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Abstract

Sparse-to-dense interpolation for optical flow is a fun-

damental phase in the pipeline of most of the leading op-

tical flow estimation algorithms. The current state-of-the-

art method for interpolation, EpicFlow, is a local average

method based on an edge aware geodesic distance. We pro-

pose a new data-driven sparse-to-dense interpolation algo-

rithm based on a fully convolutional network. We draw in-

spiration from the filling-in process in the visual cortex and

introduce lateral dependencies between neurons and multi-

layer supervision into our learning process. We also show

the importance of the image contour to the learning pro-

cess. Our method is robust and outperforms EpicFlow on

competitive optical flow benchmarks with several underly-

ing matching algorithms. This leads to state-of-the-art per-

formance on the Sintel and KITTI 2012 benchmarks.

1. Introduction

The leading optical flow algorithms to date, with few ex-

ceptions, are not end-to-end deep learning. While some of

them employ deep matching scores for estimating the best

match in image I’ for every location in image I, almost all

methods employ multiple steps that do not involve learning.

With the current affinity toward end-to-end deep learning

solutions, the existence of large training datasets, and many

concurrent contributions in the field of deep optical flow and

related fields, one may wonder why this is the case.

Out of the four steps of modern optical flow pipelines:

matching, filtering, interpolation and variational refinement,

we focus on the third. In this step, a sparse list of matches

is transformed into dense optical flow maps. It is one of

the most crucial steps and without the availability of the

EpicFlow method [33], which currently dominates this step,

a large number of sparse matching techniques would not

have been competitive enough to gain attention.

EpicFlow is an extremely effective method that is based

on solid computer vision foundations. However, despite us-

ing sophisticated heuristics for improved runtime, it is still

rather slow and as a non-learning method, it is bounded in

the performance it can deliver. Replacing EpicFlow by a

deep learning method is harder than it initially seems. Feed-

forward neural networks excel in analyzing image informa-

tion, but neuroscience tells us that in biological networks,

lateral and top-down feedback loops are involved in solv-

ing cases where the information is missing or corrupted at

random locations.

Artificial feedback networks are slower than feedforward

networks, harder to train, and have not proven themselves

in the practice of computer vision. We note that feedback

networks with a predefined number of feedback iterations

can be unrolled into deep feedforward networks with one

major caveat – while in most feedforward networks, the su-

pervision flows from the top down, in feedback networks,

the supervision occurs at each iteration. To resolve this, we

equip our network with supervision at every layer.

Inspired by neuroscience, we also suggest a loss involv-

ing lateral dependencies. Here, too, we replace the process

of lateral feedback during run-time with additional supervi-

sion during training. In this way, the feedforward network

learns how to mimic a network with lateral feedback loops

by utilizing the training labels.

Taken together, our contributions are: (a) We propose,

for the first time, to the best of our knowledge, a neural net-

work based sparse-to-dense interpolation for optical flow.

Our network performs better than the current state of the

art, it is robust and can be adjusted to different matching al-

gorithms and serve as the new default interpolation method

in optical flow pipelines. (b) We introduce a new lateral de-

pendency loss, embedding the correlations between neigh-

bors into the learning process. (c) We define a novel archi-

tecture involving detour networks in each layer of the net-

work. The new architecture provides a substantial increase

in performance. (d) We solidify the importance of motion

boundaries in learning dense interpolation for optical flow.

2. Related Work

Interpolation In The Visual Cortex. The visual system

often receives a noisy and missing input. However, it is
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known to robustly denoise and fill-in the gaps in the in-

put image. This phenomenon termed - perceptual filling-

in [20], was reported to occur for occlusions [17], illusory

contours and surfaces [29], in the ”blind spot”[31] and in

visual scotomas [32]. Different features in the visual stimu-

lus are filled in, including brightness[28], color[10], texture

and motion[32]. The neurophysiological mechanism under-

lying perceptual filling-in is still under debate. However,

many have found evidence of the existence of a neuronal

filling-in mechanism [28, 30, 39, 15, 43]. In this mecha-

nism, neurons that are retinotopically mapped to visible or

salient parts of an image (such as the edges) are activated

first. This initial activation is followed by a later spread

to neurons that are mapped to the missing parts, result-

ing in a complete representation of the image [7, 42, 21].

