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Abstract

Over the years, indoor scene parsing has attracted a

growing interest in the computer vision community. Exist-

ing methods have typically focused on diverse subtasks of

this challenging problem. In particular, while some of them

aim at segmenting the image into regions, such as object or

surface instances, others aim at inferring the semantic la-

bels of given regions, or their support relationships. These

different tasks are typically treated as separate ones. How-

ever, they bear strong connections: good regions should re-

spect the semantic labels; support can only be defined for

meaningful regions; support relationships strongly depend

on semantics. In this paper, we therefore introduce an ap-

proach to jointly segment the instances and infer their se-

mantic labels and support relationships from a single input

image. By exploiting a hierarchical segmentation, we for-

mulate our problem as that of jointly finding the regions in

the hierarchy that correspond to instances and estimating

their class labels and pairwise support relationships. We

express this via a Markov Random Field, which allows us

to further encode links between the different types of vari-

ables. Inference in this model can be done exactly via in-

teger linear programming, and we learn its parameters in

a structural SVM framework. Our experiments on NYUv2

demonstrate the benefits of reasoning jointly about all these

subtasks of indoor scene parsing.

1. Introduction

Indoor scene understanding is one of the core challenges

in computer vision. It aims at providing detailed informa-

tion about the objects in a scene, such as their type and how

they interact with each other. Such a level of understand-

ing could have a high impact in many applications, such as

personal robotics, where, to be able to interact with objects,

one needs to reason about their semantics and how they are

placed relative to each other.

In essence, indoor scene parsing is a complex problem

that consists of multiple subtasks, such as segmenting the

scene into meaningful regions [2, 7, 18], such as object

or surface instances, predicting semantic labels for every

pixel in the scene [16, 4, 22] and reasoning about the sup-

port relationships of different regions [11, 6, 19, 15]. In

the literature, with the exception of [20] that jointly reasons

about regions and semantics, existing approaches typically

tackle these subtasks independently. These subtasks, how-

ever, truly are strongly connected. For instance, the support

relationship of two regions is highly correlated with their

semantics; reasoning about support can be facilitated by us-

ing semantically meaningful regions. By addressing these

tasks separately, or sequentially, existing methods cannot

leverage the full collective power of all these dependencies.

In this paper, we therefore introduce an approach to

jointly segment the instances and infer their semantic la-

bels and support relationships in an indoor scene from a

single input image. To this end, we exploit a hierarchical

segmentation and formulate our problem as that of find-

ing the regions corresponding to instances in this hierarchy,

while simultaneously predicting a semantic label for each

such region and the support relationship between any pair of

such regions. We jointly express these subtasks in a single

Markov Random Field (MRF). This allows us to effectively

encode the dependencies between them, thus leveraging all

the connections underlying our overall problem.

We perform inference in the resulting MRF exactly by

formulating it as an integer linear programming problem.

To cope with the size of this problem, we propose to make

use of a regressor trained to predict the overlap of each re-

gion with a ground-truth instance to effectively prune the

region candidates. Thanks to the efficiency of this reduced
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inference strategy, we can learn the parameters of our model

using structural Support Vector Machines (SVM). To this

end, we design a loss function that reflects the multi-task

nature of our indoor scene parsing formalism.

We demonstrate the effectiveness of our approach on the

NYUv2 dataset [19]. Our experiments evidence that ac-

counting for the dependencies between regions, their se-

mantics and their support helps improving the prediction of

the corresponding variables, with a particularly high impact

on support relationships.

2. Related Work

Indoor scene understanding has been an important re-

search focus in the computer vision community. As dis-

cussed above, this challenging problem consists of multiple

subtasks. In particular, here, we tackle the tasks of instance

segmentation, semantic labeling and support relationships

prediction. We therefore focus the discussion below to the

methods that have proposed to address these tasks.

