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Abstract

Event-based cameras provide a new visual sensing

model by detecting changes in image intensity asyn-

chronously across all pixels on the camera. By providing

these events at extremely high rates (up to 1MHz), they al-

low for sensing in both high speed and high dynamic range

situations where traditional cameras may fail. In this pa-

per, we present the first algorithm to fuse a purely event-

based tracking algorithm with an inertial measurement unit,

to provide accurate metric tracking of a camera’s full 6dof

pose. Our algorithm is asynchronous, and provides mea-

surement updates at a rate proportional to the camera ve-

locity. The algorithm selects features in the image plane,

and tracks spatiotemporal windows around these features

within the event stream. An Extended Kalman Filter with

a structureless measurement model then fuses the feature

tracks with the output of the IMU. The camera poses from

the filter are then used to initialize the next step of the

tracker and reject failed tracks. We show that our method

successfully tracks camera motion on the Event-Camera

Dataset [16] in a number of challenging situations.

1. Introduction

Event-based cameras capture changes in the scene at ul-

tra high rates (1MHz), and thus enable processing of very

fast motions without suffering from image blur, temporal

aliasing, high bandwidths, or high intensity ranges. Since

no absolute intensity is captured, there is no notion of a

frame that can be read out from the sensor. Hence, none

of the traditional computer vision low- and mid-level tech-

niques like spatial differentiation and spatial segmentation

can be directly applied. While recent approaches [11] tried

to reconstruct frames, we believe that basic geometric es-

timation problems such as visual odometry can be solved

using only features defined by asynchronous events.

In this paper, we introduce a novel feature tracking

method and a visual-inertial odometry estimation scheme

in order to track 6dof pose from events and inertial mea-

surements without using any intensity frames. State of the

art in visual-inertial odometry relies on feature-tracks over

temporal windows [14]. Such tracks are difficult to obtain

among asynchronous events due to the lack of any inten-

sity neighborhood. We propose a data association scheme

where multiple spatially neighboring events are softly as-

sociated with one feature whose motion is computed using

the weighted event positions. This leads to an Expectation-

Maximization algorithm that estimates the optical flow.

Events corrected to the estimated optical flow value are then

used to compute an affine estimate of optical flow with re-

spect to the onset time of the feature. Finally, filter esti-

mates of the 3D rotation are used in a 2-feature RANSAC

inlier selection with the translation direction as unknown.

At no point during feature tracking do we use a fixed tem-

poral window: the spatiotemporal neighborhood is always

defined using the length of the computed optical flow.

Given several feature tracks over time, we employ an Ex-

tended Kalman Filter which estimates all camera poses dur-

ing the lifespan of the features. Similar to the MSCKF [14],

we eliminate the depth from the measurement equations so

that we do not have to keep triangulated features in the state

vector. Our contributions can be summarized as follows:

• A novel event association scheme resulting in robust

feature tracks by employing two EM-steps and vari-

able temporal frames depending on flow and rotation

estimates obtained from the odometry filter.

• The first visual odometry system for event-based cam-

eras that makes use of inertial information.

• We demonstrate results on very fast benchmark se-

quences and we show superiority with respect to clas-

sic temporally sparse KLT features in high speed and

high dynamic range situations.

2. Related Work

Weikersdorfer et al. [22] present the first work on event-

based pose estimation, using a particle filter based on a

known 2D map. They later extend this work in [23] by fus-

ing the previous work with a 2D mapping thread to perform

SLAM in an artificially textured environment. Similarly,

Censi et al. [3] use a known map of active markers to lo-

calize using a particle filter. The work in [7] also assumes a

known set of images, poses and depth maps to perform 6dof

pose estimation using an EKF. Several methods also com-
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bine an event-based camera with other sensors to perform