This activation spread is mediated by both lateral connec-

tions within areas in the cortex as well as top down con-

nections [15, 30, 43]. It was also shown to be very sensi-

tive to edges in the image, usually originating in edges and

stops when encountered with edges [38, 43]. Finally, neu-

ronal filling-in was found to take place in multiple areas in

the visual cortex hierarchy, from V1 and V2 [15, 34] via

V4 [30, 35] and in higher areas [25, 24].

We designed our interpolation network to incorporate

three concepts inspired by neuronal filling-in: the inter-

actions between neighbor neurons, multi-layer supervision

and the importance of edges. Neighbor neurons’ interac-

tions can be modeled by recurrent connections within a

layer, such as the model suggested by Liang and Hu [23].

While the anatomic resemblance of such models to the cor-

tex is appealing, in reality, they are unfolded to a feedfor-

ward network with shared weights. We, therefore, preferred

to utilize the loss to force the interaction between neigh-

bor neurons while using simpler, strictly feedforward net-

works, which were shown to perform extremely well for

vision tasks while excelling in training time and simplicity.

Interpolation For Optical Flow. Most current optical

flow approaches are based on a four phase pipeline. The

first phase matches pixels between the images in the image

pair, based on nearest neighbor fields or feature matching

techniques (hand engineered or learned) [4, 14, 27]. The

second phase filters matches with low confidence, produc-

ing a noisy and missing flow map[2]. The missing pixels

usually undergo large displacements, a significant shift in

appearance or are occluded in one of the images. There-

fore, a third phase is needed to interpolate the missing parts

and reduce the noise. A fourth and final phase applies re-

finement to the interpolated dense map from Phase 3.

The best and most used algorithm for optical flow in-

terpolation (the third phase) is currently EpicFlow [33].

EpicFlow computes the flow of each pixel using a weighted

sum of the pixel’s local environment. Locality is defined by

a geodesic distance function based on the image edges that

correspond to the motion boundaries. This edges aware ap-

proach yields good interpolation results for occluded pixels

and large displacement. EpicFlow excels in interpolation.

However, it is less robust to noisy matches, especially in

the vicinity of large missing regions, as displayed in their

Figure 8. This sensitivity to noise is increased by the fact

that the noise produced by each matching algorithm dis-

plays slightly different patterns. To overcome these diffi-

culties, a trained algorithm like ours that learns the noise

patterns is more suitable. We suggest a new interpolation

method based on a deep convolutional neural network. The

method is applied in a feedforward manner and leads to an

improvement in both accuracy and speed over the EpicFlow

method.

Finally, it is noteworthy that some of the new optical

flow methods do not rely on the aforementioned pipeline

[36, 16]. One interesting example is presented by Dosovit-

skiy et al. [9] in their FlowNet model. They present an end

to end convolutional neural network for optical flow that

outputs a dense flow map. While their method does not

reach the state of the art performance, it runs in real-time

and demonstrates the power of feedforward deep learning

in optical flow estimation.

3. Network Architecture

The optical flow dense interpolation problem is defined

in the following way: given a sparse and noisy set of

matches between pixels M = {(pm, p′m)}, we want to ap-

proximate the dense flow field F : I → I ′ between a source

image I and a target image I ′. To solve this problem, we use

a fully convolutional network with no pooling. The main

branch of the network consists of ten layers, each applying

a 7x7 convolution filter followed by an Elu [5] non-linearity

(Fig. 1). We use zero-padding to maintain the same image

dimensions at each layer of the network.

