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Abstract

The success of many visual recognition tasks largely de-

pends on a good similarity measure, and distance metric

learning plays an important role in this regard. Mean-

while, Symmetric Positive Definite (SPD) matrix is receiv-

ing increased attention for feature representation in multi-

ple computer vision applications. However, distance met-

ric learning on SPD matrices has not been sufficiently re-

searched. A few existing works approached this by learning

either d2 × p or d× k transformation matrix for d× d SPD

matrices. Different from these methods, this paper proposes

a new member to the family of distance metric learning for

SPD matrices. It learns only d parameters to adjust the

eigenvalues of the SPD matrices through an efficient optimi-

sation scheme. Also, it is shown that the proposed method

can be interpreted as learning a sample-specific transfor-

mation matrix, instead of the fixed transformation matrix

learned for all the samples in the existing works. The op-

timised d parameters can be used to “massage” the SPD

matrices for better discrimination while still keeping them

in the original space. From this perspective, the proposed

method complements, rather than competes with, the exist-

ing linear-transformation-based methods, as the latter can

always be applied to the output of the former to perform

distance metric learning in further. The proposed method

has been tested on multiple SPD-based visual representa-

tion data sets used in the literature, and the results demon-

strate its interesting properties and attractive performance.

1. Introduction

SPD matrix based visual representation (SPD-Rep) has

been used in a spectrum of visual recognition tasks, as

it benefits from the advantages of considering high order

statistics of the imaging signals. The most common form

of SPD-Rep is covariance matrix, widely employed in ap-

plications such as texture classification [14], face recog-

nition [13], action recognition [31, 10], pedestrian detec-

tion [16, 12], and image set classification [7, 11], etc., as

either region descriptor or generic feature representation.

In addition to covariance matrix, other forms of SPD-Rep

have also been seen in the recent literature. For example, the

work in [22] uses a SPD kernel matrix as generic visual rep-

resentation to model the nonlinear relationship of features,

achieving the state-of-the-art performance in some action

recognition tasks. The resulting matrix of Gaussian distri-

bution has been exploited in [24] to capture the probabilistic

model of object variations for image set classification. In

medical image analysis, SPD matrices have long been used

for diffusion tensor data [1], and correlation matrix and in-

verse covariance matrix have been employed to model the

interaction of brain regional imaging signals [8, 25].

This newly surging category of visual representation

casts new challenges to many traditional recognition meth-

ods since SPD matrices reside on a specific Riemannian

manifold instead of a flat vector space. To cater for this

geometric structure, various methods have been proposed

to improve the similarity comparison of SPD matrices. The

typical ones include the affine-invariant Riemannian metric

(AIRM) [4], Log Euclidean metric [1, 20, 23], Cholesky

distance [3], Power Euclidean distance [3], Stein diver-

gence [15], etc. On the other hand, distance metric learning

is important in providing good metrics critical to the success

of many visual recognition tasks, and has been an inten-

sively researched problem [29]. The classic metric learning

methods become inadequate for SPD-Rep, since they are

usually defined on vector-formed data and Euclidean geo-

metric structure. Despite its importance, the distance met-

ric learning tailored for SPD-Rep has not been sufficiently

researched. A few pioneering works have utilised the Log

Euclidean metric to adapt classic distance metric learning

methods to the domain of SPD matrices. For example,

in [19], each d × d SPD matrix takes a logarithm opera-

tion and is then vectorised as the input to the classic ITML

(Information-Theoretic Metric Learning) [2] algorithm for

metric learning. This leads to the learning of a d2×d2 1 Ma-

halanobis matrix, which quickly becomes intractable with

the increase of d. As an improvement, another distance met-

ric learning work in [9] learns a d × k (k ≤ d) transforma-

1or learning a
d×(d+1)

2
×

d×(d+1)
2

Mahalanobis matrix considering

the symmetry of SPD matrices.
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tion matrix to project the logarithm of SPD matrices from

the original tangent space to a new (lower-dimensional) tan-

gent space for better discrimination.

In this paper, we propose a distance metric learning algo-

rithm for SPD matrices from a new perspective. Different

from the existing work in [19], the proposed method does

not involve any vectorisation of SPD matrices. Also, it does

not project these matrices to another lower-dimensional

space as in [9], but performs the metric learning while main-

taining the SPD matrices in its original space.

Specifically, it is well known that a SPD matrix can be

decomposed into pairs of eigenvectors and eigenvalues. The

former encodes the essential information on feature corre-

lation or the subspace of data, while the latter reflects the

significance of different eigen-modes in characterising the

data. Given a set of d × d SPD matrices, the proposed

method aims to perform metric learning by optimally ad-

justing the d eigenvalues for greater discrimination. Leav-

ing the eigenvectors untouched not only preserves the re-

lated essential information on the data, but also considers

the fact that some SPD-matrix-related metrics, e.g., the Log

Euclidean metric, are invariant to unary transformations that

map a set of eigenvectors to another set of eigenvectors.

