk+1 −Lk ‖∞≤ ε,

‖ X −Lk+1 − Ek+1 ‖∞≤ ε.
6. k = k + 1.
end while
Output: Lk+1 and Ek+1.

4. The Fast OR-TPCA Algorithm

As aforementioned, tensor data are usually large-scale,

such as long video sequences and millions-of-image collec-

tion, and thus we propose a fast OR-TPCA algorithm. It has

two steps which are given below.

4.1. Sketch of Fast OR-TPCA

(1) Seed Tensor Recovery: Since directly solving the OR-

TPCA problem with the whole data is very time-consuming

when the data scale is very large, we divide the whole tensor

of interest into two tensors of smaller sizes. One is called

“seed tensor”, which is used for recovering the subspace

of the whole tensor. More concretely, we first randomly

sample a sub-tensor X l ∈ R
n1×k×n3 from X , where k

is much smaller than n2. Accordingly, X , L, and E are

respectively partitioned into

X = [X l,X r] , L0 = [Ll,Lr] , E0 = [E l,Er] .

Then fast OR-TPCA first recovers Ll from X l by solving a

small-sized OR-TPCA problem (2). As compared with n2,

k is very small (see Sec. 4.2), the computation of recovering

Ll is much cheaper than recovering the whole L0.

(2) Tensor ℓ2,1 Filtering: As X l is randomly selected, Ll

spans the same subspace as L0 with high probability. In-

deed, this is guaranteed (see Theorem 2). Thus, there must

exist a tensor Q such that

Lr = Ll ∗Q.

As outliers E are sparse, Er is also sparse and thus can be

depicted by the ℓ2,1 norm. So we can find Q by solving

min
Er,Q

‖ Er ‖2,1, s.t. X r = Ll ∗Q+ Er. (5)

Since the DFT is conducted along the 3rd dimension, the

lateral slices are independent of each other. Then, with the

definition ‖Er‖2,1 =
∑n2

i=1 ‖Er(:, i, :)‖F , we can further

2266

Algorithm 2 Fast OR-TPCA

Input: Tensor data X ∈R
n1×n2×n3 and parameter s/n2.

1. Randomly sample each lateral slice of X by i.i.d. Be-
rnoulli distribution Ber(s/n2) to construct X l and the re-
maining lateral slices are for constructing X r.
2. Compute the clean data Ll and outliers E l by solving

(Ll,E l) = argmin
L′,E′

‖L′‖∗+λ‖E ′‖2,1, s.t. X l = L′+E ′.

3. Compute Lr and Er in X r by the closed form solution
to problem (6).
Output: L = [Ll,Lr] and E = [E l,Er].

divide problem (5) into (n2 − k) sub-problems along the

2nd dimension and the i-th sub-problem is written as

min
Ei

r,Q
i
‖ Ei

r ‖F , s.t. X i
r = Ll ∗Q

i + Ei
r, (6)

where X i
r, Ei

r and Qi denote X r(:, i, :), Er(:, i, :) and Q(:
, i, :), respectively. As problem (6) is a least square prob-

lem, it admits closed-form solution Ei
r=X i

r −PULl
(X i

r),
where ULl

is the tensor column space of Ll. We can further

obtain Li
r = PULl

(X i
r). We summarize the fast algorithm

in Algorithm 2.

4.2. Guarantees for Fast OR-TPCA

Here we analyze the exact recovery ability of Algo-

rithm 2. For the randomly selected X l ∈ R
n1×k×n3 , when

the value of k is lower bounded by a positive constant,

Step 1 in Algorithm 2 guarantees that PΘ⊥
0
(X l) exactly

spans the desired column space Range(L0) with high prob-

ability. By Theorem 1, Step 2 can exactly recover the true

low-rank structure of Ll and detect outliers E l with high

probability. Accordingly, the remaining normal samples

can be represented by Ll while outliers cannot be repre-

sented. Our main results are stated in Theorem 2.

Theorem 2. Assume that each lateral slice of X is sampled

by i.i.d. Bernoulli distribution Ber(s/n2) for constructing

X l and all the assumptions in Theorem 1 are fulfilled for the

pair (Ll,E l). Then Algorithm 2 exactly recovers the tensor

column space of L0 and the support set Θ0 of E0 with a

probability at least 1− δ, provided that

s ≥ max
(
c2μ1r log(n(1)), 2μ1r log

(r
δ

))
, (7)

where c2 is a constant, r = rankt(L0) and μ1 denotes the

tensor column-incoherence parameter in Eqn. (3).

