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Abstract

Large-scale datasets have driven the rapid development
of deep neural networks for visual recognition. How-
ever, annotating a massive dataset is expensive and time-
consuming. Web images and their labels are, in compar-
ison, much easier to obtain, but direct training on such
automatically harvested images can lead to unsatisfactory
performance, because the noisy labels of Web images ad-
versely affect the learned recognition models. To address
this drawback we propose an end-to-end weakly-supervised
deep learning framework which is robust to the label noise
in Web images. The proposed framework relies on two uni-
fied strategies — random grouping and attention — to effec-
tively reduce the negative impact of noisy web image an-
notations. Specifically, random grouping stacks multiple
images into a single training instance and thus increases
the labeling accuracy at the instance level. Attention, on
the other hand, suppresses the noisy signals from both in-
correctly labeled images and less discriminative image re-
gions. By conducting intensive experiments on two chal-
lenging datasets, including a newly collected fine-grained
dataset with Web images of different car models, ', the supe-
rior performance of the proposed methods over competitive
baselines is clearly demonstrated.

1. Introduction

Recent development of deep convolutional neural net-
works (CNNs) has led to great success in a variety of tasks
including image classification [17, 19, 38], object detec-
tion [15,22,33], semantic segmentation [20,23] and others.
This success is largely driven by the availability of large-
scale well-annotated image datasets, e.g. ImageNet [36],
MS COCO [21] and PASCAL VOC [13]. However, an-
notating a massive number of images is extremely labor-
intensive and costly. To reduce the annotating labor cost, an
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IThe dataset and code are available at ht tps: / /bitbucket .org/
jingruixiaozhuang/cvpr2017_code_dataset/

alternative approach is to obtain the image annotations di-
rectly from the image search engine from the Internet, e.g.
Google image search or Bing images.

Web-scale image search engine mostly uses keywords as
queries and the connection between keywords and images
is established by the co-occurrence between the Web image
and its surrounding text. Thus, the annotations of Web im-
ages returned by a search engine will be inevitably noisy
since the query keywords may not be consistent with the
visual content of target images. For example, using “black
swan” as a query keyword, the retrieved images may con-
tain “white swan,” “swan painting”” and some other different
categories. These noisy labels can be misleading if we use
them to train a classifier to learn the corresponding visual
concept.

To overcome this drawback, we propose a deep learn-
ing framework designed to be more robust to the labeling
noise and thus better able to leverage Web images for train-
ing. There are two key strategies in our framework: random
grouping and attention. As will be shown later, these two
strategies seamlessly work together to reduce the negative
impact of label noise.

Specifically, the random grouping strategy randomly
samples a few images and merges them into a single training
instance. The idea is that although the probability of sam-
pling an incorrectly labeled Web image is high, the prob-
ability of sampling an incorrectly labeled group is low be-
cause as long as one image in the group is correctly labeled,
the label of the group is deemed correct (bag label as in
multi-instance learning). In the proposed approach, each
image is represented by the extracted contextual features
depicting the visual patterns of local image regions. Af-
ter the random grouping, a training instance is represented
as the union of convolutional feature maps extracted from
each image in the group. If there are any incorrectly labeled
images in the group, the unified feature maps of an instance
will contain a substantial amount of local features which
are irrelevant to the group-level class annotation. To avoid
the distraction of those local features, we apply the second
strategy of our framework, the attention mechanism, to en-
courage the network not to focus on the irrelevant features.
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Figure 1: Overview of our “webly”-supervised learning pipeline. For the training phase, inputs are a group of images, including one
correctly labeled image and two noise images from top to bottom. The convolutional layers are shared. The attention model is added on
each training data and followed by a global average pooling layer to get the aggregated group-level representation, followed by a softmax
layer for classification. For the testing phase, the input is a single image and output is the predicted class label.

To experimentally validate the robustness of the pro-
posed method, we collect a large-scale car dataset using a
Web image search engine. This dataset is particularly chal-
lenging due to its fine-grained nature. By conducting an
experimental comparison on this dataset, we demonstrate
that the proposed method achieves significantly better per-
formance than competitive approaches.