Segmenting an image into regions has attracted a huge

interest over the years [1, 2, 3, 18]. A complete review of

this literature goes beyond the scope of this paper. Here,

we briefly discuss the ones that have been used for indoor

scene understanding. In this context, the most direct ap-

proach consists of using standard over-segmentation meth-

ods, such as SLIC [1], Mean-Shift [3] and normalized-

cut [18]. In [14], multiple such over-segmentations were

employed jointly for monocular normal estimation. By con-

trast, many approaches favor exploiting hierarchical seg-

mentations [1, 2, 7, 9]. While some works then select spe-

cific levels in this hierarchy [23, 17], others aim to automati-

cally find the best active regions in it, e.g., that fit the image

contours [9], or whose pixel intensities follow a Gaussian

distribution [10]. Segmentation, however, often acts as a

pre-processing step to later perform some other task.

In particular, semantic segmentation methods have often

relied on pre-defined image regions [17, 19, 7, 21]. The

motivation behind this was both computational cost and ro-

bustness to noise. Indeed, early approaches to semantic seg-

mentation often relied on MRFs, in which inference can

be expensive when working at pixel level. Furthermore,

working with regions allows one to regularize the predic-

tions spatially. With the recent advent of Deep Learning,

and progress in efficient inference methods [12], many ap-

proaches now work directly at the level of pixels [16, 4, 22].

By contrast, when it comes to estimating support rela-

tionships, the notion of regions remains necessary. The idea

of estimating support was introduced in [19], where a hi-

erarchical segmentation was used to predict support from

below, from behind or no support between pairs of regions.

In this context, [6] predicts the height and extent of sur-

faces that can support objects or people. In [11] , instead of

2D segments, support is defined between 3D boxes. More

recently, [15] proposed to make use of object classes and

physical stability to reason about support relationships be-

tween regions. All these methods make use of an RGBD

image as input. By contrast, here, we aim to predict support

from a single, standard RGB image.

More importantly, most of the methods discussed above

tackle a single subtask of the challenging indoor scene un-

derstanding problem. The only exceptions we are aware of

are [20], which jointly selects active regions in a hierarchy

and predicts their semantic label, and [19], which jointly

reason about semantics and support relationships. Both of

these works, however, also makes use of RGBD as input.

By contrast, here, we aim to jointly segment the object or

surface instances and infer their semantics and their support

relationships from a single RGB image. To the best of our

knowledge, our work constitutes the first attempt at consid-

ering all three subtasks together.

3. Our Approach

Our goal is to jointly solve three sub-problems of indoor

scene understanding, i.e., instance segmentation, semantic

labeling and support relationship prediction, so as to ac-

count for their dependencies. To this end, we make use of a

segmentation hierarchy, obtained by the method of [7]. Our

problem then translates to that of selecting the regions that

best match ground-truth instances in this hierarchy, predict-

ing their semantic label and their pairwise support relation-

ships. We express this as inference in an MRF with three

types of nodes: region selection ones, semantic label ones

and support relationships ones. The edges in the model en-

code the dependencies between these variables.

More specifically, let us assume to be given a hierar-

chy of R regions forming a tree. To select the active

regions in this tree, we define a set of binary variables

A = {ai}
R
i=1 , ai ∈ {0, 1}. Furthermore, let M =

{Mi}
R
i=1 , Mi ∈ {1, . . . ,K} be the set of semantic label-

ing variables defining the class to which a region belongs,

for K semantic classes. We then define an additional set

of variables to model the support relationships between any

two regions. To this end, let Sij denote the type of sup-

port that region j provides to region i. Following [19], we

consider three different cases: No support (Sij = 0); j sup-

ports i from below (Sij = 1); j supports i from behind

(Sij = 2). Note that we will often refer jointly to the latter

two types as positive support, as opposed to the first type

that corresponds to negative support. Furthermore, we in-

troduce a hidden region to model the fact that some regions

may be supported by a region that is not visible in the im-

age. Altogether, the support variables can be expressed as

S = {Sij}
R
i=1,j=0 , Sij ∈ {0, 1, 2}, where j = 0 corre-

sponds to support by the hidden region.

We then formulate the problem of jointly inferring these
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three types of variables as that of maximizing the function

E(A,M,S) =
R
∑

i=1

φa(ai) +
R
∑

i=1

φma(Mi, ai) + φtree(A)

+

R
∑

i=1

R
∑

j=0

φs(Sij) +

R
∑

i=1

R
∑

j=0

φsa(Sij , ai, aj)

(1)

with respect to A, M and S, which can equivalently be con-

verted to minimizing an MRF energy. The function relies

on several potentials, which we discuss below.