Note that if (L0,E0) obeys the assumptions in Theo-

rem 1, the pair (Ll,E l) also meets them. Thus, actually this

fast algorithm does not require more strict conditions than

solving the original problem. Also this fast algorithm is

very useful when dealing with large-scale tensor data. This

is because generally the rank of large-scale data is much

smaller than the size. Hence we can just set s/n2 very small

(e.g. 6%) and the randomly selected X l obeys Eqn. (7) with

high probability, which is verified in Sec. 5.2.3. Indeed, by

Bernoulli trial property in [23], the sampled number k obeys

Table 2: Exact recovery on random problems of varying

sizes.
r = rankt(L0) = 0.15n, k = 0.4n, λ = 1/

√
log(n),Θ′ = Θ⊥

0 .

n r k rankt(L̃)
‖PU0

−P
Ũ

‖F

‖PU0
‖F

‖P
Θ′ (L0)−P

Θ′ (L̃)‖F
‖P

Θ′ (L0)‖F
dist(Θ0, Θ̃)

60 9 24 9 4.634e-15 5.518e-15 0
100 15 40 15 2.754e-15 3.322e-15 0
200 30 80 30 2.858e-15 2.870e-15 0

Table 3: Exact recovery on random problems of varying

noise magnitudes and different kinds of noise.
n = 80, r = rankt(L0) = 0.15n, k = 0.4n, λ = 1/

√
log(n),Θ′= Θ⊥

0 .

Outliers rankt(L̃)
‖PU0

−P
Ũ

‖F

‖PU0
‖F

‖P
Θ′ (L0)−P

Θ′ (L̃)‖F
‖P

Θ′ (L0)‖F
dist(Θ0, Θ̃)

N (0, 0.01) 12 5.007e-14 6.559e-14 0
N (0, 1) 12 3.521e-15 3.753e-15 0

N (0, 100) 12 2.306e-15 2.913e-15 0
Bin(1,−1) 12 3.980e-15 4.229e-15 0

k ∈ [0.5s, 2s] with a probability at least 1 − n−10
2 when

sampling each lateral slice of X by Ber(s/n2). So this fast

algorithm only needs a small fraction of samples and uti-

lizes them to exactly recover the low-rank structure of the

whole data, and then recovers the remaining samples one

by one. Such a mechanism allows it to be applied to many

tasks, such as supervised learning, video summary, etc.

5. Experiments

5.1. Evaluation on Synthetic Data

We first test the performance of OR-TPCA on recover-

ing the low-rank tensor from synthetic data and verify that

its performance is consistent with the implication of Theo-

rem 1. We generate a tensor X = L0 + E0 ∈ R
n1×n2×n3 ,

where L0 is low-rank and E0 contains sparse outliers as fol-

lows. We produce a rankt-r tensor L0 = A ∗ B, where the

entries of A ∈ R
n1×r×n3 and B ∈ R

r×n2×n3 are from

i.i.d. N (0, 1). We uniformly select k lateral slices of E0 as

outliers whose entries obey i.i.d. N (0, 1) and the support

set of E0 is denoted by Θ0. The remaining entries in E0 are

0s. For simplicity, we set n1 = n2 = n3 = n.

To verify that OR-TPCA can perform well for vari-

ous tensor sizes, noise magnitudes and different kinds of

noise, we conduct two different experiments. (1) We con-

sider the tensors whose dimension varies as n = 60, 100,

200 and report the recovery error of OR-TPCA in Ta-

ble 2. (2) We test the cases that the entries of E0 follow

i.i.d. N (0, 0.01), N (0, 1), N (0, 100), and the distribution

Bin(1,−1) which i.i.d. produces 1 or −1 with probability

0.5, and report the performance in Table 3. We run ev-

ery experiment for 20 times and report the average results.