2. Related Work

Our work is closely related to learning from web-scale
data and noisy labels [8,9,12,14,18,29,30,32,37,41,45,48].
In terms of learning from Web data, in [8, 9], Chen et al.
propose to pretrain CNN on simple examples and adapt it
to harder images by leveraging the structure of data and cat-
egories in a two-step manner. In contrast, we propose a
simply-yet-effective end-to-end learning framework with-
out pretraining. To better dealing with noise, some ap-
proaches [40, 45] propose to add an extra noise layer into
the network which adapts the network outputs to match
the noisy label distribution. On the other hand, some ap-
proaches attempt to remove or correct noisy labels [7,27],
but because of the difficulty of separating correctly labeled
hard samples from mislabeled ones, such a strategy can re-
sult in removing too many (correct) instances. Moreover,
several label noise-robust algorithms [5, 26] are proposed
to make classifiers robust to label noise. However, noise-
robust methods seem to be adequate only for simple cases
of label noise that can be safely managed by regularization.
In this paper, we instead propose to suppress label noise by
unified two strategies without any strong assumptions.

Our work is also related to weakly-supervised object lo-
calization [6, 10, 11,31, 34,35,39,42]. The objective of
these methods is to localize object parts that are visually

consistent with the semantic image-level labels across the
training data. A major approach for tackling this task is
to formulate it as a multiple instance learning problem. In
these methods [10, 34,44], each image is modeled as a bag
of instances (region features) and the classifier is learned to
select the foreground instances. Further in [31], a weakly-
supervised deep learning pipeline is proposed to localize
objects from complex cluttered scenes by explictly search-
ing over possible object locations and scales in the image.
In light of the above methods, we convert the problem of
learning from noisy labels to a weakly-supervised problem
that in spirit is similar to the multiple instance learning as-
sumption. What’s more, we further propose to incorporate
attention strategy to reduce the adverse effect of noise.
Related to our work, the attentive mechanisms have been
applied to many computer vision tasks [ -3, 16,24,28,43,
46,47,50] to help improve the performance. To guide the
models’ focus on the objects specified by the question or
caption, attention models are designed to pay attention to
local CNN features in the input image [1,24,46,47,50]. The
attentive mechanism has also been used to handle sequen-
tial problems in neural machine translation [3,25] and man-
age memory access mechanisms for memory networks [43]
and neural turing machines [16]. Different from the above
methods, we are the first to apply the attention mechanism
to cope with noisy labels. It can not only detect discrimina-
tive local feature regions, but also serves to filter out noisy
signals from the mislabeled samples in the training instance.

3. Method

In our task, we intend to distill useful visual knowledge
from the noisy Web data. It consists of correctly labeled
samples and mislabeled samples on the Web. To make the

1879



classifier robust to noisy labels, we propose a deep learning
framework by incorporating two strategies, random group
training, and attention. The overview of our method is
shown in Figure 1. At the training stage, we randomly group
multiple training images into a single training instance as
the input of our neural network. The proposed neural net-
work architecture has two parts. The first part is similar
to a standard convolutional neural network which is com-
prised of multiple convolutional layers and pooling layers.
The second part is an attentional pooling layer which selects
parts of the neuron activations and pools the activations into
the instance-level representation. Once the neural network
is trained, we can drop off the random grouping module and
takes a single image as input at the test stage.

In the following sections, we will elaborate the random
grouping training and the attention module and discuss their
benefits for reducing the impact of noisy labels.

3.1. Random grouping training

Random grouping training (RGT) aims at reducing the
probability of sampling an incorrectly labeled instance and
thus mitigate the risk confusing a neural work with wrong
annotations. The idea of RGT is to stack multiple images
of one class into a single grouped training instance of the
same class. In practice, we implement this idea by stacking
the last layer convolutional feature maps obtained from each
image into a unified convolutional feature map and perform
(attention based) pooling on this feature map to obtain the
instance-level representation. In this sense, we can view the
input of a grouped instance as a “merged image” and as long
as one image is correctly labeled as containing the object-
of-interest, the “merged image” indeed contains it. In other
words, the grouped training instance is correctly labeled as
long as one image within is correctly labeled.

Consequently, if the probability of sampling an incor-
rectly labeled image is £, then the probability of sampling a
correctly labeled grouped instance will become

p=1-¢~ (1)

where K is the group size and when K becomes larger, the
probability of sampling a correctly labeled instance will be-
come very high. For example, if £ = 0.2 and K = 3, p will
be greater than 99%. However, when K becomes larger,
the independence between multiple training instances will
reduce and this tends to undermine the network training.
Thus in practice, we choose K as a small value (2 to 5). We
have conducted an experimental study on the impact of K
with respect to different level of labeling noise at Section
4.4.