3.1. Network Input

The input to our algorithm is a set of sparse and noisy

matches M . These matches can be produced by any third

party matching algorithm. In our experiments, we used

several of the leading matching algorithms: FlowFields

(FF) [2], CPM-Flow (CPM) [14], DiscreteFlow (DF) [27],

and finally DeepMatching (DM) [41]. From the matches,

we produce a sparse flow map of size h × w × 2 where h
and w are the height and width of the image pair. Each pixel

is initialized with the displacement to its match in the x and

y axis. Missing pixels are filled with zeros. Apart from the

sparse flow map, we add two additional matrices as guiding

inputs to the networks: A binary mask of the missing pixels,

and the edges map (Fig. 1).

We create a binary mask of all the missing pixels to indi-

cate their position to the network (since zero can be a valid
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Figure 1: The architecture of InterpoNet.

displacement value). It was shown by others [19] to en-

hance performance in deep neural networks for inpainting.

The last input to the network is an edges map of one of

the images in the image pair for which the flow is com-

puted. The contours of an image were shown to be a

key feature in image processing in the early visual cor-

tex [11, 42, 43, 6, 30]. EpicFlow [33] already showed the

benefit of the image edges as motion boundaries for opti-

cal flow estimation. In our work, we show evidence that

a learning system also benefits from receiving the edges as

input (see Fig. 4). We used an off-the-shelf edges detector

- the ”structured edges detector” (SED) [8] - the same one

used by EpicFlow.

All of the inputs are stacked together and downsampled

by 8 to form an h/8×w/8×4 matrix. Rather than a simple

stacking, we also considered different ways of introducing

the edges map into the network. Among others, we have

tried feeding the edges to all layers in the deep network,

feeding the map to a different network and combining its

output with the main branch in a deeper layer as well as

constructing different networks to deal with pixels around

the edges and far from the edges. However, we found that

the simplest approach used here produced the best results.

3.2. The lateral dependency loss

To optimize the network results, we used the EPE (End

Point Error) loss function, which is one of the standard error

measures for optical flow. It is defined as the Euclidean

distance between two flow pixels:

EPE(p1, p2) = ||p1 − p2||2 (1)

The loss for an image pair was the average EPE over pixels:

Lepe =
1

n

∑

i,j

EPE(Ŷi,j , Yi,j) (2)

Where Ŷ is the network prediction, Y is the ground truth

flow map and n is the number of pixels in the flow map.

This standard loss by itself does not yield good enough

results (see Sec. 4.2). We, therefore, resort to cortical neu-

ronal filling-in processes in our search for better losses.

Neuronal filling-in is characterized by spatial spread of

activation. There is evidence that the activation spread is

mediated by both lateral and top-down connections. To im-

itate the lateral dependency between neighbors in the net-

work, we define a new lateral dependency loss. This loss

pushes the distance between neighboring pixels to be simi-

lar to the distance in the ground truth flow. It is defined in

the following way:

Lld =
1

n

∑

i,j

|EPE(Ŷi,j , Ŷi−1,j)− EPE(Yi,j , Yi−1,j)|+

|EPE(Ŷi,j , Ŷi,j−1)− EPE(Yi,j , Yi,j−1)|

The proposed loss term directly includes the local spatial

dependencies within the training process, similar to what

happens in the early stages of the visual cortex [1, 15].

3.3. Multi­layer loss using detour networks

Top-down connections are tricky to implement in artifi-

cial neural networks. We, therefore, use the loss function,

which is the main feedback to the network, to imitate top-

down connections. Also inspired by the evidence that neu-

ronal filling-in takes place in many layers in the visual sys-

tem hierarchy [30, 25, 24], we used detour networks con-

necting each and every layer directly to the loss function.

During training, the loss function served as top down in-

formation pushing each layer to perform interpolation in the

best possible manner. The detour networks were kept sim-

ple: aside from the main branch of the network, each of the

layer’s activations was transformed into a two channels flow

map using a single convolution layer with linear activations
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Figure 2: The network prediction for the Kanizsa illusion.