tracking. The work in [2] combines an event-based cam-

era with a separate CMOS camera to estimate inter-frame

motions of the CMOS camera using the events in order to

estimate camera velocity. Similarly, Tedaldi et al. [19] use

the image frames from a DAVIS camera to perform feature

detection and generate a template to track features in the

event stream, which Kueng et al. [12] wrap in a standard

visual odometry framework to perform up to scale pose es-

timation. In [21] an event-based camera is combined with

a depth sensor for 3D mapping, and uses the particle filter

from [22] for localization. However, fusing an event based

camera with a CMOS or depth camera incurs the same costs

as methods that use either camera, such as motion blur and

limited dynamic range. An alternative approach for event-

based pose tracking relies on jointly estimating the original

intensity based image and pose. Kim et al. [10] pose the

problem in an EKF framework, but the method is limited

to estimating rotation only. The authors in [11] extend this

work and use the method in [1] to jointly estimate the im-

age gradient, 3D scene and 6dof pose. Our method is a 6dof

tracking method that works without any prior knowledge of

the scene. In comparison to the latest work in [12], our

method does not require any image frames, and our track-

ing algorithm treats data associations in a soft manner. By

tracking features solely within the event stream, we are able

to track very fast motions and in high dynamic range situa-

tions, without needing to reconstruct the underlying image

gradient as in [11]. Our method also uses soft data associ-

ations, compared to [12] and [11], who make a hard deci-

sion to associate events with the closest projection of a 3D

landmark, leading to the need for bootstrapping in [12]. By

fusing the tracking with information from an IMU, we are

also able to fully reconstruct the camera pose, including the

scale factor, which vision only techniques are unable to do.

3. Problem Formulation

Consider a sensor package consisting of an inertial mea-

surement unit (IMU) and an event-based camera. Without

loss of generality, assume that the camera and IMU frames

are coincident.1 The state of the sensor package:

s :=
[

q̄ bg v ba p
]

(1)

consists of its position p ∈ R
3, its velocity v ∈ R

3, the ori-

entation of the global frame in the sensor frame represented

by a unit quaternion q̄ ∈ SO(3)2, and the accelerometer and

gyroscope measurement biases, ba and bg , respectively.

At discrete times τ1, τ2, . . ., the IMU provides ac-

celeration and angular velocity measurements I :=

1In practice, extrinsic camera/IMU calibration may be performed off-

line [6]. The IMU and camera frames in the DAVIS-240C are aligned.
2The bar emphasizes that this quaternion is the conjugate of the unit

quaternion representing the orientation of the sensor in the global frame.

{(ak, ωk, τk)}. The environment, in which the sensor op-

erates, is modeled as a collection of landmarks L := {Lj ∈
R

3}mj=1.

At discrete times t1, t2, . . ., the event-based camera gen-

erates events E := {(xi, ti)} which measure the perspective

projection3 of the landmark positions as follows:

π
(

[X Y Z]T
)

:=
1

Z

[

X
Y

]

h(L, s) := π (R (q̄) (L− p)) (2)

xi = h(Lα(i), s(ti)) + η(ti), η(ti) ∼ N (0,Σ)

where α : N → {1, . . . ,m} is an unknown function rep-

resenting the data association between the events E and the

landmarks L and R(q) is the rotation matrix corresponding

to the rotation generated by quaternion q.

Problem 1 (Event-based Visual Inertial Odometry). Given

inertial measurements I and event measurements E , esti-

mate the sensor state s(t) over time.

4. Overview

The visual tracker uses the sensor state and event infor-

mation to track the projections of sets of landmarks, col-

lectively called features, within the image plane over time,

while the filtering algorithm fuses these visual feature tracks

with the IMU data to update the sensor state. In order to

fully utilize the asynchronous nature of event-based cam-

eras, the temporal window at each step adaptively changes

according to the optical flow. The full outline of our algo-

rithm can be found in Fig. 1 and Alg. 1.

Our tracking algorithm leverages the property that all

events generated by the same landmark lie on a curve in

the spatiotemporal domain and, given the parameters of the

curve, can be propagated along the curve in time to a single

point in space (barring error from noise). In addition, the

gradient along this curve at any point in time represents the

optical flow of the landmark projection, at that time. There-

fore, we can reduce the tracking problem to one of finding

the data association between events and landmark projec-

tions, and estimating the gradient along events generated by

the same point.