Note that L̃ denotes the recovered tensor and the support

set Θ̃ of nonzero Ẽ(:, i, :) is the recovered outlier support

set. From Table 2, the recovered tubal rank is exactly equal

to r and the relative errors ‖PU0
− P

Ũ
‖F /‖PU0

‖F and

‖PΘ⊥
0
(L0) − PΘ⊥

0
(L̃)‖F /‖PΘ⊥

0
(L0)‖F are very small,

even less than 10−10, where PU = U ∗U∗. The Hamming

distance dist(Θ0, Θ̃) between Θ0 and Θ̃ is always 0. These

results testify that OR-TPCA can exactly recover the tubal

2267

(a) Mnist (b) FRDUE (c) Extended YaleB

(d) AR (e) PIE (f) MIRFLICKR-25k

Database #Class Number of each class Total number Size Difficulty

Mnist 10 100 1000 28 × 28 def.
FRDUE 153 ≈ 20 3059 100 × 90 def. and pos.
YaleB 38 ≈ 68 2414 96 × 84 ill.

AR 100 26 2600 165 × 120 ill., exp. and occ.
PIE 68 ≈ 170 11554 96 × 96 ill., exp. and pos.

(g) Descriptions of the testing datasets. (“def.”, “pos.”, “ill.”, “exp.” and “occ.” are short

for “deformation”, “pose”, “illumination”, “expression” and “occlusion”, respectively.)

Figure 2: Examples and descriptions of the five testing

datasets and MIRFLICKR-25k.

Table 4: AUC of outlier detection and clustering results

(ACC, NMI and PUR) on FRDUE (averaged over 20 ran-

dom runs).
#Outlier Metric k-means R-PCA OR-PCA LRR SNN R-TPCA OR-TPCA

100

AUC — 0.865 0.943 0.914 0.869 0.875 0.951
ACC 0.407 0.436 0.520 0.492 0.491 0.499 0.564
NMI 0.693 0.720 0.785 0.769 0.726 0.766 0.818
PUR 0.427 0.482 0.552 0.499 0.522 0.527 0.640

200

AUC — 0.823 0.886 0.892 0.827 0.835 0.934
ACC 0.374 0.430 0.481 0.474 0.456 0.461 0.531
NMI 0.650 0.694 0.750 0.716 0.724 0.728 0.779
PUR 0.405 0.479 0.518 0.523 0.486 0.492 0.566

rank, column space U0, clean data PΘ⊥
0
(L0) and the sup-

port set Θ0 of outliers. Table 3 testifies that OR-TPCA is

very robust to various noise and corresponding magnitudes.

These results fully verify the conclusions in Theorem 1.

5.2. Evaluation on Real Applications

Here we compare our method with other state-of-the-

art low-rank factorization methods including R-PCA [11],

OR-PCA [15], LRR (with the ℓ2,1 norm) [24], SNN [12]

and R-TPCA [2] on four tensor analysis tasks, i.e. outlier

detection, clustering, semi-supervised and supervised clas-

sification. Fig. 2 gives the brief introduction of five test-

ing databases, including one handwriting dataset Mnist and

four face databases, i.e. Face Recognition Data of Univer-

sity of Essex1 (FRDUE), Extended YaleB [25], AR [26]

and PIE [27]. In this paper, all classification performance

is evaluated by ridge regression (RR), which is defined as

min
W

‖Y −WB‖2F + ν‖W ‖2F , (8)

where B is the recovered data by these compared meth-

ods, and Y is the label matrix. For tensor based meth-

ods (i.e. SNN, R-TPCA and OR-TPCA), we vectorize sam-

ple matrices for classification or clustering. We do not

tune the parameter of RR for our method and set ν = 1
in Sec. 5.2.1 and 5.2.2 and ν = 30 in Sec. 5.2.3, while

in other compared methods, their parameters ν are tuned

to be the best for different tasks on different datasets.

For fairness, we set the regularization parameters of R-

PCA [11], OR-PCA [15], RT-PCA [2] and our OR-TPCA as

1/
√
max(n′

1, n
′
2), 1/

√
log(n′

2), 1/
√
max(n1, n2)n3 and

1http://cswww.essex.ac.uk/mv/allfaces/

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Index

Ture Outliers Values of Detected Outliers Values of Detected Normal Noises Correct Detected Outliers Wrong Detected Outliers

Figure 3: Outlier detection results of OR-TPCA on the first

400 samples in FRDUE with 100 outliers. Best viewed in

color pdf file.