(no nonlinearity, see Fig. 1). Each of the flow maps pro-

duced by the detour networks was compared to the ground

truth flow map using the EPE and LD losses. The final net-

work loss was the weighted sum of all the losses:

Lnet =
∑

l

wl(Ll
epe + Ll

ld) (3)

Where wl, Ll
epe and Ll

ld are the weight, EPE loss and LD

loss of layer l. We found that weights of 0.5 for each of the

middle layers and 1 for the last yielded the best results. For

inference, we use only the last detour layer output - the one

connected to the last layer of the network’s main branch.

Our approach has some similarities to the one used in the

inception model introduced by Szegedi et al. [37], which

employs auxiliary networks with independent losses dur-

ing training. They found it to provide regularization and

combat the vanishing gradients problem. However, in their

network, the first auxiliary network was added in the tenth

layer. We found that adding a detour network for each layer

gave the best results. Szegedi et al.’s auxiliary networks

were also built of several layers and performed some com-

putation within them. We found that the simplest linear con-

volution was the best architecture. Additional layers or non-

linearities did not improve the performance of the network.

Taken together, our network was equipped with mecha-

nisms with which it could imitate interpolation in the visual

cortex. Interestingly, not only did it learn to perform in-

terpolation of regular motion, it also performed strikingly

similar to the visual cortex, when presented with an illu-

sion. Figure 2 shows the interpolation applied by different

variants of our network and EpicFlow on a given Kanizsa

like motion pattern. The network never saw such a pattern

in training time. When masking parts of the image, our net-

work interpolates the motion pattern from the background

and the interior. The propagation from the background stops

in the borders of the imaginary square contour (marked by a

dashed line), much like our visual perception. Importantly,

only the real edges, not those of the imaginary contour, were

fed to the network. Other networks that were not equipped

with all the tools we presented as well as EpicFlow, per-

formed different levels of a simpler interpolation.

3.4. Post­processing

Our fully convolution with zero padding and no pool-

ing network produces an output in the same size of the in-

put. We, therefore, upsample the output by a factor of 8

using bi-linear interpolation. Like others before us [9], we

found that using the variational energy minimization post-

processing used in EpicFlow [33] slightly improved our fi-

nal prediction (0.25px. gain in mean EPE). We employ the

same parameters as EpicFlow, as appears in their Section 4.

4. Experiments

We report the results of our network on the Sintel [3],

KITTI 2012 [12] and KITTI 2015 [26] datasets. We also

show the effectiveness of different features in the network:

the lateral dependency loss, the multi-layer loss and the

edges input.

4.1. Training details

Preprocessing. As described in Section 3, the network re-

ceives a four channel input composed of two sparse flow

channels given as the output of a matching algorithm, a bi-

nary mask and the edges map. To reduce training time, we

downsample all the inputs by 8 (some matching algorithms

output a downsampled version by default [41, 27, 14]). To

reduce the number of missing pixels in training time, we

apply bi-directional averaging (see supplementary).

We apply flipping as our only data augmentation method.

Other transformations such as scaling, shearing, rotating

and zooming did not improve the network performance,

probably due to the interpolations that accompany them and

drastically change the flow map.

Datasets. We evaluated our network on the three main op-

tical flow benchmarks: MPI Sintel [3] is a collection of sev-

eral scenes taken from a graphical animation movie. Each

scene consists of several consecutive frames for which a

dense ground truth flow map is given (a total of 1041 train-

ing image pairs). The scenes are diverse and include battle

scenes with challenging large displacements. KITTI 2012

[12] is composed of real world images taken from a mov-

ing vehicle (194 training images). And KITTI 2015, [26] is

similar to the KITTI 2012 dataset but with more challenging

scenes (200 training images).