To simplify the problem, we make the assumption that

optical flow within small spatiotemporal windows is con-

stant. That is, the curves within these windows become

lines, and estimating the flow is equivalent to estimating the

slope of these lines. To impose this constraint, we dynam-

ically update the size of the temporal window, dt, based

on the time for each projected landmark position to travel

k pixels in the image, estimated using the computed opti-

cal flow. This way, we are assuming constant optical flow

for small displacements, which has been shown to hold

3Without loss of generality, the image measurements are expressed in

normalized pixel coordinates. Intrinsic calibration is needed in practice.
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Figure 1: EVIO algorithm overview. Data from the event-based camera and IMU is processed in temporal windows determined by our

algorithm. For each temporal window, the IMU values are used to propagate the state, and features are tracked using two expectation

maximization steps that estimate the optical flow of the features and their alignment with respect to a template. Outlier correspondences

are removed, and the results are stored in a feature track server. As features are lost, their feature tracks are parsed through a second

RANSAC step, and the resulting tracks are used to update the sensor state. The estimated optical flows for all of the features are then used

to determine the size of the next temporal window.

in practice. Given these temporal windows, we compute

feature position information within a discrete set of non-

overlapping time windows {[T1, T2], [T2, T3], . . . } where

Ti+1 − Ti = dti.

Problem 1a (Event-based Feature Tracking). Given event

measurements E , the camera state si := s(Ti) at time Ti

and a temporal window size dti, estimate the feature pro-

jections F(t) for t ∈ [Ti, Ti+1] in the image plane and the

next temporal window size dti+1.

Given the solution to Problem 1a and a set of readings

from the IMU, our state estimation algorithm in Sec. 6

then employs an Extended Kalman Filter with a structure-

less vision model, as first introduced in [14]. Structured

EKF schemes impose vision constraints on all the features

between each two subsquent camera poses, and as a result

optimize over both the camera poses and the feature posi-

tions. A structureless model, on the other hand, allows us to

impose constraints between all camera poses that observe

each feature, resulting in a state vector containing only the

IMU and camera poses. This drastically reduces the size

of the state vector, and allows for marginalization over long

feature tracks. We pose the state estimation problem as the

sub problem below:

Problem 1b (Visual Inertial Odometry). Given inertial

measurements I at times {τk}, a camera state si at time

Ti, a temporal window size dti, and feature tracks F(t) for

t ∈ [Ti, Ti+1], estimate the camera state si+1.

5. Event-based Feature Tracking

Given a camera state si and a temporal window

[Ti, Ti+1], the goal of Problem 1a is to track a collection

of features F(t) in the image domain for t ∈ [Ti, Ti+1],

Algorithm 1 EVIO

Input: sensor state si, events E , IMU readings I, window size

dti
Track features {f} in the event stream, E , given si (Alg. 2)

Select new features in the image plane (Sec. 5.5)

Calculate the size of the next temporal window dti+1 (Sec. 5.4)

Update the state estimate si+1 given {f} and I (Alg. 3)

whose positions are initialized using traditional image tech-

niques (Sec. 5.5). Our approach performs two expectation-

maximization (EM) optimizations (Sec. 5.1 and Sec. 5.2)

to align a 3-D spatiotemporal window of events with a prior

2-D template in the image plane.

5.1. Optical Flow Estimation

The motion of a feature f(t) in the image plane can be

described using its optical flow ḟ(t) as follows:

f(t) =f(Ti) +

∫ t

Ti

ḟ(ζ)dζ = f(Ti) + (t− Ti)u(t)

where u(t) := 1
t−Ti

∫ t

Ti

ḟ(ζ)dζ is the average flow of f(s)

for s ∈ [Ti, t]. If [Ti, Ti+1] is sufficiently small, we can as-

sume that the average flow u is constant and equal to the av-

erage flows of all landmarks Lj whose projections are close

to f in the image plane. To formalize this observation, we

define a spatiotemporal window around f(Ti) as the collec-

tion of events, that propagate backwards to and landmarks

whose projections at time Ti are close to the vicinity of

f(Ti) :

Wi :={(x, t) ∈ E , L ∈ L | ‖(x− t̄u)− f(Ti)‖ ≤ ξ,

‖l − f(Ti)‖ ≤ ξ, t ∈ [Ti, Ti+1]} (3)

where ξ is the window size in pixels, t̄ := t − Ti, l :=
h(L, s), as defined in (2).
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Figure 2: Graphical outline of the algorithm. From left to right: 1. Event stream within the spatiotemporal window. Note the diagonal

lines formed by the linear optical flow. 2. Events integrated directly onto the image with no flow correction. 3. Propagated events with

estimated flow. Note the removal of the motion blur. 4. Later set of propagated events before affine warping. The size of the blue circles

are the weights of each point after decimation. 5. Later set of propagated events after affine warping.