The proposed method learns only d variables via an effi-

cient optimisation scheme, in contrast to the potentially d2

or even d4 variables learned in [9, 19]. Moreover, we pro-

vide theoretical analysis of the relationship between the pro-

posed method and the existing metric learning methods for

SPD matrices. Interpreting our method from their perspec-

tive, we show that our method essentially learns a sample-

specific transformation matrix, and this distinguishes itself

from the existing metric learning methods that learn a fixed

transformation matrix for all the samples [9, 19]. In ad-

dition, the learned d variables can be used to “massage”

the data while the resulting data still stay in the original

space and maintain the original physical meaning of fea-

tures. This property could be useful for some applications

like medical imaging analysis that cater for the interpreta-

tion of the results. Also, from this perspective, the proposed

method complements, rather than competes with, the ex-

isting methods [9, 19], as the latter can be applied on the

results of the former to further improve the performance.

By demonstrating the performance of the proposed method

on various SPD representations, we show that the proposed

method could enrich the current research on distance metric

learning for SPD matrices through introducing a novel and

efficient member into this family.

2. Background

2.1. Log Euclidean Metric

The space of d× d SPD matrices (denoted as S+d ) forms

a Lie group that is a Riemannian manifold [1], rather than a

linear space. All derivatives at a point S on S
+
d form a tan-

gent space TSS
+
d via the matrix logarithm map logS : S+d 7→

TSS
+
d , where TSS

+
d is a vector space with inner product.

The Log Euclidean metric framework shows that S+d admits

bi-invariant metrics and the geodesic distance correspond-

ing to the bi-invariant metrics equals the distance induced

by the inner product in the tangent space TSS
+
d .

Specifically, in the framework of Log Euclidean metric,

the logarithmic multiplication operation ⊙ : S+d ×S
+
d 7→ S

+
d

is defined as S1 ⊙ S2 = exp(log(S1) + log(S2)), which

generalises the matrix multiplication when two SPD matri-

ces do not commute in the matrix sense. By the commu-

tativity of ⊙, the S
+
d space is an Abelian group that admits

bi-invariant metrics, i.e. metrics that are invariant by multi-

plication and inversion. It can be shown that any metric 〈·, ·〉
on TId

S
+
d extended to S

+
d by left or right multiplication is

a bi-invariant metric, where Id denotes identity. Equipped

with the bi-invariant metrics, geodesics on S
+
d are simply

given by the translated version of the geodesics through the

identity element. With some derivations, it can be shown

that the distance between two SPD matrices on S
+
d is

d(S1,S2) = ‖ logS1
S2‖S1

= ‖ log(S2)− log(S1)‖,

where log(·) is the normal matrix logarithm. Bi-invariant

metrics on S
+
d are called Log Euclidean metric as they cor-

respond to Euclidean metrics in the logarithmic domain.

2.2. Distance Metric Learning on SPD Matrices

The success of many visual recognition tasks (e.g., im-

age retrieval and categorisation) largely depends on good

distance metrics that reflect human perception. Distance

metric learning plays an important role in this regard. It

aims at learning a distance or similarity metric that keeps

the data from the same class close and separates the data

from different classes far apart. This often involves the

learning of a Mahalanobis matrix A so that the distance

between two data samples x,y ∈ R
d is evaluated as

distA(x,y) = (x−y)⊤A(x−y). That is, each data sam-

ple x can be regarded as being transformed as L̃⊤x and

then a Euclidean distance is applied, where A = L̃L̃⊤. A

variety of criteria have been proposed to learn A from data,

such as the logDet divergence [2, 19, 9], the max-margin

criterion [26] and k-NN classification [27], etc. Neverthe-

less, when the classic distance metric learning methods ex-

tend to SPD matrices, the Euclidean metric used in their

design becomes inadequate due to the Riemannian geom-

etry of SPD matrices. A common solution to this prob-

lem is to utilise the Log Euclidean metric by converting

the geodesic distance of two SPD matrices to the Euclidean

distance in their logarithm domain. For example, in [19]

(denoted as LE-ITML in this paper), the logarithm of a

d × d SPD matrix X is unfolded into vec(logX), where

log(·) indicates the matrix logarithm and vec(·) denotes
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the vectorisation of a matrix. Then ITML (Information-

Theoretic Metric Learning) [2] is exploited to learn a Ma-

halanobis matrix A based on the distances distA(X,Y) =
(vec(logX)− vec(logY))⊤A(vec(logX)− vec(logY)).
It can be easily seen that the size of the matrix A to learn

is at O(d4). This could lead to a very long learning process

and cause overfitting when the number of training samples

is not large enough, making the distance metric learning

with the original SPD matrices intractable. The work in [9]

takes a different approach (denoted as LEML in this paper).