Since convolutional networks demand a large set of

training data, we use the same approach used by Dosovit-

skiy et al. [9]. For initial pre-training, we use the Flying

Chairs dataset that they introduced. This is a relatively large

synthetic dataset (22,875 image pairs) composed of chair

objects flying over different backgrounds. We train on all

the dataset and use a sub-sample of the Sintel dataset as val-

idation. Due to time constraints, we could not apply all of
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Loss EPE

EPE only 6.104

EPE + LDL 5.833

EPE + MLL 5.656

EPE + LDL + MLL 5.470

Table 1: Comparing

losses for the Sintel ’fi-

nal’ pass validation set,

trained on the output of

FlowFields.

the matching algorithms to the big flying chairs dataset. We,

therefore, used only FlowFields [2] for this initial training

on Flying Chairs. Additional fine tuning was applied using

the training sets of specific benchmarks and for the specific

matching algorithm (see supplementary). In all presented

experiments to follow, we pre-train the networks on Flying

Chairs and fine tune on Sintel using the FlowFields match-

ing algorithm - unless stated otherwise. All the analysis,

results and visualizations are done without the variational

post-processing, except for the benchmark results.

Optimization. We use Adam [18] with standard parameters

(β1 = 0.9, β2 = 0.999). A learning rate of 5× 10−5 for the

pre-training and 5× 10−6 for the fine tuning is used.

4.2. Comparison of loss variants

To ensure the efficiency of the different losses and the

new architecture we introduce, we trained several variants

of our network - with only the EPE loss, with the EPE + LD

loss and with the EPE + ML loss. As Table 1 shows, each

of our introduced losses yields a performance boost. Fig-

ure 3a shows the output of the different detour networks in

different layers as well as the error maps for the two losses

we used - EPE and LD loss, for an example image in our

Sintel validation set. Notice how both the EPE and LD loss

improves as the network deepens - this is consistent over all

of the images in the validation set (Fig. 3c). At the first lay-

ers of the network, it seems that it is focused on performing

a simple interpolation to mainly fill the missing parts. This

initial interpolation is less aware of the motion boundaries.

As the network deepens, it mainly polishes the details and

reduces noise according to the segmentation introduced by

the edges (for example. the green patches in Fig. 3a left

column). The prediction of a network trained without multi-

layer loss is noisier (6th row in Fig. 3a, lower right corner).

It seems that the added supervision in all the layers helps to

extinguish errors in the interpolation and adjust it according

to the motion boundaries.

The LD loss is introduced to enforce a certain depen-

dency between neighboring pixels. Much like in neuronal

filling-in, lateral dependency plays a role in propagation,

especially in terms of uncertainty. For example, in Figure

3a, there is a big missing part in the center-left with some

false matches (light green in the flow map) to its right. The

network can choose to either propagate the background or

the false matches. To avoid the wrong local dependencies,

the network with LD loss uses the background to fill most

(a) The progression of the prediction process throughout the dif-

ferent layers in the network, as shown by the detour networks out-

puts. Starting from the second row, the second and third columns

are the EPE and LD loss maps respectively. The last three rows

are the final predictions of networks with different losses. They

are presented after upsampling which contributes to the decrease

in LDL. Missing pixels in the input are marked in black.

(b) Comparison of the network performance with and without the

LD loss. Left column is the ground truth, center and right columns

are the predictions with and without LDL respectively.

(c) Mean EPE over different

pixel groups in the Sintel vali-

dation set as a function of the

different layers. Pixel groups:

Noisy : with EPE > 3 in the

input matches; Occluded: ap-

pear only in one of the image

pair; Missing: missing in the in-

put matches but not occluded.

Figure 3: The contribution of different losses.

of the area, almost extinguishing the false matches (notice

the shrinking ”bubble” in the LDL maps in Fig. 3a rows
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Input EPE

Sparse map + mask 6.240

Sparse map + mask + edges map 5.470

Table 2: Comparison of the network results with and with-

out the edges as input. The reported EPE is for the Sintel

’final’ pass validation set. The network is trained on the

FlowFields algorithm output.