3.2. Attention
3.2.1 Attention formulation

After random grouping, each instance is now represented as
an array of activations. These activations come from both
correctly labeled images and mislabeled images. Although
containing activations from the correct region of interest,
many of the activations are noisy signals and will negatively
impact the learning process. To mitigate this issue, we pro-
pose to use an attention model to focus processing only on
the attended activations. Let x;;, € R denote the last con-
volutional layer activations from the k-th image of the n-th
instance at the spatial location (i, ), where i = 1,2, ...,d
and j = 1,2,...,d are the coordinates of the feature map
and d is the height or width of the feature map.

The unnormalized attention score s7%; € R can be for-
mulated as

sty = F(Wix(y, +b), )

where w € R¢, b € R! denote the weight and bias of the
attention detector respectively, which are parts of the model
parameters and will be learned in an end-to-end manner.
f(+) is the softplus function f(z) = In(1 + exp(z)). Since
we are only concerned with the relative importance of the
local features within an image, we propose to normalize the
attention scores to [0, 1] for aggregating the local features:

n
Sijk T €
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where a;’;; is the normalized attention score, ¢ is a small
constant and quite important to make the distribution rea-
sonable.

If the element SZk is low but there is no &, then the
corresponding a;’;;, can be large even though s, is small.
The constant € can solve this problem effectively. If it is

properly set, a small s, (approaching zero) will result in

a;‘jk = d%. In our work, we set it to 0.1.

After obtaining the normalized attention scores, we can
get the attended feature representation by applying a;’;, to
X, as follows:

on _on n
Xijk = Qiji O Xyjks “4)

where © is the element-wise multiplication, ﬁ{’] ;. 1s the at-
tended feature representation.

Then the representation of a grouped training instance
can be obtained by a global average pooling over all the
feature dimensions except for the channel-wise dimension:

1 .
7 7 k

where h,, € R¢ is the group-level representation of the n-th
training instance.
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Figure 2: This figure illustrates the effectiveness of the group-wise attention model used in the proposed method. The left column shows
the original training images. The middle column is the images plus its corresponding attention heat maps. The right column shows the
distribution of the attention maps. The upper row relates to the correctly labeled sample and the bottom row corresponds to the mislabeled
sample. We can see that for the correctly labeled sample, the normalized attention model only focus on the discriminative local parts and
the score distribution is sparse. In contract, for the mislabeled sample, the normalized attention model fails to concentrate on any local

regions and the score distribution is dense.

Then we apply a linear classifier layer to predict the class
label of each grouped instance and use the multi-class cross-
entropy loss to train the network:

exp(F)

S exp(Fy) ) ®

Lclass = - Z Yn IOg(

where F',, and y,, are the last linear classification layer and
the class label for the n-th training instance, respectively.

3.2.2 Attention module regularization

Ideally, for the correctly labeled image, the attention scores
should have large values on one or few image regions; for
the mislabeled image, none of the image regions should
correspond to large attention values. In the above frame-
work, we expect this situation can happen after the end-to-
end training of the network. In this section, we devise a
regularization term to further encourage this property. To
apply this regularization, we assume that a set of negative
class images belonging to none of to-be-learned image cat-
egories is available. Then we can apply the attention de-
tector on those negative class images and require that the
obtained normalized attention values are as small as possi-
ble since those images do not contain the object-of-interest.
Define ;) = wa?j  + b to be the linear attention scores
for the sample x;’, ; then the above requirement is equiva-
lent to expecting max;jx u;%;, < 0. On the other hand, for a
grouped training instance generated from each class, we ex-
pect that the attention detector identifies at least one relevant

region and this leads to the objective max;;i u;;;, > 0. In
this paper, we propose to use the following objective func-
tion to impose the aforementioned two requirements:

R(w,b) = Z max(0, 1 — dpmaxijk(uyy))  (7)
where 0, = {1, —1} indicates whether the instance is sam-
pled from the classes of object-of-interest or from the neg-
ative class. We then use the weighted sum of L.;,ss and R
as the final objective function:

L= Lclass + AR. (8)

The effect of the attention module is illustrated in Fig-
ure 2. The input is an instance including a correctly labeled
car sample and a mislabeled noise sample. We can observe
that for the correctly labeled sample, the normalized atten-
tion scores are pushed high at the region-of-interest, which
corresponds to the back of the car in the example. In con-
trast, for the mislabeled sample, the normalized attention
scores are all pushed approaching zero, resulting in no parts
to be concentrated on for the attention model. In terms of
this observation, we can explore that the attention model
can not only filter out the contextual features of the misla-
beled samples in the training instance, but also help detect
the discriminative parts of the correctly labeled samples.