Provided that [Ti, Ti+1] is small, the following equality

should hold for any event ek and landmark Lj in Wi:

‖(xk − t̄ku)− lj‖21{α(k)=j} = 0 (4)

where the indicator requires that event k associates with

landmark j. However, since the data association α between

events and landmarks in unknown, we can hope to satisfy

the above requirement only in expectation:

Eα(k)‖(xk − t̄ku)− lj‖21{α(k)=j}

= rkj‖(xk − t̄ku)− lj)‖2 = 0 (5)

where rkj := P(α(k) = j). Given the flow u of feature

f(Ti), due to the measurement model in (2), we model

the probability that event ek was generated from land-

mark Lj as proportional to the probability density function

φ((xk − t̄ku); lj ,Σ) of a Gaussian distribution with mean

lj and covariance Σ.

Let [ni] := {1, . . . , ni} be an enumeration of the events

in Wi. The optical flow constraints in (5) and the data as-

sociation probabilities rkj allow us to estimate the optical

flow u of feature f(Ti) as follows:

min
u

ni
∑

k=1

m
∑

j=1

rkj‖(xk − t̄ku)− lj)‖2 (6)

Unfortunately, the landmark projections {lj}mj=1 needed to

compute the data association probabilities are unknown. In-

stead, we approximate {lj}mj=1 in the above optimization

with the set

l̃i−1
j := {(x+ (Ti − t)ui−1)|(x, t) ∈ Wi−1} (7)

of forward-propagated events from the previous iteration to

the current time. This set provides a close approximation to

{lj}mj=1 because, as ui−1 approaches the true optical flow,

(4) requires that every point in {l̃i−1
j }ni−1

j=1 approaches some

point in lj at time Ti, due to continuity in the projected fea-

ture trajectories. This leads to the following result for esti-

mating the optical flow of feature f(Ti).

Proposition 1. Given a sufficiently small temporal window

[Ti, Ti+1] so that the average optical flow u of a feature

f(t), t ∈ [Ti, Ti+1], is approximately constant and a spa-

tiotemporal window Wi of ni events associated with f , the

optical flow u can be estimated by iterating the following

EM steps:

E) rkj =
φ((xk − tku); l̃

i−1
j ,Σ)

∑

j′ φ((xk − tku); l̃
i−1
j′ ,Σ)

,
k ∈ [ni]
j ∈ [ni−1]

(8)

M) u =

∑ni

k=1

∑ni−1

j=1 rkj(xk − l̃i−1
j )t̄k

∑ni

k=1

∑ni−1

j=1 rkj t̄2k
(9)

Proof. Given an optical flow estimate, the E step computes

the likelihood rkj of the data association between events ek
and approximate landmark projections l̃i−1

j by propagating

the events backwards in time and applying the measurement

model in (2). Given rkj , the M step is a weighted linear least

squares problem in u, which corresponds to the overdeter-

mined system udT = Y , where:

d :=
[√

r12t̄1, . . . ,
√
rkj t̄k, . . .

]T

Y :=
[√

r12(x1 − l̃i−1
2 ), . . . ,

√
rkj(xk − l̃i−1

j ), . . .
]

To get the normal equations, we multiply both sides on the

right by d and obtain u = (Y d)/(dT d).

During the initialization of each feature, no prior flow is

known, and so we further substitute the prior events in {l̃j}
with the current events and flow, {(x − t̄u), (x, t) ∈ Wi}
[25]. Once again, this approximation approaches the true

projected landmark positions as u approaches the true flow.