It directly learns a transformation function on the square

matrix of log(X), i.e., f(log(X)) = W⊤ log(X)W, where

W ∈ R
d×k (k ≤ d). In this way, LEML projects X from

the current tangent space to a new one that better separates

different classes. Through the transformation Wd×k, the

dimension of X is reduced to k×k, and these resulting SPD

matrices no long maintain the original physical meaning of

features.

3. Proposed method

In this section, our proposed metric learning method is

first described and followed by the optimisation algorithm

and implementation issues. After that, a theoretical analysis

of the relationship between the proposed method and the

aforementioned two metric learning methods is presented.

We propose to parameterise the SPD matrices with the

power (denoting as α) of their eigenvalues, and then op-

timise α through distance metric learning with the Log

Euclidean metric. We call this method α-CML (α-based

Covariance-like Metric Learning). As previously men-

tioned, an SPD matrix is fully characterised by its eigenval-

ues and eigenvectors. Here we focus on tuning the eigen-

values because the Log Euclidean metric is invariant under

unary transformations. For Log Euclidean metric, it is not

difficult to show that d(X,Y) = d(W⊤XW,W⊤YW),
where X and Y are two SPD matrices, while W is a unary

matrix used to map between eigenvector sets. That is, mod-

ifying the eigenvector sets of these SPD matrices to another

set of eigenvectors via W will not change the Log Eu-

clidean distance among them. Our algorithm is described

as follows.

3.1. Log Euclidean Distance Parameterised by α

Given two SPD matrices X and Y, the Log Euclidean

distance between them is defined as:

d(X,Y) =‖ log(X)− log(Y) ‖F , (1)

where ‖ · ‖F denotes the Frobenius norm of a matrix.

Performing eigen-decomposition on X and Y leads to

X = UxDxU
⊤
x and Y = UyDyU

⊤
y . Here U =

[u1,u2, · · · ,ud] is a d × d matrix whose column ui cor-

responds to the eigenvectors, and D is a diagonal matrix

whose diagonal element λi corresponds to the eigenvalue.

It is assumed that for each of the involved SPD matrices,

their eigenvalues have been sorted in descending order, and

the eigenvectors are also arranged accordingly. We de-

fine a parameter vector α = [α1, α2, · · · , αd]
⊤ and use

αi as the power of the ith eigenvalue of each of the SPD

matrices. The resulting matrix is compactly denoted by

X(α) = UxD
α

xU
⊤
x , where Dα

x is a diagonal matrix whose

diagonal is (λα1

1 , λα2

2 , · · · , λαd

d ). Defining Λ to be a diago-

nal matrix with diag(Λ) = α, it is not difficult to show

log(X(α)) = UxΛ log[Dx]U
⊤
x ≡ UxΛExU

⊤
x ,

log(Y(α)) = UyΛ log[Dy]U
⊤
y ≡ UyΛEyU

⊤
y , (2)

where log[Dx] denotes the diagonal matrix obtained after

applying the natural logarithm to the diagonal elements of

Dx (The square bracket [·] is used to differentiate it from

the matrix logarithm). Note that the last step is because

we define Ex ≡ log[Dx] for the sake of clarity, and that

ΛEx = ExΛ because both are diagonal. By Eqn. (2), we

immediately have the following result on trace

trace(log⊤(X(α)) log(X(α))) = α
⊤E2

xα,

trace(log⊤(Y(α)) log(Y(α))) = α
⊤E2

yα. (3)

For the cross-term, it can be derived as follows

trace(log⊤(X(α)) log(Y(α)))

= trace(UxExΛU⊤
x UyΛEyU

⊤
y )

= trace(ΛU⊤
x UyΛEyU

⊤
y UxEx)

(Define Wxy = U⊤
x Uy)

= trace(ΛWxyΛEyW
⊤
xyEx)

(Define Bxy = EyW
⊤
xyEx)

≡ trace(ΛWxyΛBxy)

= α
⊤Cxyα. (4)

In the last step, we define (Cxy)ij = (Wxy)ij(Bxy)ij ,

where the subscript ij denotes the ij-th element in the ma-

trix. Combining the above results, the Log Euclidean dis-

tance between X(α) and Y(α) can be computed as

d(X(α),Y(α)) =‖ log(X(α))− log(Y(α)) ‖2F

= α
⊤(E2

x − 2Cxy +E2
y)α

≡ α
⊤Mxyα, (5)

where Mxy is defined as E2
x − 2Cxy +E2

y .