Table 5: Clustering results (ACC, NMI and PUR) and seg-

mentation error (ERR, %) on Mnist (averaged over 20 ran-

dom runs).
Metric k-means R-PCA OR-PCA LRR SNN R-TPCA OR-TPCA

ACC 0.490 0.512 0.520 0.538 0.559 0.781 0.826
NMI 0.468 0.500 0.495 0.513 0.535 0.803 0.880
PUR 0.532 0.563 0.574 0.568 0.586 0.823 0.865

ERR 0.575 0.491 0.479 0.461 0.452 0.258 0.110

1/
√
log(n2) respectively, where the data matrix size pro-

cessed by R-PCA and OR-PCA is n′
1 × n′

2 and outliers are

columnwisely distributed, while in R-TPCA and our OR-

TPCA, the data size is n1 × n2 × n3 and outliers are dis-

tributed along the 2nd dimension. These parameter settings

are provided by the authors [2, 11, 15]. We manually tune

the parameters of LRR and SNN.

5.2.1 Outlier Detection

Theorem 1 implies the optimal solution E can help detect

potential outliers in data: when the data PΘ⊥
0
(X) are clean,

the support set Θ of nonzero E(:, i, :) reveals the outlier lo-

cation as in Sec. 5.1. But real data PΘ⊥
0
(X) is more often

noisy, leading to more nonzero E(:, i, :). As ‖E(:, i, :)‖2F
corresponding to outliers are much larger than normal ones,

we can use k-means to cluster all ‖E(:, i, :)‖2F into two

classes (outliers vs. non-outliers) for outlier detection.

To investigate the effectiveness of OR-TPCA in presence

of outliers, we construct a dataset by combining FRDUE

with the MIRFLICKR-25k dataset (containing 25,000 im-

ages for retrieval evaluation) [28]. For FRDUE, we only

use the first 40 subjects, resulting in 800 authentic samples

from a low-rank subspace. Then we randomly extract 100

and 200 images from MIRFLICKR-25k as outliers. Fig. 2

(f) shows some examples of MIRFLICKR-25k.

We use AUC to evaluate the performance of outlier de-

tection which is computed based on the detection results by

k-means conducting on E . We adopt following clustering

metrics to measure the quality of the recovered subspace:

accuracy (ACC), normalized mutual information (NMI) and

purity (PUR). In the experiments, we first remove the out-

liers detected by k-means (some normal samples may also

be removed) and use the remaining recovered data (possi-

bly including undetected outliers) for clustering. We then

report the clustering results of normal samples (the normal

samples detected as outliers by k-means are given wrong

labels). Table 4 summarizes the experimental results. Our

OR-TPCA achieves the best outlier detection and clustering

2268

(a) Original (b) R-TPCA (c) OR-TPCA (d) Original (e) R-TPCA (f) OR-TPCA (g) Original (h) R-TPCA (i) OR-TPCA

Figure 4: Examples of face image denoising results on Extended YaleB. Best viewed in color pdf file.

Table 6: Classification accuracy (%) and average running time (in seconds) under semi-supervised learning setting on the

three face testing databases. The numbers, e.g. 1, 2, 3, denote the training numbers per person.
FRDUE Extended YaleB AR