2-5). The network without the LD loss does not use this

information and leaves a high contrast where it should not

appear (Fig. 3a last row). LD loss mostly enforces smooth-

ness in the outcome (Fig. 3b first row), but it also encour-

ages high contrasts where they should appear, as shown in

the example in Figure 3b (second row) for the wings of the

small dragon. In rear cases, the LD loss combined with a

poor input could decrease performance like in the third row

of Figure 3b where the smooth transition introduced by the

LD loss decreased the performance. Overall, the LD loss

improves the EPE in 60% of predictions in our validation

set, and 80% out of the noisy examples in the set (those

with over one percent of noisy and missing pixels).

4.3. The importance of the edges

To validate the importance of the edges as an input to

the network, we perform an experiment in which the edges

are not fed into the network (in both train and test time).

Table 2 shows the significant impact the edges input has

on the performance of the network. Much like neuronal

filling-in in the visual cortex, our network uses the edges

as a boundary for local spread in missing or occluded areas.

Figure 4a shows a comparison between the prediction of the

two networks (with and without the edges input) for two

examples from the Sintel validation set. Notice the spread

into the missing pixels, while the network without the edges

input performs what seems like a simple interpolation from

all of the surroundings, the network with the edges input

uses this information and stops the spread at the edges.

To quantify the effect of the edges on the missing and

occluded pixels, we define an improvement index (II):

IIp =
EPEp−noedges − EPEp−edges

EPEp−noedges + EPEp−edges

(4)

where EPEp−noedges and EPEp−edges are the EPE in

pixel p between the prediction of the edges network and

non-edges network respectively. Positive values of this in-

dex indicate improvement as a result of the edges input,

while negative values indicate a decrease in performance.

Mean II over occluded and missing pixels is significantly

higher than the mean II over the non-missing pixels in

the Sintel validation set (Mean ± SEM II difference =

0.0235± 5.83× 10−3 ;paired t-test p < 1× 10−4 ;n=167).

pre-training Evaluated Fine tuned on

on None FF Self

fc FF Sintel FF 5.802 5.470 -

fc FF Sintel CPM 6.165 5.782 5.851

fc FF Sintel DM 6.498 6.075 5.971

fc FF Sintel DF 6.543 6.35 6.142

fc DM Sintel DM 6.665 - 5.934

Table 3: The network performance (EPE) without fine tun-

ing, with FlowFields fine tuning and with fine tuning for the

specific matching algorithm used for evaluation. EPE is re-

ported for the Sintel ’final’ pass validation set. Notations:

fc - Flying Chairs, FF -FlowFields [2], CPM - CPM Flow

[14], DM - DeepMatching [41], DF - DiscreteFlow [27]

Interestingly, as demonstrated in Figure 4b, the contribu-

tion of the edges input to the performance in the occluded

and missing areas is not influenced by the distance from

the edges. This is expected, since the decision about the

spread is dependent on the segmentation by the edges and,

therefore, even far away from the edges the effect is consid-

erable (see top right corner in our prediction in the first row

of Fig. 5 as an example). For non-missing pixels, however,

the performance gains decrease almost monotonically with

the distance from the edges (green line in Fig. 4b). These

pixels are processed differently in the network, since they

have initial values. They are more affected by their imme-

diate surroundings. Therefore, a nearby edge can improve

their prediction but less so far from edges. In all distances,

the II values are significantly higher for the missing and oc-

cluded pixels (Wilcoxon signed rank test p < 0.05).