3.2. Distance Metric Learning via α

For the sake of clarity, in the following, we denote the

matrix Mxy as M(X,Y) to explicitly show its dependency

on the two input matrices. Let {i, j, k} be the index of a
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triplet {Xi,Xj ,Xk}, where Xi and Xj belong to the same

class while Xi and Xk belong to different classes. Each

index {i, j, k} corresponds to an integer p ∈ S , where S
contains all possible triplets. A max-margin based distance

metric learning is developed for SPD matrices as follows.

Let r be the margin and ξ be the slack variable. Given

a triplet {i, j, k}, the Log Euclidean distance of (Xi,Xk)
shall be greater than that of (Xi,Xj) by a margin if possi-

ble. The metric learning is then formulated as a constrained

margin-maximisation problem as follows,

P1: max
α,ξp,r

r − λ
∑

p∈S

ξp

s.t. α⊤M(Xi,Xk)α−α
⊤M(Xi,Xj)α ≥ r − ξp,

α
⊤
α = 1, r ≥ 0, ξp ≥ 0, ∀p ∈ S. (6)

Denoting ∆Mp = M(Xi,Xk)−M(Xi,Xj) and convert-

ing maximisation to minimisation, Eqn. (6) becomes

P1: min
α,ξp,r

λ
∑

p∈S

ξp − r

s.t. α
⊤∆Mpα ≥ r − ξp,

α
⊤
α = 1, r ≥ 0, ξp ≥ 0, ∀p ∈ S. (7)

Furthermore, noting that α⊤∆Mpα = tr(∆Mpαα
⊤) and

defining L = αα
⊤, optimising the problem P1 is equal to

optimising the following problem P2.

P2: min
L�0,ξp,r

λ
∑

p∈S

ξp − r

s.t. 〈L,∆M⊤
p 〉F ≥ r − ξp, ∀p ∈ S

trace(L) = 1, r ≥ 0, ξp ≥ 0, rank(L) = 1.
(8)

By definition, L is constrained to be semi-definite positive

and a rank-one matrix. The symbol 〈·, ·〉F denotes the inner

product under the Frobenius norm. That is, 〈L,∆M⊤
p 〉F =

trace(∆MpL), which is a linear function of L. By some

rearrangement, the optimisation problem P2 can be further

rewritten as the follows.

P3: min
L�0,r

− r + λ
∑

p∈S

ℓ
(
〈L,∆M⊤

p 〉F − r
)

s.t. trace(L) = 1, r ≥ 0, rank(L) = 1, (9)

where ℓ(z) = max(0,−z) is the hinge loss function.

3.3. Optimisation

The optimisation problem P3 can be efficiently solved by

following the projected gradient descent framework. The

key issue is how to deal with the constraint that L is a rank-

one SPD matrix. It is known that each SPD matrix can be

decomposed as a linear convex combination of a set of rank-

one matrices. In light of the above rule, at each iteration, L

is updated by

Lt+1 = (1− β)Lt + β∆L, (10)

where ∆L (and Lt initialised at t = 0) is a rank-one and

trace-one matrix. Requiring the trace of ∆L to be one

avoids the scaling problem of the optimisation. The param-

eter 0 ≤ β ≤ 1 determines the update step, obtained by

following the line search algorithm used in the gradient de-

scent optimisation. Note that Lt+1 obtained by Eqn. (10) is

not guaranteed to be rank-one. However, because Lt is con-

strained to be rank-one, Lt+1 at most has the rank of two,

which, when projected into the rank-one matrix set, will not

cause much loss.

The optimal ∆L at each iteration is sought as follows.

Let f(L, r) = −r + λ
∑

p∈S ℓ
(
〈L,∆M⊤

p 〉F − r
)

and ▽f
denote the gradient matrix of f with the fixed r. Obviously,

in order to maximally decrease the objective function value

with the update rule in Eqn. (10), the optimal ∆L should

best approximate the negative gradient matrix ▽f , i.e.,

∆L⋆ = arg max
∆L

〈−▽f(L, r),∆L〉,

s.t. rank(∆L) = 1, trace(∆L) = 1. (11)

It is not difficult to show that ∆L⋆ = vv⊤, where v is the

leading eigenvector of the matrix −▽f(L, r), correspond-

ing to its largest eigenvalue. Therefore, optimising L in fact

boils down to computing a d-dimensional leading eigenvec-

tor v. And this can be much more efficient than solving

the whole set of eigenvectors. The complete algorithm is

summarised in Algorithm 1.