The M step, in this case, becomes:

u =

∑ni

k=1

∑n1

j=1 rkj(xk − xj)(t̄k − t̄j)
∑ni

k=1

∑ni

j=1 rkj(t̄k − t̄j)2

where rkj is computed as in (8). This method is signifi-

cantly slower, as the distance computation in the E step uses

two different sets of points every iteration. This is detri-

mental for most neighbor search data structures such as k-d

trees, as the data structure must be reconstructed at every

iteration. However, as this step is only performed once per

feature, it is effectively marginalized out for long feature

tracks. We refer to [25] for the full proof of this initializa-

tion step.
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5.2. Template Alignment and RANSAC

While Prop. 1 is sufficient to solve Problem 1a, the

feature position estimates may drift as a feature is being

tracked over time, due to noise in each flow estimate. To

correct this drift, we estimate it as the affine warping that

warps {l̃ik}ni

k=1 (7) to the template {l̃i∗j }ni∗

j=1 in the first cam-

era pose that observed the feature. We assume that the cor-

responding landmarks {l} are planar in 3-D, so that we can

alternatively represent the affine wrapping as a 3-D rotation

and scaling. The 3-D rotation i∗Ri from the current cam-

era pose at Ti to the first camera pose at Ti∗ can be obtained

from the filter used to solve Problem 1b (see Sec. 6). Hence,

in this section we focus on estimating only a scaling σ and

translation b between {l̃ik} and {l̃i∗j }. First, we rotate each

point l̃ik to the first camera frame and center at the rotated

feature position as follows:

yik = π

(

i∗Ri

(

lik
1

))

− π

(

i∗Ri

(

f(Ti) + uidti
1

))

where π is the projection function defined in (2). Note

that l̃ik propagates events to time Ti+1, and so we substi-

tute f(Ti) + uidti as an estimate for f(Ti+1). Then, using

the same idea as in Sec. 5.1, we seek the scaling σ and trans-

lation b that minimize the mismatch between {yik}ni

k=1 and

{l̃i∗j }ni∗
j=1:

min
σ,b

ni
∑

k=1

ni∗
∑

j=1

rkj‖σyik − b− l̃i∗j |2 (10)

This optimization problem has a similar form to problem (6)

and, as before, can be solved via the following EM steps:

E) rkj =
φ(yk; l̃

i∗
j ,Σ)

∑

j′ φ(yk; l̃
i∗
j′ ,Σ)

, k ∈ [ni], j ∈ [ni∗]

M)



































































































ȳ :=
1

ni

ni
∑

k=1

yk
¯̃
l :=

1

ni∗

ni∗
∑

j=1

l̃j

σ =

√

√

√

√

∑ni

k=1

∑ni∗

j=1 rkj(yk − ȳ)T (l̃j − ¯̃
l)

∑ni

k=1

∑ni∗

j=1 rkj(yk − ȳ)T (yk − ȳ)

b =
σ

ni

ni
∑

k=1

ni∗
∑

j=1

rkjyk − 1

ni∗

ni
∑

k=1

ni∗
∑

j=1

rkj l̃j

=
σ

ni

ni
∑

k=1

yk − 1

ni∗

ni
∑

k=1

ni∗
∑

j=1

rkj l̃j

as

ni∗
∑

j=1

rkj = 1

(11)

where the M step is solved as in scaled ICP [26].

Algorithm 2 Event-based Feature Tracking

Input

sensor state si, current time Ti, window size dti,
events E for t ∈ [Ti, Ti + dti],
features {f} and associated templates {l̃i−1}, {l̃i∗}

Tracking

for each feature f do

Find events within Wi (3)

cost←∞
while cost > ǫ1 do

Update rkj (8), u (9) and cost (6)

Back-propagate events to Ti using u
cost←∞
while cost > ǫ2 do

Update rkj (11), (σ, b) (11) and cost (10)

f ← f − b+ dtiu

dti+1 ← 3/median({‖u‖}) (Sec. 5.4)

return {f} and dti+1

5.3. Outlier Rejection

In order to remove outliers from the above optimizations,

only pairs of points ((xk− t̄ku) and (σyk−b)), and approx-

imate projected landmarks, l̃j , with Mahalanobis distance4

below a set threshold are used in the optimizations. This

also serves the purpose of heavily reducing the number of

computation.

After all of the features have been updated, two-point

RANSAC [20] is performed given the feature correspon-

dences and the rotation between the frames from the state

to remove features whose tracking have failed. Given two

correspondences and the rotation, we estimate the essential

matrix, and evaluate the Sampson error5 on the set of corre-

spondences to determine the inlier set.

The complete feature tracking procedure is illustrated in

Fig. 2 and summarized in Alg. 2.