4. Experiments

In this section, we test our weakly-supervised learning
framework on two datasets collected from the Web. One is a
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fine-grained dataset and the other one is a conventional clas-
sification dataset. The training data for both tasks are ob-
tained via search results freely available from Google image
search, using all returned images as training data. It’s worth
noticing that fine-grained classification is quite challenging
because categories can only be discriminated by subtle and
local differences.

4.1. Datasets

WebCars: We collect a large-scale fine-grained car dataset
from the internet, named WebCars, using the categories of
the clean CompCars dataset [49]. We treat the car model
names as the query keywords and automatically retrieve
images for all the 431 fine-grained categories. We col-
lect 213,072 noisy Web images in total and still use the
test set of the original clean dataset for testing. We sam-
ple a few categories from WebCars and manually anno-
tate the ground-truth labels, noting in the process that ap-
proximately 30% of images are outliers. We further collect
10,000 images that doesn’t belong to the training categories
as the negative class.

Web data + ImageNet: We randomly sample 100 classes
used in ImageNet and use the category names for collecting
a noisy Web image dataset. All the images are automati-
cally downloaded and the ones that appear in the original
ImageNet dataset are manually removed. This dataset con-
tains 61,639 images in total. The noise gradually increases
from the highly ranked images to the latter samples. We
estimate the percentage of mislabeled samples is approx-
imately 20 %. We also collect 5,000 negative class Web
images.

4.2. Implementation details

We use Theano [4] for our experiments. We use the pre-
trained VGG-16 model trained on the ImageNet dataset [36]
to initialize the convolutional layers of our framework. The
learning rate is set to 0.001 initially, and divided by 10 after
5 epoches. The regularizer A is set to 0.1. Training samples
are randomly grouped online.

To investigate the impact of the various elements in our
end-to-end framework, we analyse the effects of the atten-
tion model, group-wise training approach and the attention
regularization described in Section 3.2.2 independently.

1. “Average pooling without attention (AP)”: We employ
the average-pooling method as an important baseline
here since it’s commonly used for image classification
on clean images without any noise-robust strategy. The
average pooling structure simply replaces the two 4096
dimensions fully-connected layers in VGG-16 model
with an average pooling layer, followed by a softmax
layer for classification.

2. “Random grouping training without attention (RGT)”:

In this method, samples are randomly grouped during
training, with the mean-pooling operation in Eq. 5 to
get the instance-level representation.

3. “Average pooling with attention (AP+AT)”: Based on
AP, the attention model is embedded in the network
to test its ability to localize discriminative feature re-
gions.

4. “Random  grouping training with  attention

(RGT+AT)”: Attention is added to RGT.

5. “Average pooling with attention and regularizer
(AP+AT+R)”: We add the regularizer to AP+AT to
evaluate its influence to cope with noisy labels.

6. “Random grouping training with attention and regular-
izer (RGT+AT+R)”: We test its performance on filter-
ing out incorrectly labeled samples in each group as
well as noisy local feature parts by adding the regular-
izer to RGT+AT.

4.3. Evaluation on the WebCars

We quantatively compare the methods described in Sec-
tion 4.2 and report the results in Table 1. For RGT based
methods, the group size is set to 2.

methods accuracy
AP 66.86%
RGT 69.83%
AP+AT 73.64%
RGT+AT 76.58%
AP+AT+R 70.77 %
RGT+AT+R  78.44%

Table 1: Comparison of classification results on the Compcars
test set.

Average pooling vs. Random grouping training

By comparing the results of AP and RGT, we can see
that the group-wise training can effectively suppress the in-
fluence of noise due to the improved labeling accuracy at the
instance level. For this reason, the model can always learn
some useful information from the correctly labeled samples
in each group. In contrast, for training at the image level
with no attention, the noisy labels will give networks mis-
leading information that will harm the learning process.
Attention vs. without attention

For AP+AT and RGT+AT, the accuracy all improves by a
large margin compared to AP and RGT respectively, which
proves the effectiveness of the attention model employed.
The attention model filters out uninformative parts of the
feature maps for each sample and only let the useful parts
flow through the latter network for classification. In this
way, it works like a gate that can prevent the noisy regions
of the feature representation from misleading the classifiers.
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Figure 3: Examples of the image re-ranking performance on one sampled car category (“cadillac”). The red crosses indicate the images
that are classified incorrectly. The images are sorted according to the rank of the classification scores in descending order. The images in
the green rectangle and red rectangle are correctly labeled samples and mislabeled samples, respectively. The noise level is 0.4.