3.4. Implementation Issues

We follow the work in [26] to generate the triplets for

training. For a given sample Xi, firstly its t nearest neigh-

bours in the same class are identified (called positive neigh-

bours). Then for each positive neighbour, the samples from

different classes (called negative neighbours) are picked out

if they are closer to Xi than this positive neighbour. The

combinations of Xi and its positive and negative neighbours

form the triplets. This may lead to up to tens of thousands

of triplets. When used to calculate ▽f(L, r) at each iter-

ation of gradient descent, the large number of triplets may

incur expensive computational cost. To speed up the op-

timisation, we employ the following strategy. Note that

▽f(L, r) = −λ
∑

p∈S′ ∆M⊤
p , where S ′ denotes the set

of indices of triplets that violate the margin. Therefore, we

initially calculate and store the value of
∑

p∈S ∆M⊤
p using

all triplets. Then in each iteration, we only evaluate ∆M⊤
p

for the changing triplets, i.e., the newly violated triplets and

the newly satisfied triplets caused by the last iteration of op-

timisation. Although the number of initial triplets may be
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Algorithm 1 Distance Metric Learning with α-CML

Input: a training sample set Ω = {(Xi, yi)}
n
i=1, (where

Xi ∈ R
d×d and yi is class label) and a set of triplets.

1. Initialize L0 = 11⊤/d, where 1 is d-dimensional vec-

tor with all elements to be one.

2. Let L = L0, solve P3 to obtain r0.

3. Set t = 0.

repeat

4. Calculate (−▽f(L, r)) in Section 3.3 and its eigen-

vector v corresponding to the largest eigenvalue.

5. Update Lt+1 according to Eqn. (10); ∆L is obtained

by vv⊤; β is obtained by line search.

6. Project Lt+1 back to be a rank-one matrix.

7. Update rt+1 by solving P3 with Lt+1 fixed.

8. Set t = t+1

until convergence or the maximum number of iterations.

Output: L⋆ = L(t), α⋆ is the eigenvector of L⋆ corre-

sponding to the largest eigenvalue.

large, the number of changing triplets is much smaller, usu-

ally less than 100, at each iteration. In this way, the optimi-

sation can be efficiently solved. Typically, a desktop com-

puter with 3.0GHz CPU and 8.0G RAM takes 0.07s for one

iteration (not the initial one) of optimisation on 128 43×43
SPD matrices with about 3, 000 triplets in the experiment.

3.5. Relationship to other SPDML methods

The proposed α-CML and another two methods in [9,

19] represent three different members in the family of met-

ric learning methods for SPD matrix. It is desirable to man-

ifest their relationship to gain more insights on the connec-

tions and differences.

3.5.1 Link to LEML in [9]

As indicated in Eqn.(5) in [9], the goal of LEML is to learn

a linear transformation W ∈ R
d×k applied to the logarithm

of a SPD matrix Xd×d,

f(log(X)) = W⊤ log(X)W. (12)

Recall that the eigen-decomposition of X is X = UDU⊤

and that log(X) = U log[D]U⊤. The proposed method

α-CML applies a vector α = [α1, α2, · · · , αd]
⊤ to the

(sorted) eigenvalues of X, respectively, and the resulting

matrix was denoted by X(α). Also, as previously defined,

Λ is a diagonal matrix whose diagonal is α. By some ma-

nipulation, we can “fit” α-CML into the form of LEML as

log(X(α)) = UΛ log[D]U⊤ (13)

= UΛ
1

2 log[D]Λ
1

2U⊤

= (UΛ
1

2U⊤)(U log[D]U⊤)(UΛ
1

2U⊤)

= (UΛ
1

2U⊤)⊤ log(X)(UΛ
1

2U⊤)

(Define Wx ≡ UΛ
1

2U⊤)

= W⊤
x log(X)Wx.

Therefore, the above result indicates that α-CML can also

be interpreted as applying a linear transformation W to

log(X) as in LEML, and this shows the connection.

However, a significant difference lies at that Wx in α-

CML varies with X, because the eigenvector matrix U de-

pends on X. From the perspective of learning a linear trans-

formation, α-CML learns a transformation that is sample-

specific. This is in contrast with (and cannot be directly

achieved via) the LEML method, which learns a fixed trans-

formation W equally applied to all samples. It is observed

in the experiment that this sample-specific property could

even help α-CML to win LEML in some situation, although

the total number of parameters is one-order less.

3.5.2 Link to LE-ITML in [19]

Following the above notations, we write the eigenvector and

eigenvalue matrices in full as U = [u1,u2, · · · ,ud] and

D = diag(λ1, λ2, · · · , λd). And it can be immediately ob-

tained that log(X) = U log[D]U⊤ =
∑d

i=1(log λi)uiu
⊤
i .

Recalling that vec(·) denotes the vectorisation of a matrix,

it is trivial to show that vec(log(X)) =
∑d

i=1 vi, where

vi ≡ vec((log λi)uiu
⊤
i ) and vi ∈ R

d2

.