Methods 1 2 3 time 3 6 9 12 15 time 1 2 3 4 5 time

RR 87.4±1.0 92.2±0.7 93.9±0.5 — 56.6±1.8 74.2±1.4 81.5±1.4 86.0±0.9 88.3±1.0 — 39.6±1.9 64.8±1.3 77.5±1.2 84.9±0.8 87.8±0.5 —
R-PCA 90.5±0.5 94.5±0.5 95.4±0.3 2.88 61.5±1.1 79.9±1.0 87.7±1.0 92.1±0.9 92.9±0.7 1.99 43.8±1.2 73.0±1.0 84.5±0.8 89.8±0.6 92.4±0.5 6.23
OR-PCA 90.6±0.7 95.0±0.5 96.0±0.4 1.85 61.8±1.3 80.5±1.1 88.3±0.8 92.9±0.7 93.4±0.5 1.26 43.1±1.1 74.1±0.9 84.9±0.8 89.3±0.6 93.2±0.6 4.61
LRR 90.3±0.6 95.1±0.4 96.6±0.4 3.16 58.9±1.5 72.9±1.3 79.3±1.0 86.0±0.8 88.3±0.7 2.04 45.1±1.6 68.1±0.9 77.6± 0.7 86.0± 0.6 89.4± 0.6 6.41
SNN 92.2±0.7 95.9±0.5 96.9±0.4 4.01 63.1±1.2 81.7±0.9 89.8±0.5 93.6±0.3 94.1±0.3 2.67 45.7±1.2 75.3±1.0 86.6±0.7 91.1±0.5 94.1±0.4 6.89
R-TPCA 95.6±0.5 97.9±0.4 98.7±0.4 0.76 65.1±1.1 84.5±0.8 92.0±0.7 95.7±0.5 97.3±0.5 0.38 49.3±1.2 78.9±0.8 89.7±0.7 93.6±0.6 96.0±0.6 1.43

OR-TPCA 97.3±0.6 98.6±0.4 99.2±0.2 0.69 71.4±1.1 90.3±0.9 95.9±0.6 98.2±0.4 98.6±0.3 0.24 56.8±0.8 87.2±0.7 95.0±0.6 98.1±0.4 99.0±0.2 1.03

performance, because (1) it takes advantage of the tensor

multi-dimension structure; (2) it uses the ℓ2,1 norm that can

better depict outliers than the ℓ1 norm. Fig. 3 shows some

outliers detected by OR-TPCA. We also observe that out-

lier detection can boost the clustering results. These meth-

ods benefit from detecting outliers first and achieve better

clustering results than vanilla k-means.

5.2.2 Unsupervised and Semi-Supervised Learning

As aforementioned, low-rank subspace methods have been

applied to image denoising and aligning. In this experi-

ment, we also apply OR-TPCA for removing noise and cor-

ruptions on face and handwritten digits via recovering their

subspaces, considering authentic handwriting and face im-

ages approximately lie on a union of low-rank subspaces

[2, 11, 24, 29–35]. Meanwhile, the shadows, facial expres-

sions and occlusions on face images displayed in Fig. 2 are

more like contiguous noise and hence the ℓ2,1 norm can

characterize them better, compared with the conventional

ℓ1 norm. Since the tensor nuclear norm is orientation de-

pendent, we find that organizing the images along the 3rd

direction to form a w×h×n tensor provides slightly better

results. R-TPCA also performs better when its processed

tensor is constructed in this way. Besides, this construction

way leads to higher computational efficiency, since the sam-

ple number n is usually much larger than its dimension w
and h. Otherwise, we have to compute decompositions of

w or h matrices of sizes n× h or w × n.

We evaluate OR-TPCA on one handwritten digits data-

base Mnist and three face datasets including FRDUE, Ex-

tended YaleB and AR. We use ACC, NMI, PUR and seg-

mentation error (ERR) to evaluate the clustering results

on Mnist; adopt the classification accuracy as performance

metric on the three face datasets. We also report the aver-

age algorithm running time (total denoising time divided by

the sample number). We run each classification experiment

Table 7: Subspace recovery performance of fast OR-TPCA

on PIE. (“#TSP” is short for “#Training sample per person”.)
#TSP 6 10 14 18 22 26 30

‖PUi
−P

Ũ
‖F/‖PŨ

‖F 5.1e-01 2.7e-15 2.7e-15 2.7e-15 2.7e-15 2.8e-15 2.7e-15

with a specific training size over 10 random train/test splits

of the recovered data and report the average results.

Table 5 summarizes the clustering results on Mnist. OR-

TPCA consistently outperforms the baselines for all the four

metrics. It improves by 13.8% over the second best R-

TPCA in terms of ERR. Table 6 displays the classification

accuracy on the three face datasets. All methods achieve

impressive good classification results on FRDUE partially

since it is easier than Extended YaleB and AR (see Fig. 2).