The first term φr(ai) is a unary potential encoding the

probability that region i is active. We define this potential as

φr(ai) = wT
a f

a
i [ai = 1], where [·] is the indicator function,

thus setting this potential to zero when ai = 0. The vector

fa
i is a feature vector defined in Section 3.3, and wa is the

corresponding parameter vector to be learned from data.

The potential φma(Mi, ai) encodes the probability of

predicting a particular semantic label for region i if the re-

gion is active. Simultaneously, it assigns a fixed cost to in-

active regions. This can be expressed as

φma(Mi, ai) =

{

0 ai = 0

wT
ma:Mi

fma
i ai = 1

(2)

where fma
i is a feature vector, which, as described in Sec-

tion 3.3, links semantics and support relationships. The vec-

tor wma:Mi
contains the parameters corresponding to each

class Mi and will be learned from data.

The potential φtree(A) enforces constraints on the set of

active regions. For the segmentation to be valid, every pixel

in the image should be covered by a single region. This is

achieved by making sure that only one region is selected

in every path from the root of the segmentation hierarchy

to a leaf node. To this end, we thus define φtree(A) =
∑

γ∈Γ −∞[1 6=
∑

i∈γ [ai = 1]], where Γ is the set of all

root-to-leaf paths in the tree.

The unary potential φs(Sij) encodes the probability of a

support variable to belong to either of the three classes. We

write this potential as

φs(Sij) = wT
s:Sij

fs
ij , (3)

where fs
ij is a feature vector, which, as described in Sec-

tion 3.3, links support types and semantics. The parameter

vector ws:Sij
for each class Sij will also be learned.

Finally, φsa(Sij , ai, aj) is a higher-order potential en-

coding the dependencies between the support variables and

the region selection ones. We define this potential as

φsa(Sij , ai, aj) = wsa










wT
b f

sa
ij , Sij 6= 0 ∧ (ai = 0 ∨ aj = 0)]

wT
c f

sa
ij , Sij 6= 0, ai = 1, aj = 1

0, otherwise ,

(4)

where fsa
ij is a feature vector on a pair of regions, as de-

scribed in Section 3.3. The vector wb contains the parame-

ters corresponding to the scenario where we predict a posi-

tive relationships even though either region is inactive, and

wc is the parameter vector for the case where both regions

are active and we predict a positive relationship. Typically,

we would like to penalize the first case and favor the second

one. Other cases are assigned a fixed cost of zero.

3.1. Inference

To perform exact inference in our model, we propose to

re-write it as an integer linear program (ILP). To this end,

let a ∈ B2R+1 be a vector of binary variables representing

the states of A, where ai,1 = 1 encodes the fact that region

i is active, while ai,0 = 1 corresponds to an inactive region

i. Here, we add an extra variable a0,1 = 1 corresponding

to the hidden region and forcing it to always be active. Fur-

thermore, m = {mi,k} , 1 ≤ i ≤ R , 0 ≤ k ≤ K, denotes

binary variables encoding the pairwise state space of M and

A, where mi,0 represents the case where ai = 0 for an ar-

bitrary Mi, and mi,k 6=0 corresponds to the pairwise state

ai = 1 and Mi = k. Additionally, let s = {si,j,t∈{0,1,2}}
encode the state of the support relationship variables, and

z the triplet states corresponding to the higher-order term

φsa(Sij , ai, aj), where zi,j,l, l ∈ {1, 2, 3}, corresponds to

the three cases in Eq. 4.

Inference in our model can then be re-written as the bi-

nary linear program

argmax
a,m,s,z

R
∑

i=1

θai ai,1 +
R
∑

i=1

K
∑

k=0

θmi,kmi,k+

R
∑

i=1

R
∑

j=0

2
∑

t=0

θsi,j,tsi,j,t +

R
∑

i=1

R
∑

j=0

3
∑

l=1

θsai,j,kzi,j,l

(5)

subject to

ai,l, mi,u, si,j,t zi,j,l ∈ {0, 1} ∀i, l, j, t, u, v

a0,1 = 1 ,
(6)

ai,0 + ai,1 = 1, ∀i (7)
∑K

k=0 mi,k = 1, ∀i (8)

mi,0 = ai,0, ∀i (9)
∑2

t=0 si,j,t = 1, ∀i, j (10)
∑3

l=1 zi,j,l = 1, ∀i, j (11)
∑

i∈γ ai,1 = 1, ∀γ ∈ Γ (12)
∑

t∈{1,2}

∑R
j=0 si,j,t ≥ ai,1, ∀i (13)