Proposition. Recall that α is the power of the eigen-

values of X, i.e., X(α) = UDαU⊤. It can be shown that

vec(log(X(α))) = Γα, where Γ = [v1,v2, · · · ,vd] and

its columns form a set of d orthogonal bases spanning a d-

dimensional subspace V in the whole space of Rd2

. (Proof

is provided in the supplement)

By this Proposition, it is known that vec(log(X(α)))
corresponds to a point Aα = (α1, α2, · · · , αd)

⊤ in the

subspace V spanned by vi (i = 1, · · · , d). Also, because

vec(log(X)) =
∑d

i=1 vi = Γ1, it corresponds to point

A0 = (1, 1, · · · , 1)⊤ in V . In this way, the proposed α-

CML can be interpreted as learning a mapping from point

A0 to Aα in the subspace V . As for LE-ITML [19], it ap-

plies a linear transformation L̃ (L̃ ∈ R
d2×p, p ≤ d2) to

vec(log(X)) as

L̃⊤vec(log(X)) = L̃⊤(v1 + · · ·+ vd). (14)

Similarly, this can be interpreted as mapping point A0 in V
to another point A

L̃
. However, the difference lies at that
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because L̃ can be any d2 × p matrix, the resulting point

A
L̃

does not necessarily reside in the subspace V (as the

case in α-CML) any more, but could locate anywhere in

the whole space R
d2

instead. This brings higher learning

capability to LE-ITML. However, the price is a three-order-

larger number of parameters and the scalability issue with

increasing dimensions.

Before the end of the analysis, it is worth noting that the

proposed method α-CML adjusts the SPD matrices in the

original space and does not involve any dimension reduction

or projection. Therefore, the methods like LEML and LE-

ITML can still be applied after α-CML to pursue greater

discrimination in further. In this sense, the proposed α-

CML does not compete with, but complement, the existing

distance metric learning methods for SPD matrices.

4. Experimental Result

We test the proposed metric learning method on three

types of recognition tasks: texture image classification, hu-

man action recognition, and brain image analysis. They

cover different types of SPD-based representations. Specif-

ically, the first task uses covariance matrix as feature repre-

sentation; the second one uses non-linear kernel matrix as

feature representation; and the last one uses inverse covari-

ance matrix as feature representation. Example images of

these data sets are given in Fig. 1. Following the tradition

of distance metric learning, a k-nearest-neighbour classifier

using the Log Euclidean distance is employed to assess the

performance of the proposed method.

Figure 1. Example images from the used data sets. Top: five most

difficult pairs of Brodatz data set. Middle: employed skeleton and

example actions from MSR-Action3D data set. Bottom: four ex-

amples of resting-state fMRI images from ADHD-200 data set.

4.1. Result on texture image classification

The Brodatz texture data set has been commonly used

in the literature to evaluate algorithms using covariance-

based representation. This data set contains 112 images,

each corresponding to one class of texture. Following the

work in [6], 64 sub-regions are cropped from each image

as the samples of the corresponding texture class. For each

sub-region, a 43-dimensional vector (including image in-

tensity and 2D Gabor wavelets) is extracted at each pixel,

based on which, the covariance descriptor for each sample

is constructed. Both binary classification and multi-class

classification are tested on this data set in the experiment.

For binary classification, 15 pairs of classes that are most

difficult to discriminate from each other (identified as hav-

ing the lowest accuracy generated by a k-NN classifier. See

the supplement for the class labels) are selected for test. The

remaining pairs are not included because almost 100% ac-

curacy can be achieved on them. For the proposed method

α-CML, its parameter t (the number of positive neighbours)

used in triplet generation is set as either 3 or 5, and the

parameter λ in the optimisation problem P3 to balance the

margin and loss is set as either 1.0 or 3.0, due to the varia-

tion of different binary-class groups. As each pair has only

128 (64 × 2) samples in total, the Leave-One-Out (LOO)

strategy is employed to make full use of samples for train-

ing, and the LOO classification accuracy is reported using

the k-NN classifier with k = 1, 3, 5 and 7.

Figure 2. Brodatz binary classification: accuracy improvement (in

percentage point) after applying the proposed method α-CML.

To verify whether the proposed method can produce

a better metric and therefore higher classification perfor-

mance, we compare the LOO classification accuracy ob-

tained with and without applying the proposed method.

Fig. 2 shows the improvement (in percentage point)

achieved on each of the 15 pairs under different k values.

As seen, metric learning with the proposed method is quite

promising, and improvement is observed on 14 pairs. The

magnitude can reach more than 10 percentage point on four

pairs, five percentage points on 11 pairs, and the highest

one reaches almost 20 percentage points. At the same time,

Pair 3 shows decreased accuracies when k = 1, 5, 7. How-

ever, checking the result of k = 3 (the parameter t in the
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proposed method is set as 3 for Pair 3), we still observe

clear improvement after metric learning. The average ac-

curacy improvements over all the 15 pairs are given in Ta-

ble 1, and paired t-test is conducted to verify the statistical

significance of the improvement. As seen, all of them are

statistically significant at the level of 0.05 (indicated by the

p-value smaller than 0.05). In addition, it is interesting to

see that we use t = 3 or t = 5 to generate triplets, yet the

improvement is consistently observed at most of the k val-

ues (except the case in Pair 3). This can be viewed as a good

indicator that a better metric has indeed been learned by the

proposed method.