5.4. Temporal Window Size Selection

To set the temporal window size such that each feature

moves k pixels within the window, we leverage the con-

cept of ‘event lifetimes’ [15]. Given an estimate of the

optical flow, u, of a feature f at a given time, Ti, the ex-

pected time for the feature to move 1 pixel in the image

is 1
‖u‖2

. Therefore, to estimate the time for a feature to

move k pixels, the time is simply dt(f) = k
‖u‖2

Given a set

of tracked features, we set the next temporal window size

as: dti+1 = median({dt(f) | f ∈ F}). Assuming that

4The Mahalanobis distance between a point x and a distribu-

tion with mean µ and standard distribution Σ is defined as: d :=
√

(x− µ)TΣ(x− µ).
5Given a correspondence between two points x1, x2 and the cam-

era translation t and rotation R between the points, the Essential ma-

trix is defined as: E = t × R, and the sampson error is defined as:

e =
xT

2
Ex1

(Ex1)
2

1
+(Ex1)

2

2
+(Ex2)

2

1
+(Ex2)

2

2
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the differences in depth between the features is not large,

this window size should ensure that each feature will travel

roughly k pixels in the next temporal window. For all of our

experiments, k is set to 3.

5.5. Feature Detection

Like traditional image based tracking techniques, our

event-based feature tracker suffers from the aperture prob-

lem. Given a feature window with only a straight line, we

can only estimate the component of the optical flow that is

normal to the slope of this line. As a result, features must

be carefully selected to avoid selecting windows with a sin-

gle strong edge direction. To do so, we find ’corners’ in the

image that have strong edges in multiple directions. In or-

der to produce an image from the event stream, we simply

take the orthogonal projection of the events onto the image

plane. As we constrain each temporal window such that fea-

tures only travel k pixels, this projection should reconstruct

the edge map of the underlying image, with up to k pixels

of motion blur, which should not be enough to corrupt the

corner detection. The actual corner detection is performed

with FAST corners [17], with the image split into cells of

fixed size, and the corner with the highest Shi-Tomasi score

[18] within each cell being selected, as in [5].

6. State Estimation

To estimate the 3D pose of the camera over time, we em-

ploy an Extended Kalman Filter with a structureless vision

model, as first developed in [14]. For compactness, we do

not expand on the fine details of the filter, and instead re-

fer interested readers to [13] and [14]. At time Ti, the filter

tracks the current sensor state (1) as well as all past camera

poses that observed a feature that is currently being tracked.

The full state, then, is:

Si := S(Ti) =
[

sTi q̄(Ti−n)
T p(Ti−n)

T . . . q̄(Ti)
T p(Ti)

T
]T

where n is the length of the oldest tracked feature.

Between update steps, the prediction for the sensor state

is propagated using the IMU measurements that fall in be-

tween the update steps. Note that, due to the high temporal

resolution of the event based camera, there may be mul-

tiple update steps in between each IMU measurement. In

that case, we use the last IMU measurement to perform the

propagation.

Given linear acceleration ak and angular velocity ωk

measurements, the sensor state is propagated using 5th or-

der Runge-Kutta integration:

˙̄q(τk) =
1

2
Ω(ωk − b̂g(τk))q̄(τk)

ṗ(τk) = v(τk)

v̇(τk) = R(q̄(τk))
T (ak − b̂a(τk)) + g

ḃa(τk) = 0

ḃg(τk) = 0
(12)

Algorithm 3 State Estimation

Input

sensor state si, features {f}
IMU values I for t ∈ [Ti, Ti + dti]

Filter

Propagate the sensor state mean and covariance (12)

Augment a new camera state

for each filter track to be marginalized do

Remove inconsistent observations

Triangulate the feature using GN Optimization

Compute the uncorrelated residuals r
(j)
0 (13)

Stack all of the r
(j)
0

Perform QR decomposition to get the final residual (14)

Update the state and state covariance

To perform the covariance propagation, we adopt the dis-

crete time model and covariance prediction update pre-

sented in [9].

When an update from the tracker arrives, we augment the

state with a new camera pose at the current time, and update

the covariance using the Jacobian that maps the IMU state

to the camera state.