∑

t∈{1,2}(si,0,t + si,j,t) ≤ ai,1, ∀i, j 6= 0 (14)

si,0,1 ≥ mi,1, ∀i (15)

zi,j,2 = si,j,0, ∀i, j (16)
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zi,j,3 ≤
∑2

t=1 si,j,t, ∀i, j (17)

zi,j,3 ≤ ai,1, ∀i, j (18)

zi,j,3 ≤ aj,1, ∀i, j (19)

zi,j,3 ≥
∑2

t=1 si,j,t + ai,1 + aj,1 − 2, ∀i, j, (20)

where the θ··s encode the different potentials described

above. The constraints can be interpreted as follows: Eqs. 7

– 11 enforce the binary variables to correspond to valid pre-

dictions. Eq. 12 enforces the tree constraints on the region

selection variables. Eq. 13 forces a region to be supported

by at least one region when it is active. This constraint

encodes the fact that there is no floating region in the real

world. Eq. 14 prevents a region to be supported by the hid-

den region if there is a region in the scene that can support

it. Eq. 15 forces a region to be supported by the hidden re-

gion if its semantic label is ground (semantic class 1 in our

case). Eq. 16 – 20 enforce the binary variables z to corre-

spond to one of the three cases in Eq. 4. To solve this ILP,

we make use of Gurobi.

Speeding up inference. While Gurobi is very efficient, it

remains too slow for us to handle our typical hierarchies,

which contain roughly 200 regions. To address this issue,

we therefore propose to first prune the regions. This proce-

dure follows two steps. First, we remove the regions that

contain less than 625 pixels, which, based on our statis-

tics, are unlikely to correspond to object instances. Sec-

ond, we exploit a regressor trained to predict the Intersec-

tion over Union (IoU) between a region in the hierarchy and

a ground-truth instance. To this end, we make use of a neu-

ral network with three fully-connected layers, intertwined

with ReLU activation, batch normalization, and dropout.

This network is depicted by Fig. 1. We use deep features

in conjunction with hand-crafted geometric ones as input to

this shallow IoU regression network. See Section 3.3 for

more detail about these features. We train this network us-

ing the square loss between the true IoU and the predicted

one. To this end, we use batches of size 256, a learning rate

of 10−3 and a momentum of 0.95. The dropout rate was set

to 0.5. We also subsample the data so as to have a roughly

balanced training set. To this end, we discretize the IoU in-

terval [0, 1] into 10 bins, and subsample the data such that

each bin contains roughly the same number of samples. At

test time, we keep the 80 regions with highest predicted IoU

that satisfy the constraint that each root-to-leaf path in the

segmentation tree contains at least one region. In practice,

this pruning yields less than 1% decrease in oracle weighted

coverage, while greatly reducing the number of regions.

After pruning, we then train a two-class support classifier

on the remaining regions to predict positive or negative sup-

port. We make use of this classifier to prune support pairs.

To this end, we threshold the classifier score so as to obtain

a high recall of positive support. In practice, we achieve

Figure 1. Architecture of our IoU regressor. We make use of a

network with three fully-connected layers to predict the IoU be-

tween a candidate region and a ground-truth instance. We perform

ReLU activation, batch normalization and dropout after the first

and second layers.

94% recall, while reducing from 5600 to 1100 pairs.

Given the features, the pruning process for pairs takes 3s

per image on average and that for regions 0.2s on average.

Inference then takes 0.2s per image on average.

3.2. Learning

Given training data, we aim to learn the parameters of

our model. One of the challenges of learning comes from

the fact that, typically, the ground-truth instances that we

seek to predict do not appear in our hierarchical segmen-

tation. To reflect what will happen at test time, however,

we would like to learn our model using the noisy segments

from the hierarchies obtained from the training images. To

this end, following [20], we rely on an oracle segmentation.

Below, we first explain how these oracle segmentations are

obtained, and then discuss our learning algorithm.