Table 1. Brodatz binary classification: average accuracy improve-

ment (in percentage point) over all the 15 pairs achieved by the

proposed method α-CML.

% k=1 k=3 k=5 k=7

Mean ↑ 4.2 ± 5.5 5.6 ± 5.3 5.4 ± 5.2 5.6 ± 4.5

p-value 1e-2 1e-3 1e-3 3e-4

For the case of multi-class classification, all 112 texture

classes (7168 samples in total) are considered. The data set

is randomly split into two equal-sized subsets for training

and test, and this procedure is repeated for 10 times to report

the average classification performance. The parameter t is

set as 5, and λ is set as 5.0. The average accuracy improve-

ments are reported in Table 2. Similar to the situation of bi-

nary classification, statistically significant improvement of

accuracy is consistently observed on all k values, demon-

strating the effectiveness of the proposed method again.

Table 2. Brodatz multi-class classification: average accuracy im-

provement (in percentage point) over all the 15 pairs achieved by

the proposed method α-CML.

% k=1 k=3 k=5 k=7

Mean ↑ 2.5 ± 1.0 2.8 ± 1.1 2.6 ± 1.0 2.4 ± 0.8

p-value 2e-5 3e-5 2e-5 4e-6

4.2. Result on human action recognition

MSR-Action3D contains 20 actions performed by 10
subjects. Each action is done two or three times by each

subject. Only the skeletal data is used in our experiment.

Each action instance contains 40 ∼ 60 frames, and each

frame is represented by 120-dimensional feature vector cor-

responding to the coordinate differences of 3D skeleton

points between a frame and its two neighbouring frames.

Following the literature [22], we use a Gaussian RBF ker-

nel matrix based SPD representation (called Ker-RP-RBF

in that work) for each action instance, as this representa-

tion reported the state-of-the-art performance on this data

set. We want to investigate whether applying the proposed

method can boost this performance in further. To facili-

tate the comparison, we follow the literature to use the odd-

indexed subjects for training and the even-indexed ones for

test. As previous, the parameter t used for triplets gener-

ation is set as 3, and the parameter λ is set as 1.0. The

performance of various methods on this data set is quoted

in Table 3 for comparison.

The performance of the proposed method is first tested

by k-NN classifier and the result (k = 1) is given in Ta-

ble 3. As shown, an improvement of 4.6 percentage point is

brought by the proposed α-CML after learning on Ker-RP-

RBF with kNN classifier. This result (92.7%) is better than

that of most methods in comparison except [22, 30, 28]. To

directly compare with the state-of-the-art result on this data

set in [22], an SVM classifier with the Log Euclidean kernel

is used for test by following that work. Note that the Log

Euclidean kernel is now calculated by using the Ker-RP-

RBF adjusted by the proposed method α-CML. As shown,

the Ker-RP-RBF in [22] achieves an accuracy of 96.1%2

with an SVM classifier, while our proposed method fur-

ther improves this result to 97.3%, higher than all the other

methods. This result again verifies the effectiveness of the

proposed metric learning method. In addition, it is interest-

ing to note that although metric learning is usually applied

to k-NN classification, learning a good metric could help

kernel evaluation and in turn improve the performance of

SVM classification, as shown by this experiment.

Table 3. Comparison of classification accuracy (in percentage

point) on MSR-Action3D data set.
Compared methods ACC (in %)

Pose Set [21] 90.0
Hierarchy of Cov3DJs [10] 90.5
Moving Pose [32] 91.7
Lie Group [18] 92.5
SNV [30] 93.1
Spatiotemp. Features Fusing [28] 94.3
Cov-RP [17] 74.0
Cov-JH-SVM [6] 80.4
Ker-RP-RBF+kNN 88.1
Ker-RP-RBG+α-CML+kNN (proposed) 92.7
Ker-RP-RBF+SVM [22] 96.1
Ker-RP-RBF+α-CML+SVM (proposed) 97.3

4.3. Results on brain image classification

ADHD-200 is a publicly accessible data set provided by

the Neuro Bureau for the prediction of Attention Deficit Hy-

peractivity Disorder (ADHD). It consists of the resting-state

fMRI images of 768 training subjects and 197 test subjects,

collected from eight independent imaging sites. To cancel

out the variation in image processing steps, we adopt the

preprocessed data provided by ADHD-200 using Athena

2The result of our implementation is slightly different from that re-

ported in [22], possibly due to the cross-validation choice of parameters.
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pipeline. Each brain image is partitioned into 90 cerebral

brain regions and each region is characterised by a feature

vector corresponding to its mean time-series. There are 26
test samples containing invalid values in the time series,

which are removed from the test. In this experiment, follow-

ing the literature, the inverse covariance representation is

employed for each brain image. Both k-NN and SVM clas-

sifiers are used to evaluate the classification performance.