4.4. Fine tuning

Our network is trained in two phases. First, it is pre-

trained on the flying chairs dataset using the FlowFields

matching algorithm followed by fine tuning to the specific

dataset and matching algorithm at hand. Table 3 shows

the performance of the networks trained only on the fly-

ing chairs dataset, compared to the networks fine tuned on

the Sintel training set with either the FlowFields matching

algorithm or the same matching algorithms used for evalu-

ation. The network performance is quite good even without

fine tuning. However, the fine tuning phase still improves

the performance by a considerable margin. Fine tuning on

FlowFields applied to Sintel yields results comparable to

fine tuning on the evaluation algorithm. Finally, using a

different matching algorithm for pre-training (DeepMatch-

ing, last line in table 3) does not improve the results. We,

therefore, suggest the best practice for incorporating new

matching algorithms with our method as follows: For most

cases using the network trained and fine tuned on Flow-

Fields as an out-of-the-box solution should be sufficient.
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(a) (b)

Figure 4: The contribution of the edges input to the network. (a) The predictions of the networks with and without the edges

input. Edges are marked with black lines. (b) Mean improvement index over missing (blue) and non-missing (green) pixels.

Shaded areas marks ± SEM over image pairs in the Sintel validation set.

Method EPE EPE-noc EPE-occ

FF [2]+Ours 5.535 2.372 31.296

PGM-C (anon.) 5.591 2.672 29.389

RicFlow (anon.) 5.620 2.765 28.907

CPM [14]+Ours 5.627 2.594 30.344

FF+ [2] 5.707 2.684 30.356

DM [41]+Ours 5.711 2.650 30.642

Deep DF [13] 5.728 2.623 31.042

FN2-ft-s(anon.) 5.739 2.752 30.108

SBFlow (anon.) 5.734 2.676 30.654

FF [2]+Epic 5.810 2.621 31.799

SPM-BPv2 [22] 5.812 2.754 30.743

FullFlow [4] 5.895 2.838 30.793

CPM+Epic [14] 5.960 2.990 35.14

FN2(anon.) 6.016 2.977 30.807

GPC [40] 6.040 2.938 31.309

DF [27]+Ours 6.044 2.788 32.581

DF [27]+Epic 6.077 2.937 31.685

DM+Epic [33] 6.285 3.060 32.564

Table 4: Leading results for the Sintel benchmark using the

’final’ rendering pass. EPE-noc and EPE-occ are the EPE

in non-occluded and occluded pixels respectively.

For improved results, we suggest fine tuning on the specific

dataset and matching algorithm. Pre-training on the specific

matching algorithm applied to the flying chairs dataset is not

necessary, although it could be beneficial in some cases.

4.5. Benchmarks results

We applied our method to the output of several of the

leading matching algorithms for Sintel and KITTI. The cho-

sen matching algorithms are the highest on the leaderboards

that have an available code and a reasonable running time.

We used FlowField [2], DiscreteFlow [27] and CPM-Flow

[14]. We also used DeepMatching, since it was used in the

original EpicFlow paper [33].

For Sintel (Table 4), we achieve state of the art results

using FlowFields as the matching algorithm. For all the

matching algorithms used, we achieve better results com-

Method 2012 - EPE 2012 - %Out 2015

Noc All Noc All %Out-All

DF [27]+Ours 1.0 2.4 4.94 14.13 23.55

DF+Epic 1.3 3.6 6.23 16.63 22.38

CPM+Ours 1.0 2.5 5.28 14.57 23.84

CPM [14]+Epic 1.3 3.2 5.79 13.70 23.23

FF+Ours 1.1 2.6 5.57 14.76 –

FF [2]+Epic 1.4 3.5 5.77 14.01 –

DM+Ours 1.1 2.7 5.85 15.03 24.65

DM+Epic [33] 1.5 3.8 7.88 17.08 27.10

Table 5: KITTI 2012 and KITTI 2015 benchmarks results.