3.2.1 Oracle Segmentation

The goal of oracle segmentation is to find among the re-

gions in a noisy hierarchical segmentation those that best

match ground-truth instances and correspond to a valid tree

cut, i.e., cover the image without redundancy. To this

end, we make use of the ILP formulation of [20]. This

formulation relies on two kinds of binary variables. The

first ones are equivalent to our region selection variables

a = {ai,l} , 1 ≤ i ≤ R , l ∈ {0, 1}, discussed above.

The second kind of variables encode the mapping between

ground-truth instances and segments in the hierarchy. Let

us denote these variables as o ∈ BG×R, with G the number

of ground-truth instances.

An oracle segmentation can then be obtained by solving

the optimization problem

argmin
a,o

G
∑

g=1

R
∑

i=1

θog,iog,i (21)

subject to

ai,l, og,k ∈ {0, 1}, ∀i, l, g, k, (22)

ai,0 + ai,1 = 1, ∀i, (23)
∑

i∈γ

ai,1 = 1, ∀γ ∈ Γ (24)
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og,i ≤ ai,1, ∀g, i, (25)

R
∑

i=1

og,i = 1, ∀g, (26)

og,i + aj,1 ≤ 1, ∀g, i, j,

if IoU(rg, rj) > IoU(rg, ri)
(27)

where IoU(·, ·) denotes the intersection over union between

two regions, and θg,i =
|Lrg |

L
(IoU(rg, rs) − IoU(rg, ri))

encodes the amount of weighted coverage lost by selecting

region i instead of s, which corresponds to the best possible

match for ground-truth region g. Most constraints simply

force the solution to be valid, with the Eq. 27 guarantee-

ing that, among the regions that are active, the best one is

assigned to a ground-truth region.

3.2.2 Learning via Structural SVM

We now turn to the learning problem per say. To this

end, let D = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}
be a set of pairs of images and labels, where y(n) =
{A(n),M (n), S(n)} comprises the best selection of seg-

ments from the segmentation tree, obtained using the oracle

segmentation described above, the corresponding semantic

labels, taken as the dominant label in each region, and sup-

port relationships, described in Section 4, for image i.

Our goal is to learn the weights in our MRF. The en-

ergy in this MRF can be equivalently written as wTφ(x, y),
where w concatenates all the weights we seek to learn, and,

with a slight abuse of notation, φ(x, y) = [φa, φma, φs, φsa]
concatenates the corresponding features, so as to compute

the different potentials. Following a margin re-scaling

structural SVM formulation, learning the weights can be ex-

pressed as the optimization problem

min
w,ǫ≤0

1

2
wTw +

λ

N

N
∑

n

ǫn

s.t. wT [φ(x(n), y(n))− φ(x(n), y)] ≤ △(y, y(n))− ǫn, ∀y

where △(y, y(n)) returns the loss of an arbitrary prediction

y compared to the best configuration.

Here, to reflect the nature of our problem, where we aim

to predict different types of variables jointly, we design the

multi-task loss

△ (y, y(n)) =
wls

sup

Q

R
∑

i=1

R
∑

j=0

1[Sij 6= S∗
ij ]

+ wls
r

1

L

∑

g∈G

Lrg

(

max
i∈A(n)

IoU(rg, r
(n)
i )

)

− wls
r

1

L

∑

g∈G

Lrg

(

max
i∈Â

IoU(rg, ri)

)

,

(28)

where Â is the active set of A, that is, the set of regions such

that ai = 1, and similarly for Â(n) w.r.t. A(n). Lrg is the

number of pixels in region g, L is the number of pixels in all

the ground-truth regions in an image, and Q is the number

of active pairs in Â. Here, we use wls
r = 1, wls

sup = 0.5.