As shown in Table 4, the proposed α-CML achieves an

accuracy increase of 4.1% for k-NN and 2.9% for SVM,

which strengthens our previous observation. Moreover, the

results of using Local Clustering Coefficients (LCC), Stein

Kernel (SK), and Cholesky (CHK) kernel with SVMs re-

spectively are also presented for reference. Note that SK

and CHK are SPD-matrix based kernels.

Table 4. ADHD-200: Comparison of classification accuracy on the

predefined training-test partition

Existing

ACC (in %) k-NN SVM methods ACC (in %)

Original 64.3 66.7 LCC+SVM 64.3

α-CML (proposed) 68.4 69.6 SK+SVM 63.7

Improvement 4.1 2.9 CHK+SVM 63.2

4.4. Comparison with existing SPDML methods

Comparison experiment is now conducted between the

proposed α-CML method and another two SPD-ML meth-

ods of LE-ITML and LEML (their codes are obtained from

the respective authors’ websites). Note that, on the above

data sets, LE-ITML needs to solve very large Mahalanobis

matrices and could not return the results of any data set after

12 hours, making this method computationally impractical

on these scales of data sets (and also very hard to tune its

parameters). Therefore, in the following, only the results of

LEML and α-CML are presented.

Table 5 shows the best accuracies of k-NN classifiers

on Brodatz’s 15 most difficult pairs. It can be seen that

both α-CML and LEML could win or lose with the var-

ied data sets, which is somewhat expected. Via the analy-

sis in Section 3.5, we can regard α-CML as weighing dif-

ferent features without changing the original feature space,

while LEML conducts dimension reduction via projection.

To some extent, their relationship could be the analogue to

that of feature weighting and dimension reduction. Which

one is better is quite data-dependent, just as the case of fea-

ture weighting versus dimension reduction.

Table 6 compares the performance of our proposed α-

CML with the existing methods of LEML, CDL [23], and

RSR-ML [5]. Note that CDL and RSR-ML are related to

SPD-ML methods from the perspective of learning trans-

formation matrix to project SPD matrices to a lower dimen-

sional space. CDL utilises Log Euclidean metric, while

RSR-ML utilises AIM and Stein kernel. For comparison,

we additionally test an action dataset HDM05 [5], for which

the results of CDL and RSR-ML can be quoted from [5].

For HDM05, LEML and our methods are tested on Ker-

RP in addition to COV-RP. Also, RSR-ML is applied on

Brodatz, MSR-Action3D and ADHD-200 with the code

provided by the authors. The results in Table 6 demon-

strate the effectiveness of α-CML on various SPD-matrix

based visual representations, compared with existing meth-

ods. Moreover, the last row in Table 6 gives the results of α-

CML + LEML for metric learning on the two action recog-

nition data sets HDM05 and MSR-Action3D. The improve-

ment over both methods indicates the potential benefits of

combining these two different metric learning schemes.

Table 5. Comparison on Brodatz’s 15 most difficult pairs
ACC (in %) Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

α-CML 81.3 72.7 66.4 83.6 79.7

LEML [9] 82.0 71.1 76.6 70.3 72.7

% Pair 6 Pair 7 Pair 8 Pair 9 Pair 10

α-CML 75.0 89.1 86.7 89.1 76.6

LEML [9] 78.9 78.9 86.7 89.1 71.1

% Pair 11 Pair 12 Pair 13 Pair 14 Pair 15

α-CML 91.4 92.2 86.7 98.4 85.9

LEML [9] 90.6 90.6 90.6 98.4 84.4

Table 6. Comparison of Methods (in ACC %)

Data sets HDM05 MSR-

Action3D

Brodatz ADHD

SPD-RP COV/Ker-RP Ker-RP COV ICOV

CDL [23] 79.8 N.A. N.A. N.A.

RSR-ML [5] 81.9 85.0 73.8 62.6
LEML [9] 89.7/93.1 91.2 76.4 67.3

α-CML (proposed) 91.0/93.6 92.7 74.3 68.4
α-CML+LEML

(proposed)

96.6/96.6 94.6 − −

5. Conclusion

In this paper, we introduce a new member to the family

of metric learning for SPD matrices. It owns some interest-

ing properties compared with the existing related methods,

e.g., less learning variables and being sample-specific, and

has been evaluated on different SPD matrix based represen-

tations. Meanwhile, the relationship between the proposed

and the existing methods has also been discussed via the-

oretical analysis. Enriched variants of this model will be

studied in our future work, e.g, learning class-specific α.
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