Though Extended YaleB and AR are more challenging, OR-

TPCA still performs better than other methods across all the

settings, especially for insufficient training samples cases

(e.g. ≤ 6 and 3 training samples per person on Extended

YaleB and AR, respectively). This clearly proves the supe-

rior robustness of OR-TPCA. Also, the results demonstrate

tensor based methods, i.e. SNN, R-TPCA and OR-TPCA,

achieve higher classification accuracy, as they take advan-

tage of the multi-dimensional structure of the tensor instead

of directly vectorizing samples like the matrix based base-

lines. We also observe that ℓ2,1 based methods, i.e. OR-

TPCA and OR-PCA, usually outperform their ℓ1 counter-

parts, i.e. R-TPCA and R-PCA. It is because the ℓ2,1 norm

can better detect the contiguous noise. This is confirmed by

results given in Fig. 4, where OR-TPCA de-shadows and

recovers faces much better than R-TPCA.

We also observe that OR-TPCA is much faster than oth-

ers: R-PCA, OR-PCA and LRR need to perform SVD over

a very large data matrix and SNN decomposes three large

matrices (unfold the tensor along three modes). Conversely,

OR-TPCA needs to do SVD on n matrices however each

matrix is much smaller than those involved in the baselines.

2269

Table 8: Classification accuracy (%) and total running time

(in hours) under semi-supervised learning setting on PIE.

(“#TSP” is short for “#Training sample per person”.)
#TSP 5 10 15 20 time

RR 63.1±1.7 76.0±1.1 83.4±1.2 85.8±0.9 —
R-PCA 66.1±1.2 79.5±0.9 85.8±0.7 88.1±0.3 >20
OR-PCA 63.2±1.4 78.3±1.0 86.5±0.8 88.9±0.4 >20
LRR 67.6±1.5 80.2±1.0 86.2±0.6 88.5±0.5 >20
SNN 69.0±1.3 82.0±0.6 87.3±0.5 89.9±0.3 >20
R-TPCA 70.1±1.1 83.1±0.8 88.5±0.6 90.9±0.3 1.74
Fast OR-TPCA (10) 73.3±1.2 85.0±0.7 89.5±0.4 91.8±0.2 0.14
Fast OR-TPCA (30) 73.5±1.1 84.5±0.7 89.6±0.6 91.6±0.3 0.22
OR-TPCA (all) 73.2±1.1 85.3±0.6 89.7±0.5 91.7±0.2 1.51

5.2.3 Experiments on Fast OR-TPCA

Here we evaluate the performance of our fast OR-TPCA on

PIE, a large-scale face dataset, and run every experiment for

10 times for the average performance. We first examine that

given a small fraction of the data, whether fast OR-TPCA

can exactly recover the subspace of the whole data. For

this, we vary the sampled face numbers per subject from 6

to 30. We construct the corresponding tensor h × n × w
when given n images of size h × w. We compute the rel-

ative error ‖PUi
− P

Ũ
‖F /‖P Ũ

‖F for performance mea-

sure, where PU = U ∗ U∗; U i is the column space recov-

ered by fast OR-TPCA using only i samples per person and

Ũ is the column space obtained using all samples. From

Table 7, one can observe that, when given a few samples

(i = 6), there is a quality gap between U i and Ũ . But us-

ing more samples (larger i), the performance gap decreases

rapidly. Even when the selected samples occupy less than

6% (about 10 samples per person), the relative error is al-

ready as low as 10−14. This clearly demonstrates ability

and sample-efficiency of fast OR-TPCA on recovering the

subspace, consistent with conclusions of Theorem 2.

We then conduct semi-supervised classification experi-

ments to further evaluate fast OR-TPCA. We randomly se-

lect 10, 30 and all samples from each person to construct

the “seed tensor” used for fast OR-TPCA. In contrast, other

compared methods utilize the whole data for recovery. Ta-

ble 8 reports the average accuracy and total running time

(total denoising time). Both OR-TPCA and fast OR-TPCA

outperform the baselines. OR-PCA and fast OR-TPCA

achieve similar accuracy with 10 and 30 samples per per-

son. Using 10 samples per person as the “seed tensor”,

fast OR-TPCA is 10× faster than R-TPCA and the original

OR-TPCA, and is 100× faster than other baselines, clearly

demonstrating the high efficiency of fast OR-TPCA.