Loss-augmented Inference. An important step in struc-

tural SVM learning consists of performing loss-augmented

inference to find predictions that have a high loss, but cor-

respond to a low energy (or rather a high score in our max-

imization formulation). This can be expressed as solving

y∗ = argmax
ŷ∈y

△(ŷ, y(n)) + wTφ(x, ŷ) . (29)

Translating this into an ILP then yields the problem

argmax
a,m,s,o

R
∑

i=1

θai ai,1 +

R
∑

i=1

K
∑

k=0

θmi,kmi,k

+

R
∑

i=1

R
∑

j=0

2
∑

t=0

θsi,j,tsi,j,t

+

R
∑

i=1

R
∑

j=0

3
∑

l=1

θsai,j,kzi,j,l

+

G
∑

g=1

R
∑

i=1

θog,iog,i

+
R
∑

i=1

R
∑

j=0

2
∑

t=0

θsli,j,tsi,j,t

(30)

subject to the constraints of (5) and (21). Here, θog,i en-

codes the loss on the regions and is defined as in (21), θsli,j,t
encodes the hamming loss on support relationships. It can

thus be written as

θsli,j,t =
1

Q
, s.t t 6= S∗

ij ∀t ∈ {1, 2, 3} . (31)

To learn our model, we use the BCFW solver of [13]. Loss-

augmented inference takes 1s per image on average.

3.3. Features

As discussed above, the IoU regressor, the support clas-

sifier and the potentials of Eq. 1 rely on different types of

features. Here, we describe these feature vectors.

The IoU regressor relies on four types of features as in-

put, which we refer to as Conv5-SP, Pb-SP, Ext-Pb-SP and

RGeo. Conv5-SP is obtained from spatially pooled [8] fea-

tures coming from the conv5 layer of the FCN-32s model

of [16] fine-tuned on NYUv2 to predict semantics using

RGB and HHA as input. HHAs were obtained from depth

prediction using the method of [5]. Pb-SP and Ext-Pb-SP

are derived from the semantic probability maps of the FCN-

32s model mentioned above, using spatial pooling on each
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region and on a bounding box of 1.25 the region’s extent

around it, respectively. RGeo corresponds to the geometry

features used in [19].

The support classifier relies on two types of features. The

first concatenates Pb-SP, Ext-Pb-SP and RGeo for both re-

gions. The second, denoted as PGeo, includes the contain-

ment, geometry and horizontal features of [19] computed

on pairs of regions.

The feature vector fa
i is obtained by concatenating two

types of features, which we refer to as RF and RGeo. RF

corresponds to the feature map after the second batch nor-

malization module in the 3-layer neural network described

in Section 3.1. It encodes the connection between the IoU

regressor and the selection of the region.

The feature vector fma
i contains five types of features,

denoted by RGeo, Pb-SP, Ext-Pb-SP, Pb and Hm. The

first three have been described above. Pb is defined as the

average over the region pixels of the K-dimensional seman-

tic probability vectors obtained by the same FCN-32s as

above. Hm aims to incorporate dependencies between se-

mantics and support relationships. To this end, for region

i, this feature is obtained by averaging over all the other re-

gions j the probability of each support class between i and

j, obtained by our SVM support classifier.

The feature vector fs
ij is formed by two feature types, Ps

and Pm. Ps is directly taken as the probabilities predicted

by our support classifier. Pm aims at modeling dependen-

cies between support and semantics. It concatenates the se-

mantic features Pb discussed above for both regions.

The feature vector fsa
ij concatenates RGeo and RF fea-

tures for both regions, as well as the corresponding IoUs

predicted by our 3-layer neural network. It further includes

the feature PGeo described above.

The running time for feature extraction on regions and

pairs are 14s and 2.7s per image on average, respectively.

4. Experimental Evaluation
We evaluate our model on the NYUv2 dataset, which

provides RGB images and their corresponding depth maps.

Note that, here, we do not use these depth maps. The dataset

contains 749 images for training and 654 for testing.

The ground-truth regions, i.e., object or surface in-

stances, and corresponding semantics are provided by [19].

The semantics include four classes: ground, structure, props

and objects. Ground-truth support relationships were de-

fined by [20] on the ground-truth regions. Based on the

strategy of [20], we map these ground-truth support rela-

tionships to our segmentation hierarchy as follows: Any

pair in which both regions have an IoU with ground-truth

regions greater than 0.25 is assigned the corresponding

ground-truth type. The other regions are assigned the no

support label. If, at the end of this procedure, a region is

not supported by any other region, we define it as being

supported by the hidden one.