We then process any discarded features that need to be

marginalized. For any such feature fj , the 3D position of

the feature F̂j can be estimated using its past observations

and camera poses by Gauss Newton optimization, assuming

the camera poses are known [4]. The projection of this esti-

mate into a given camera pose can then be computed using

(2). The residual, r(j), for each feature at each camera pose

is the difference between the observed and estimated feature

positions. We then left multiply r(j) by the left null space,

A, of the feature Jacobian, HF , as in [14], to eliminate the

feature position up to a first order approximation:

r
(j)
0 =AT r(j)

≈ATH
(j)
S S̃ +ATH

(j)
F F̃j +ATn(j) := H

(j)
0 S̃ + n

(j)
0

(13)

rn =QT
1 r0 (14)

H0 =
[

Q1 Q2

]

[

TH

0

]

The elimination procedure is performed for all features, and

the remaining uncorrelated residuals, r
(j)
0 are stacked to ob-

tain the final residual r0. As in [14], we perform one final

step to reduce the dimensionality of the above residual. Tak-

ing the QR decomposition of the matrix H0, we can elimi-

nate a large part of the residual (14). The EKF update step

is then ∆S = Krn, where K is the Kalman gain.

When a feature track is to be marginalized, we apply a

second RANSAC step to find the largest set of inliers that

project to the same point in space, based on reprojection

error. This removes moving objects and other erroneous

measurements from the track.
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Figure 3: Example images with overlaid events from each sequence. From left to right: shapes, poster, boxes, dynamic, HDR.
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Figure 4: Left to right: Temporal window sizes in the hdr boxes sequence, absolute position and rotation errors for the dynamic translation

and hdr boxes sequences. EVIO results are solid, while KLT results are dashed.
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Figure 5: Sample tracked trajectories from shapes translation (top)

and hdr boxes (bottom). The first 15 seconds of each sequence are

shown, to avoid clutter as the trajectories tends to overlap.

7. Experiments

We evaluate the accuracy of our filter on the Event-

Camera Dataset [16]. The Event-Camera Dataset contains

many sequences captured with a DAVIS-240C camera with

information from the events, IMU and images. A number

of sequences were also captured in an indoor OptiTrack en-

vironment, which provides 3D groundtruth pose.

Throughout all experiments, dt0 is initialized as the time

to collect 50000 events. The covariance matrices for the

two EM steps are set as 2I , where I is the identity matrix.

In each EM step, the template point sets {l̃j} are subsam-

pled using sphere decimation [8], with radius 1 pixel. As

EVIO KLTVIO

Sequence Mean

Position

Error

(%)

Mean

Rotation

Error

(deg/m)

Mean

Position

Error

(%)

Mean

Rotation

Error

(deg/m)

shapes translation 2.42 0.52 1.98 0.04

shapes 6dof 2.69 0.40 8.95 0.06

poster translation 0.94 0.02 0.97 0.01

poster 6dof 3.56 0.56 2.17 0.08

hdr poster 2.63 0.11 2.67 0.09

boxes translation 2.69 0.09 2.28 0.01

boxes 6dof 3.61 0.34 2.91 0.03

hdr boxes 1.23 0.05 5.65 0.11

dynamic translation 1.90 0.02 2.12 0.03

dynamic 6dof 4.07 0.56 4.49 0.05

Table 1: Comparison of average position and rotation error statis-

tics between EVIO and KLTVIO across all sequences. Position

errors are reported as a percentage of distance traveled. Rotation

errors are reported in degrees over distance traveled.

both sets of templates remain constant in both EM steps,

we are able to generate a k-d tree structure to perform the

Mahalanobis distance checks and E-Steps, generating a sig-

nificant boost in speed. The Mahalanobis threshold was set

at 4 pixels.

At present, our implementation of the feature tracker in

C++ is able to run in real time for up to 15 features for

moderate optical flows on a 6 core Intel i7 processor. The

use of a prior template for flow estimation, and 3D rota-

tion for template alignment has allowed for very significant

improvements in runtime, as compared to [25]. In these ex-

periments, 100 features with spatial windows of 31x31 are

tracked. Unfortunately, as we must process a continuous set

of time windows, there is no equivalent of lower frame rates,

so tracking a larger number of features results in slower than

realtime performance as of now. However, we believe, with

further optimization, that this algorithm can run in real time.
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For our evaluation, we examine only sequences with

ground truth and IMU (examples in Fig. 3), omitting the

outdoor and simulation sequences. In addition, we omit the

rotation only sequences, as translational motion is required

to triangulate points between camera poses.