A similar strategy is found effective on clean images for
multi-label image classification [51].

With vs. without regularizer

An interesting phenomenon we observe is that the ac-
curacy for AP+AT drops significantly when using the noise
regularizer, AP+AT+R. The reason is that the noise presents
in both classes of object-of-interest and negative class, and
consequently the image-level learning strategy confuses the
network with how to classify the noise. But this confu-
sion doesn’t exist in the group-level training approach, since
very few training instances have incorrect labels after ran-
dom grouping. The reasons for adding noise regularizer is
helpful for group-wise training are two-fold: First, the hinge
loss regularizer forces the attention map not to concentrate
on any feature regions of mislabeled samples, which results
in a much cleaner group-level feature representation; Sec-
ond, it helps the classifiers to distinguish the correctly la-
beled samples from the noise [15]. It’s worth noticing that
compared to utilizing clean images as constraint [45], the
negative samples are much easier to collect.

We consider two types of label noise defined in [18],
which are called cross-domain noise and cross-category
noise. The cross-domain noise is defined to be the portion
of images that are not of any category in the fine-grained
domain, i.e. for cars, these images don’t contain a car. In
contrast, the cross-category noise is the mislabeled images
within a fine-grained domain, i.e. a car example with the
wrong model label.

We also provide qualitative examples in Figure 5. We
see that the attention model mostly focuses on the discrim-
inative parts in the front of or at the end of the cars. For
some challenging examples, the correctly labeled car ap-
pears simultaneously with the cross-domain noise or cross-
category noise in the same image. In this case, the attention
model still successfully localizes to the correct parts. For
the mislabeled samples, there’s no object-of-interest to be
concentrated on.
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Figure 4: The classifcation accuracy under different group sizes
of the proposed method.

4.4. Analysis of group size

In this section, we conduct a toy experiment to in-
vestigate the impact of the group size on our method
(RGT+AT+R)>. We randomly sample 100 car categories
of the Compcars dataset and deliberately pollute the clean
training data by adding cross-category noise and cross-
domain noise in a proportion of 1:1. The total number of
training images doesn’t change. We then gradually increase
the noise level from 0.2 to 0.6 and report the classification
accuracy on the test set of Compcars using different group
sizes. The results are shown in Figure 4. From Figure 4, we
could make the following observations: (1) using group size
> 2 makes the network training more robust to noise. As
can be seen, when the dataset contains a substantial amount
noise label e.g. noise level = 0.6, the performance gap be-
tween group size = 1 and group size > 2 can be larger than
10%. (2) the optimal group size changes with the noise
level. For example, when the noise level = 0.2, the optimal
group size is 2 but when the noise level = 0.6, the optimal

2When group size equals 1, the method is equivalent to AP + AT + R.
We empirically find adding the regularization term in this case will lead to
inferior performance so we do not use the regularization term when group
size equals 1.
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group size becomes 4. This observation could be partially
explained by the analysis in section 3.1, that is, the larger
group size reduces the chance of having an incorrect label
at the group-level. (3) Finally, we observe that larger k does
not always lead to better performance. As also mentioned
in section 3.1, we speculate that this is because having a
larger group will reduce the independency of grouped in-
stance. For example, when having a larger k, the chance of
two groups sharing one common image will grow signifi-
cantly.

4.5. Web Images re-ranking

To inspect whether the proposed method utilize the in-
formation from the correctly labeled data for training while
ignoring the mislabeled ones, we now propose to re-rank
the noisy training data used in Section 4.4 according to their
classification scores. The ideal case is that the highly ranked
images are all correctly labeled ones while the low-ranking
samples are mislabeled ones on the Web. We compare three
methods here, including AP, AP+AT as well as RGT+AT+R
using different group sizes. The ground truth labels for cor-
rectly labeled images and mislabeled images are set to +1
and —1, respectively. Correctly labeled images are ranked
high in the ground truth labels. Based on the learned mod-
els in Section 4.4, we first obtain the classification score for
each training sample and rank the images in descending or-
der based on their corresponding classification scores to get
the predicted labels in each category. We then calculate the
mean average precision (MAP) under different noise levels
and group sizes. The mean average precision is obtained by
averaging the precisions calculated at the total number of
samples in different categories.

noise level 0% 40% 60 %

methods
AP 93.72 85.08 74.42
AP+AT 96.71 92.84 90.56

RGT+AT+R, group size=2 | 98.12 95.81 91.00
RGT+AT+R, group size=3 | 97.71 95.93 91.04
RGT+AT+R, group size=4 | 97.95 95.33 91.98

Table 2: Comparison of mean average precisions % using several
methods under different noise levels.

