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Abstract

We introduce GuessWhat?!, a two-player guessing game

as a testbed for research on the interplay of computer vision

and dialogue systems. The goal of the game is to locate an

unknown object in a rich image scene by asking a sequence

of questions. Higher-level image understanding, like spa-

tial reasoning and language grounding, is required to solve

the proposed task. Our key contribution is the collection

of a large-scale dataset consisting of 150K human-played

games with a total of 800K visual question-answer pairs on

66K images. We explain our design decisions in collecting

the dataset and introduce the oracle and questioner tasks

that are associated with the two players of the game. We

prototyped deep learning models to establish initial base-

lines of the introduced tasks.

1. Introduction

People use natural language as the most effective way to

communicate, including when it comes to describe the vi-

sual world around them. They often need only a few words

to refer to a specific object in a rich scene. Whenever such

expressions unambiguously point to one object, we speak

of a referring expression [21]. However, uniquely identi-

fying the referred object is not always possible, as it de-

pends on the listener’s state of mind and the context of the

scene. Many real life situations, therefore, require multiple

exchanges before it is clear what object is referred to: - Did

you see that dog? * You mean the one in the corner? - No,

the one that’s running. * Yes, what’s up with that?
A computer vision system able to hold conversations

about what it sees would be an important step towards in-

telligent scene understanding. Such systems would be more

transparent and interpretable because humans may naturally

interact with them, for example by asking clarifying ques-
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Figure 1: An example game. After a sequence of four ques-

tions, it becomes possible to locate the object (highlighted

by a green bounding box).

tions about what it perceives. Still, a fundamental challenge

remains: how to create models that understand natural lan-

guage descriptions and ground them in the visual world.

The last few years has seen an increasing interest from

the computer vision community in tasks towards this goal.

Thanks to advances in training deep neural networks [14]

and the availability of large-scale classification datasets [24,

33, 47], automatic object recognition has now reached

human-level performance [22]. As a result, attention has

been shifted toward tasks involving higher-level image un-

derstanding. One prominent example is image caption-

ing [24], the task of automatically producing natural lan-

guage descriptions of an image. Visual Question Answering

(VQA) [6] is another popular task that involves answering

single open-ended questions concerning an image. Closer
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Is it a person?

Is it a snowboard?

NoIs it the red one?

Yes

Is it a cow? Yes

NoIs the cow on the left? 

No

On the right ? Yes

Is it an item being worn or held?

Is it the one being held by the
person in blue?

Yes First cow near us?

Is it the big cow in the middle?

Yes

Yes

No

#203974 #168019 

Figure 2: Two example games in the dataset. After a se-

quence of five questions we are able to locate the object

(highlighted by a green mask).

to our work, the ReferIt game [19] aims to generate a single

expression that refers to one object in the image.

On the other hand, there has been a renewed interest in

dialogue systems [29, 35], inspired by the success of data-

driven approaches in other areas of natural language pro-

cessing [10]. Traditionally, dialogue systems have been

built through heavy engineering and hand-crafted expert

knowledge, despite machine learning attempts for almost

two decades [23, 38]. One of the difficulties comes from

the lack of automatic evaluation as – contrary to machine

translation – there is no evaluation metric that correlates

well with human evaluation [25]. A promising alternative is

goal-directed dialogue tasks [29, 38, 42, 41] where agents

converse to pursue a goal rather than casually chit-chat. The

agent’s success rate in completing the task can then be used

as an automatic evaluation metric. Many tasks have recently

been introduced, including the bAbI tasks [42] for testing an

agent’s ability to answer questions about a short story, the

movie dialog dataset [11] to assess an agent’s capabilities

regarding personal movie recommendation and a Wizard-

of-Oz framework [41] to evaluate an agent’s performance

for assisting users in finding restaurants.

In this paper, we bring these two fields together and

propose a novel goal-directed task for multi-modal dia-

logue. The two-player game, called GuessWhat?!, extends

the ReferIt game [19] to a dialogue setting. To succeed, both

players must understand the relations between objects and

how they are expressed in natural language. From a ma-

chine learning point of view, the GuessWhat?! challenge

is the following: learn to acquire natural language by in-

teraction on a visual task. Previous attempts in that direc-

tion [2, 41] do not ground natural language to their imme-

diate environment; instead they rely on an external database

through which a conversational agent searches.

The key contribution of this paper is the introduction of

the GuessWhat?! dataset that contains 160,745 dialogues

composed of 821,889 question/answer pairs on 66,537 im-

ages extracted from the MS COCO dataset [24]. We define

three sub-tasks that are based on the GuessWhat?! dataset

and prototype deep learning baselines to establish their dif-

ficulty. The paper is organized as follows. First, we explain

the rules of the GuessWhat?! game in Sec. 2. Then, Sec. 3

describes how GuessWhat?! relates to previous work. In

Sec. 4.1 we highlight our design decisions in collecting the

dataset, while Sec. 4.2 analyses many aspects of the dataset.