Now we apply fast OR-TPCA to large-scale real super-

vised classification. By robustly recovering the training-test

shared subspace from noisy training data, fast OR-TPCA

can boost supervised classification performance. In this ex-

periment, we compare fast OR-TPCA with R-PCA, OR-

PCA and R-TPCA baselines. SNN and LRR is not appli-

cable here. Note that for supervised classification, the base-

lines have to recover the “seed matrix (tensor)” constructed

by training data first and use them to denoise and classify

5 10 15 20 25 30
60

65

70

75

80

85

90

95

#Training Samples from Each Person

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 (
%

)

5 10 15 20 25 30
0

1000

2000

3000

4000

5000

#Training Samples from Each Person

T
o

ta
l

R
u

n
n

in
g

 T
im

e
 (

S
e
c
o

n
d

s
)

Fast OR−TPCA Fast R−TPCA Fast OR−PCA Fast R−PCA RR

Figure 5: Classification accuracy (%) and total running time
(denoising time on training and testing samples, in seconds)
of fast algorithms under supervised learning setting on PIE.

testing data, similar to our fast OR-TPCA. This also gives

their accelerated version. However, they do not enjoy per-

formance guarantee as ours. Note that a fast R-PCA is pro-

posed in [36] though no guarantees provided. We use this

fast R-PCA as baseline. We evaluate all the methods on

PIE, by randomly selecting i (from 6 to 30) training images

per person and testing on the remaining images.

Fig. 5 shows that OR-TPCA always provides the high-

est classification accuracy. Besides, we can make following

observations. First, the performance of all the methods im-

proves with using more training samples. For our proposed

OR-TPCA, such behavior is consistent with Theorem 2.

When the training number is sufficiently large (e.g. 10 per

person), the tensor subspace can be recovered correctly, giv-

ing better classification performance. We also compare the

total running time (denoising time on training and testing

samples). Note that RR has no denoising time. When train-

ing number per person is 18, fast OR-TPCA performs 2×
faster than fast OR-PCA and R-PCA. Moreover, the running

time of fast OR-TPCA increase slowly when the training

size increases. When processing k training samples of size

h×w, SVD consumes most computation time per iteration.

The cost of fast OR-TPCA, R-PCA and OR-PCA per iter-

ation is O(kw2h + kwh log(w)), O(k2wh) and O(k2wh)
respectively. So fast OR-TPCA is much more efficient than

them. These consistent results testify that fast OR-TPCA

can recover low-rank tensor better and more efficiently.

6. Conclusions
We proposed an outlier-robust tensor principle compo-

nent analysis (OR-TPCA) method for low-rank tensor anal-

ysis. For large-scale tensor data, we further developed a

fast algorithm that effectively speeds up OR-TPCA. We also

applied this fast algorithm for supervised classification. Ex-

tensive experimental results demonstrate that our method

obtains better performance on various learning tasks effec-

tively and efficiently compared with state-of-the-arts.

7. Acknowledgements
Jiashi Feng was partially supported by National Uni-

versity of Singapore startup grant R-263-000-C08-133 and
Ministry of Education of Singapore AcRF Tier One grant
R-263-000-C21-112.

2270

References

[1] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion

for estimating missing values in visual data,” IEEE TPAMI,

vol. 35, no. 1, pp. 208–220, 2013.

[2] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor

robust principal component analysis: Exact recovery of cor-

rupted low-rank tensors via convex optimization,” in IEEE

CVPR, 2016.

[3] M. Mørup, “Applications of tensor (multiway array) factor-

izations and decompositions in data mining,” Wiley Interdis-

ciplinary Reviews Data Mining and Knowledge Discovery,

vol. 1, no. 1, pp. 24–40, 2011.

[4] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver,

“Multiverse recommendation: n-dimensional tensor factor-

ization for context-aware collaborative filtering,” in Proc.

ACM Conf. Recommender Systems, pp. 79–86, 2010.

[5] M. Collins and S. Cohen, “Tensor decomposition for fast

parsing with latent-variable PCFGs,” in NIPS, pp. 2519–

2527, 2012.

[6] T. Kolda and B. Bader, “Tensor decompositions and applica-

tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[7] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via

outlier pursuit,” in NIPS, 2010.

[8] M. Balcan and H. Zhang, “Noise-tolerant life-long matrix

completion via adaptive sampling,” in NIPS, pp. 2955–2963,

2016.