The %Out is the percentage of outlier pixels as defined by

the benchmarks. FF does not have results on KITTI2015.

pared to EpicFlow improving the EPE by an average of

0.3px. Our performance is better in most areas including

occluded, non-occluded and pixels in different distances

from occlusion boundaries (with the exception of occluded

pixels in CPM-flow and discrete flow). Figure 5 shows a

comparison of EpicFlow’s and our outputs on several sparse

flow maps produced by FlowFields for the Sintel validation

set. Notice the performance difference in missing areas with

noise (top right corner in the first row, the hand in the third

and bottom right in the last row). Due to its non-learning

nature, EpicFlow is clinging to any information that it finds

within a segmented area and is, therefore, prone to fail in

such regions. The flexibility of a data-driven algorithm, like

ours, is more suitable here. Further analysis demonstrated

the superior performance of our method over EpicFlow in

different regions (see supplementary). Based on our results,

we believe that applying our method to a matching algo-

rithm ranked higher than FlowFields (ranked 7 before our

contribution) should yield even better results.

For KITTI 2012 [12], using DiscreteFlow [27] as the

baseline matching algorithm, we achieve state-of-the-art

results out of the published, pure optical flow methods,

excluding semantic segmentation methods. We have the

best performance, both in terms of EPE and the percent-

age outlier for non-occluded pixels (Table 5). Compared to
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Figure 5: A comparison of the predictions of our network to EpicFlow.

EpicFlow, the EPE is improved by a margin (21%–33%),

using all matching algorithms. The %Out measurement

used in the KITTI datasets, calculates the percentage of pix-

els with EPE > 3. It is not linearly correlated with the

EPE which we use as the target measurement, as reflected

from the network’s loss function. Consequently, while this

measurement was improved for non-occluded pixels (3%–

25%) we achieved mixed results for all pixels (-6%–+15%;

Table 5). Our results for KITTI 2015 [26], which uses only

the %Out as the evaluation system, were also mixed (Table

5). The EPE measurement is not available in this bench-

mark, but our KITTI 2012 results support the possibility of

an improvement in the EPE that is not reflected in the %Out.

The results for our validation set were better than EpicFlow

using all the matching algorithms (see supplementary).

4.6. Runtime analysis

Table 6 shows the runtime of the different compo-

nents of our algorithm computed for one Sintel image pair

(1024x436 pixels). The network inference ran on one

NVIDIA GTX Titan black GPU (6GB RAM) while the

other steps were performed on a single 3.4GHz CPU core.

The run time of the edges detection and variational post-

processing is as reported in [33]. The entire runtime was

1.333 seconds. This is slightly better than the reported run-

time for EpicFlow (1.4 seconds). Notably, several parts

in the pipeline could be dropped for better runtime with-

out a big decrease in performance. The bi-directional aver-

age can be dropped in inference time (which will also re-

duce the downsampling by half), as well as the variational

post processing, leaving the edges detection as the biggest

bottleneck. Therefore, without much performance loss, our

method can be as fast as 5 fps. Combined with a fast edge

detection and matching algorithm, future work can produce

a real-time optical flow algorithm.

Step runtime (sec)

Downsampling 0.058

Bi-directional average 0.091

Edges detection 0.150

Network inference 0.025

Upsampling 0.009

Variational post proc. 1

Total 1.333

Table 6:

Runtime of

various steps

of our solu-

tion for an

image pair

in the Sintel

dataset.

5. Conclusions

Using a fully convolutional neural network, we have pre-

sented a data-driven solution for sparse-to-dense interpola-

tion for optical flow producing state-of-the-art results. Our

solution was inspired by ideas taken from interpolation pro-

cesses in the visual cortex. We embedded anatomical fea-

tures, like lateral dependency and multi-layer processing, by

using the loss function, thereby applying supervision rather

than using the architecture of the network which contributes

to the simplicity of our solution. We also showed that the

edge information is crucial for learning to interpolate. The

network learns to use the edges as stoppers for the spread of

interpolation, much like in the visual cortex.

Our solution is robust and can be applied to the output of

different matching algorithms and our code and models will

be made completely public. We encourage new solutions to

use our method as part of their pipeline.
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