From the table, we can see that for direct average pool-
ing, the precision drops dramatically as the noise level in-
creases. On the contrary, simply adding attention model
only, the precision improves considerably especially when
the noise level is high enough. For example, at the noise
level 60 %, the precision gap is more than 15 %. This result
proves that selecting discriminative regions for each sam-
ple can effectively prevent noisy parts from impacting the
final classification. By incorporating the group-wise train-
ing strategy, the performance further improves. This can be
attributed to the highly accurate group-level labels used and

the attention model for blocking the local features of mis-
labeled samples to generate the group-level representation.
Overall, the proposed method is stable and performs well at
different noise levels.

We also randomly select a car category and qualitatively
evaluate the re-ranking performance at the noise level 0.4
(see Figure 3). The images are ranked in descending order
based on their classification scores. We can see that only
a pair of images are ranked incorrectly among the samples.
From the results, we can expect that our method can further
be used to assist collecting clean datasets or active learning.

4.6. Evaluation on CIFAR-10 with Synthetic Noises

We also conduct synthetic experiments on CIFAR-10
following the setting of [41,45] and report the test accu-
racies under different noise levels in Table 3. As seen, the
proposed method is more robust to label noise.

noise level 30 % 40 % 50%
methods
Caffe’s CIFAR10-quick 65.57% | 62.38% | 57.36%
[41] 69.73% | 66.66% | 63.39%
[45] 69.81% | 66.76% | 63.00%

RGT+AT+R, group size=2 | 74.88 % | 70.33% | 65.87%
RGT+AT+R, group size=3 | 71.76 % | 72.25% | 67.15%
RGT+AT+R, group size=4 | 70.23 % | 70.74% | 66.98%

Table 3: Accuracies on CIFAR-10 with synthetic label noises.

4.7. Evaluation on Web Images + ImageNet

Apart from the challenging fine-grained classification
task, the proposed method can also be generalized to a
conventional classification task. We trained models from
scratch using the noisy Web data with respect to ImageNet
described in Section 4.1 and test the performance on the
ILSVRC2012 validation set.

methods accuracy
AP 58.81%
AP+AT 67.68%
RGT+ATHR, group size=2  71.24%
RGT+ATHR, group size=3  68.89%
RGT+AT+R, group size=4  66.23%

Table 4: Comparison of classification results on ILSVRC2012
test set.

From the results we can see that for the conventional im-
age classification task with Web data, the proposed method
still works much better than the directly average pooling
baseline. By only applying the attention model on each
sample to select discriminative feature regions for classi-
fication, the result improves by ~ 9%. By randomly gen-
erating groups online using reasonable group size and in-
corporating the regularizer, we get the best performance at
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Figure 5: Examples of the attention maps using the large-scale noisy fine-grained dataset described in Section 4.1. The brighter the
region, the higher the attention scores. The examples in the red dotted box are mislabeled samples on the Web.
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Figure 6: Examples of where attention maps for the collected Web data with respect to ImageNet described in Section 4.1. The brighter
the region, the higher the attention scores. The examples in the red dotted box are mislabeled on the Web.

the optimal group size 2, which confirms the conclusions in
Section 4.3 and Section 4.4.

We visualize some examples with their attention maps
in Figure 6 using the best performed method RGT+AP+R
with group size 2. The attention model attempts to localize
the most discriminative parts for correctly labeled samples
to push them far from the decision boundary. Samples in
the red bounding box are mislabeled on the Web and the
attention model finds no parts to concentrate on.

5. Conclusion

In this paper, we propose a weakly-supervised frame-
work to learn visual representations from massive Web
data with minor human supervision. The proposed method
can handle label noise effectively by two unified strate-
gies. By randomly stacking training images into groups,
the accuracy of the group-level labels improves. The atten-
tion model embedded further localizes the discriminative

regions corresponding to correctly labeled samples across
the combined feature maps for classification. The efficacy
of our methods have been demonstrated by the extensive
experiments.
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