4.1. Evaluation Metrics

Since we predict three different types of variables, we

need different metrics to evaluate them. Here, we use:

Instance segmentation accuracy. To evaluate our seg-

mentation results, we make use of the maximum weighted

coverage, defined over ground-truth regions G and predicted

regions R as

Coveragew(G,R) =
1

|I|

|G|
∑

j=1

|rGj | max
1,...,|R|

IoU(rGj , r
R
i )

where |I| is the number of pixels in the whole set of ground-

truth regions, which may be less than the total number of

pixels in the image, and |rGj | is number of pixels in ground-

truth region j.

Semantic labeling accuracy. To evaluate the predicted

semantics, we make use of the standard average accuracy

computed over all the pixels and per-class accuracy, where

averaging is done over the classes.

Support relationship accuracy. For the support relation-

ships, we evaluate the precision and recall of the positive

support types on pairs not containing the hidden region.

These values are defined as

precision =
# true positive predictions

# positive predictions
, (32)

recall =
# true positive predictions

# of positive samples
. (33)

4.2. Experimental Results

We now present our results on NYUv2. Since our model

addresses multiple tasks, as a first experiment, we evaluate

the influence of several of its components via an ablation

study. To this end, we compare our complete model (Ours)

with the following baselines:

Basic: This baseline only performs instance segmentation

and includes the region unary and tree constraints of Eq. 1.

Ours-NS: This model jointly predicts the region selection

variables and the semantics. However, it does not account

for the support relationships. This model consists of the first

three terms in Eq. 1.

Ours-ND: This model also infers the three kinds of vari-

ables. It contains all the terms in Eq. 1, but does not lever-

age the features that link support and semantics, i.e., Hm

and Ps in Section 3.3. In essence, while predicting all vari-

ables, this baseline only models limited dependencies be-

tween them. In addition to these baselines, we also report

the support predictions obtained with the linear SVM sup-

port classifier (SC) discussed in Section 3.3, which, among

others, makes use of features encoding information about

the region IoU with ground-truth and the semantics.
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Model W. Cov Sem Avg Acc Sem Per-Cls Acc Support Precision Support Recall

Basic 58.9 - - - -

SC - - - 44.8 39.0

Ours-NS 59.3 73.0 72.0 - -

Ours-ND 59.3 73.3 72.2 47.0 41.9

Ours 59.4 73.2 72.1 47.6 43.1

Ours(GtSem) 60.1 - - 48.2 45.0
Table 1. Evaluation on NYUv2. We compare our approach to several baselines, mostly corresponding to different components of our

complete model. Note that some of these baselines do not predict all variable types, and can thus only be evaluated on some metrics. These

results demonstrate the importance of jointly inferring multiple variable types, in particular on the quality of the support relationships.

Image Ground-truth Ours Semantic Instance&Support

Figure 2. Qualitative evaluation of our results. We show the input image, the ground-truth semantics, the semantics predicted by our

approach, and our regions and support predictions. We show the correct relationships in white and the incorrect ones in black. Support

from below is indicated by an arrow head and from behind by a diamond one. Note that our semantics match the ground-truth ones quite

closely. Furthermore, our regions typically correspond to semantically-meaningful portions of the scene, that is, complete object or surface

instances, and our support corresponds to correct relationships. (Best viewed in color.)

The results of our method and of these baselines are pro-

vided in Table 1. Note that some baselines do not predict

all the variables, and can thus not be evaluated according to

all the metrics. These results show that (i) jointly predicting

regions and semantics improves the quality of the segments;

(ii) predicting all three types of variables yields a significant

boost to the support quality compared to our support classi-

fier; (iii) modeling the dependencies between the different

variable types further improves the support predictions, par-

ticularly in terms of recall. Altogether, we believe that these
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Model Oracle W.Cov W. Cov Sem Avg Acc Sem Per-Cls Acc Support Precision Support Recall

Basic 68.8 61.1 - - - -

SC - - - - 48.3 37.9

Ours-NS 68.8 62.8 74.8 73.7 - -

Ours 68.8 62.7 75.3 74.3 49.5 38.6

[20] 70.6 62.5 - - - -

[19] - - - - 54.5 -
Table 2. Evaluation on NYUv2 RGBD. We compare our approach to several baselines corresponding to different components of our

complete model and to the state-of-the-art methods [20, 19]. Note that, while our oracle weighted coverage is lower than that of [20], we

achieve higher weighted coverage, thus showing the impact of accounting for the dependencies between multiple tasks.