We compare our event based tracking algorithm with

a traditional image based algorithm by running the KLT

tracker on the images from the DAVIS camera, and pass-

ing the tracked features through the same EKF pipeline (we

will call this KLTVIO). The MATLAB implementation of

KLT is used.

In Fig. 4, we show the temporal size at each iteration.

Note that the iterations near the end of the sequence are

occurring at roughly 100Hz.

For quantitative evaluation, we compare the position and

rotation estimates from both EVIO and KLTVIO against

the ground truth provided. Given a camera pose estimate

at time Ti, we linearly interpolate the pose of the two

nearest OptiTrack measurements to estimate the ground

truth pose at this time. Position errors are computed us-

ing Euclidean distance, and rotation errors are computed as

errrot =
1
2 tr(I3−RT

EV IOROptiTrack). Sample results for

the dynamic translation and hdr boxes sequences are shown

in Fig. 4.

In Fig. 5, we also show two sample trajectories tracked

by our algorithm over a 15 second period, where we can

qualitatively see that the estimated trajectory is very similar

to the ground truth.

In Table 1, we present the mean position error as a per-

centage of total distance traveled and rotation error over dis-

tance traveled for each sequence, which are common met-

rics for VIO applications [8].

8. Discussion

From the results, we can see that our method performs

comparably to the image based method in the normal se-

quences. In particular, EVIO outperforms KLTVIO in se-

quences where event-based cameras have an advantage,

such as with high speed motions in the dynamic sequences

and the high dynamic range scenes. On examination of

the trajectories (please see the supplemental video), our

method is able to reconstruct the overall shape, albeit with

some drift, while the KLT based method is prone to errors

where the tracking completely fails. Unfortunately, as the

workspace for the sequences is relatively small (3m x 3m),

it is difficult to distinguish between drift and failure from

error values alone.

In Table 1, we can see that our rotation errors are typ-

ically much larger than expected. On inspection of the

feature tracks (please see the supplemental video), we can

see that, while the majority of the feature tracks are very

good, and most failed tracks are rejected by the RANSAC

steps, there are still a small, but significant portion of fea-

ture tracks that fail, but are not immediately rejected by

Figure 6: Challenging situations with events within a temporal

window (red) overlaid on top of the intensity image. From left to

right: boxes 6dof sequence: majority back wall with no events.

shapes 6dof: events only generate on edges of a sparse set of

shapes, with portions also mostly over a textureless wall

RANSAC. This equates to the feature tracker estimating

the correct direction of the feature’s motion (i.e. along the

epipolar line), but with an incorrect magnitude. Unfortu-

nately, this is an error that two-point RANSAC cannot re-

solve. In addition, the error in EM2 can also fail to detect

a failed track, for example in situations where the template

points are very dense, and so every propagated event is close

to a template point, regardless of the scaling and translation.

As the EKF is a least squares minimizer, the introduction of

any such outlier tracks has a significant effect on the state

estimate. However, overall, our event based feature tracking

is typically able to track more features over longer periods

of time than the image based technique, and we believe that

we should be able to remove these outliers and significantly

reduce the errors by applying more constraints to the feature

motion in future works. These outliers are less common in

KLTVIO, as it has been tuned to be over conservative when

rejecting feature motions (although this results in shorter

feature tracks, overall).

In addition, one of the main challenging aspects of this

dataset stems from the fact that, as event-based cameras

tend to only trigger events over edge-like features, low tex-

ture areas generate very few events, if any. In many of the

sequences, the camera passes over textureless areas, such as

the back wall of the room, resulting in no events generating

in the parts of the image containing the wall. As a result,

no features are tracked over these areas. When these areas

in the image are large, as in the examples in Figure 6, this

introduces biases into the filter pose estimate, and increases

tracking error. This typically tends to affect EVIO more

than KLTVIO, as areas where no events generate may still

have some texture, with the exception being the shapes 6dof

sequence, where the KLT tracker fails at the beginning. As

a result, this lack of information is a significant contributor

to feature track failure.

In conclusion, we have presented a novel event-based

visual inertial odometry algorithm that uses event based

feature tracking with probabilistic data associations and an

EKF with a structureless vision model. We show that our

work is comparable to vision based tracking algorithms, and

that it is capable of tracking long camera trajectories with a

small amount of drift.
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