[9] F. D. L. Torre and M. J. Black, “A framework for robust sub-

space learning,” IJCV, vol. 54, no. 1-3, pp. 117–142, 2003.

[10] P. J. Huber, Robust statistics. Springer, 2011.

[11] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal

component analysis?,” Journal of the ACM, vol. 58, no. 3,

p. 11, 2011.

[12] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-

rank tensor recovery,” Optimization Online, vol. 4252, p. 2,

2014.

[13] A. Anandkumar, P. Jain, Y. Shi, and U. Niranjan, “Tensor vs

matrix methods: Robust tensor decomposition under block

sparse perturbations,” arXiv:1510.04747, 2015.

[14] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via

outlier pursuit,” IEEE TIT, vol. 58, no. 5, pp. 3047–3064,

2012.

[15] H. Zhang, Z. Lin, C. Zhang, and E. Chang, “Exact recover-

ability of robust PCA via outlier pursuit with tight recovery

bounds,” in AAAI, 2015.

[16] T. G. Kolda and B. W. Bader, “Tensor decompositions and

applications,” SIAM Review, vol. 51, no. 3, pp. 455–500,

2009.

[17] M. E. Kilmer and C. D. Martin, “Factorization strategies

for third-order tensors,” Linear Algebra and its Applications,

vol. 435, no. 3, pp. 641–658, 2011.

[18] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel

methods for multilinear data completion and de-noising

based on tensor-SVD,” in IEEE CVPR, 2014.

[19] M. Kilmer, K. Braman, N. Hao, and R. Hoover, “Third-order

tensors as operators on matrices: A theoretical and com-

putational framework with applications in imaging,” SIAM

Journal on Matrix Analysis and Applications, vol. 34, no. 1,

pp. 148–172, 2013.

[20] L. Tucker, “Some mathematical notes on three-mode factor

analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[21] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction

method with adaptive penalty for low-rank representation,”

in NIPS, 2011.

[22] R. Liu, Z. Lin, F. D. la Torre, and Z. Su, “Fixed-rank repre-

sentation for unsupervised visual learning,” in IEEE CVPR,

pp. 598–605, 2012.

[23] H. Zhang, Z. Lin, and C. Zhang, “Completing low-rank ma-

trices with corrupted samples from few coefficients in gen-

eral basis,” IEEE TIT, vol. 62, no. 8, pp. 4748–4768, 2016.

[24] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by

low-rank representation,” in ICML, 2010.

[25] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman,

“From few to many: Illumination cone models for face

recognition under variable lighting and pose,” IEEE TPAMI,

vol. 23, no. 6, pp. 643–660, 2001.

[26] A. Martinez and R. Benavente, “The AR face database,”

CVC Tech. Rep. 24, Jun. 1998.

[27] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination,

and expression database,” IEEE TPAMI, vol. 25, pp. 1615–

1618, 2003.

[28] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval eval-

uation,” in ACM MIR, 2008.

[29] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in

IEEE CVPR, 2009.

[30] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust

face recognition via sparse representation,” IEEE TPAMI,

vol. 31, pp. 210–227, 2009.

[31] P. Zhou, Z. Lin, and C. Zhang, “Integrated low-rank-

based discriminative feature learning for recognition,” IEEE

TNNLS, vol. 27, no. 5, pp. 1080–1093, 2016.

[32] P. Zhou, C. Zhang, and Z. Lin, “Bilevel model based dis-

criminative dictionary learning for recognition,” IEEE TIP,

vol. 26, no. 3, pp. 1173–1187, 2017.

[33] H. Zhang, Z. Lin, C. Zhang, and J. Gao, “Relations among

some low rank subspace recovery models,” Neural Compu-

tation, vol. 27, no. 9, pp. 1915–1950, 2015.

[34] H. Zhang, Z. Lin, C. Zhang, and J. Gao, “Robust latent low

rank representation for subspace clustering,” Neurocomput-

ing, vol. 145, pp. 369–373, 2014.

[35] Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond RPCA: Flatten-

ing complex noise in the frequency domain,” in AAAI, 2017.

[36] R. Liu, Z. Lin, Z. Su, and J. Gao, “Linear time principal com-

ponent pursuit and its extensions using ℓ1 filtering,” Neuro-

computing, vol. 142, pp. 529–541, 2014.

2271