Image Ground-truth Ours Semantic Instance&Support

Figure 3. Failure case. Here, our support relationships are affected by a wrong semantic labeling.

results demonstrate the benefits of jointly inferring regions,

semantics and support relationships.

To further evidence the impact of semantics, we per-

formed an experiment where we used the ground-truth ones

in our model. This model is denoted as Ours(GtSem).

This resulted in a 3.1% relative improvement on recall, thus

showing that better semantics yield better support.

In Fig. 2, we provide some qualitative results obtained

with our approach. Note that the semantic labels we pre-

dict closely match the ground-truth ones. Note also that,

while they contain some degree of over-segmentation, the

regions we produce typically still remain reasonably large,

with a clear semantic meaning. Our method is also able to

predict accurate support relationships, even in the presence

of many different objects, as in the last row of the figure.

In Fig. 3, we show a typical failure case of our approach.

We have observed that such failures mostly occur when a

region is over-segmented, or assigned to the wrong seman-

tic category. Note that this again indicates the dependencies

between these different subtasks of indoor scene parsing.

Comparison with RGBD-based methods. As men-

tioned in Section 2, existing methods that predict support

relationships all work with RGBD images as input. To

compare against these methods, we slightly modified our

approach to exploit RGBD.In particular, we generated the

hierarchy using ground-truth depth, and employed ground-

truth depth to extract our features, except for the seman-

tic probability ones. The results in Table 2 show again

that our model benefits from solving multiple tasks. Note

that, despite the fact that the oracle performance obtained

from our segmentation hierarchy is lower than that of [20],

the segmentation obtained by our method has a higher

weighted coverage. In other words, since the gap between

our weighted coverage and the oracle one is significantly

smaller than for [20], i.e., 5.5% vs 8.1%, our model es-

sentially selects better regions than [20]. The comparison

to [19] for support prediction should be taken with caution,

since the regions are different. We believe that this com-

parison shows that both method perform similarly, with our

approach providing additional information about the scene.

Note that we expect that exploiting depth more thoroughly

than done here could give our approach a bigger boost.

5. Conclusion

We have introduced an approach to jointly segmenting

the instances in an image and predicting their semantic la-

bels and support relationships. To the best of our knowl-

edge, this constitutes the first attempt at jointly tackling

these three subtasks of indoor scene understanding. Our

experiments have demonstrated that jointly reasoning about

these three tasks is in general beneficial, and particularly

so for support relationships. Indoor scene understanding,

however, is not limited to these three tasks. One can, for ex-

ample, also aim to predict depth, surface normals and object

affordances. Ultimately, we believe that all these problems

should be tackled jointly to better leverage their dependen-

cies. This will be the focus of our future research.
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[14] L. Ladickỳ, B. Zeisl, and M. Pollefeys. Discriminatively

trained dense surface normal estimation. In European Con-

ference on Computer Vision, pages 468–484. Springer, 2014.

[15] W. Liao, M. Y. Yang, H. Ackermann, and B. Rosenhahn. On

support relations and semantic scene graphs. arXiv preprint

arXiv:1609.05834, 2016.

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3431–3440, 2015.

[17] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features

and algorithms. In Computer Vision and Pattern Recogni-

tion (CVPR), 2012 IEEE Conference on, pages 2759–2766.

IEEE, 2012.

[18] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on pattern analysis and machine

intelligence, 22(8):888–905, 2000.

[19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

European Conference on Computer Vision, pages 746–760.

Springer, 2012.

[20] N. Silberman, D. Sontag, and R. Fergus. Instance segmen-

tation of indoor scenes using a coverage loss. In European

Conference on Computer Vision, pages 616–631. Springer,

2014.

[21] J. Tighe and S. Lazebnik. Superparsing: scalable nonpara-

metric image parsing with superpixels. In European confer-

ence on computer vision, pages 352–365. Springer, 2010.

[22] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random

fields as recurrent neural networks. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1529–1537, 2015.

[23] W. Zhuo, M. Salzmann, X. He, and M. Liu. Indoor scene

structure analysis for single image depth estimation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 614–622, 2015.

5437