Sec. 5 introduces the questioner and oracle tasks and their

baseline models. Finally, Sec. 6 provides a final discussion

of the GuessWhat?! game.

2. GuessWhat?! game

GuessWhat?! is a cooperative two-player game in which

both players see the picture of a rich visual scene with sev-

eral objects. One player – the oracle – is randomly assigned

an object (which could be a person) in the scene. This ob-

ject is not known by the other player – the questioner –

whose goal it is to locate the hidden object. To do so, the

questioner can ask a series of yes-no questions which are

answered by the oracle as shown in Fig 1 and 2. Note that

the questioner is not aware of the list of objects, they can

only see the whole picture. Once the questioner has gath-

ered enough evidence to locate the object, they notify the

oracle that they are ready to guess the object. We then re-

veal the list of objects, and if the questioner picks the right

object, we consider the game successful. Otherwise, the

game ends unsuccessfully. We also include a small penalty

for every question to encourage the questioner to ask in-

formative questions. Fig 8 and 9 in Appendix A display a

full game from the perspective of the oracle and questioner,

respectively.

The oracle role is a form of visual question answering

where the answers are limited to Yes, No and N/A (not ap-

plicable). The N/A option is included to respond even when

the question being asked is ambiguous or an answer simply

cannot be determined. For instance, one cannot answer the

question ”Is he wearing glasses?” if the face of the selected

person is not visible. The role of the questioner is much

harder. They need to generate questions that progressively

narrow down the list of possible objects. Ideally, they would

like to minimize the number of questions necessary to lo-

cate the object. The optimal policy for doing so involves a

binary search: eliminate half of the remaining objects with

each question. Natural language is often very effective at

grouping objects in an image scene. Such strategies depend

on the picture, but we distinguish the following types:

Spatial reasoning We group objects spatially within the

image scene. One may use absolute spatial informa-

tion – Is it on the bottom left of the picture? – or rela-

tive spatial location – Is it to the left of the blue car?.

Visual properties We group objects by their size – Is it

big?, shape – Is it square? – or color – Is it blue?.

5504



Object taxonomy We can use the hierarchical structure of

object categories, i.e. taxonomy, to group objects e.g.

Is it a vehicle? to refer to both cars and trucks.

Interaction We group objects by how we interact with

them – Can you drive it?.

The goal of the GuessWhat?! task is to enable machines

to understand natural descriptions and ground them into the

visual world. Note that such higher-level reasoning only

occurs when the scene is rich enough i.e. when there are

enough objects in the scene. People otherwise tend to fall

back to a linear search strategy by simply enumerating ob-

jects (often by their category names).

3. Related work

The GuessWhat?! game and the data collected from it

present opportunities for the extension of current research

on image captioning, visual question answering and dia-

logue systems. In the following, we describe previous work

in these areas and relate them to the open challenges offered

by GuessWhat?!. We also mention other relevant work on

dataset collection.

Image captioning Our work builds on top of the MS

COCO dataset [24] which consists of 120k images with

more than 800k object segmentations. In addition, the

dataset provides 5 captions per image which initiated an ex-

plosion of interest from the research community into gen-

erating natural language descriptions of images. Several

methods have been proposed [18, 40, 43], all inspired by

the encoder-decoder approach [10, 39] that has proven suc-

cessful for machine translation. Image captioning research

uncovered successful approaches to automatically generate

coherent, factual statements about images. Modeling the

interactions in GuessWhat?! requires instead to model the

process of asking useful questions about images.

VQA datasets Visual Question Answering (VQA) tasks

form another well known extension of the captioning task.

They instead require answering a question given a picture

(e.g. ”How many zebras are there in the picture?”, ”Is it

raining outside?” ). Recently, the VQA challenge [6] has

provided a new dataset far bigger than previous attempts

[13, 27] where, much like in GuessWhat?!, questions are

free-form. An extensive body of work has followed from

this publication, largely building on the image captioning

literature [3, 26, 37, 44]. Unfortunately, many of these ad-

vanced methods were shown to marginally improve on sim-

ple baselines [17]. Recent work [3] also reports that trained

models often report the same answer to a question irrespec-

tive of the image, suggesting that they largely exploit pre-

dictive correlations between questions and answers present

in the dataset. The GuessWhat?! game and dataset attempt

to circumvent these issues. Because of the questioner’s aim

to locate the hidden object, the generated questions are dif-

ferent in nature: they naturally favour spatial understanding

of the scene and the attributes of the objects within it, mak-

ing it more valuable to consult the image. Besides, it only

contains binary questions, whose answers we find to be bal-

anced and has twice more questions on average per picture.

Goal-directed dialogue GuessWhat?! is also relevant to

the goal-directed dialogue research community. Such sys-

tems are aimed at collaboratively achieving a goal with

a user, such as retrieving information or solving a prob-

lem. Although goal-directed dialogue systems are appeal-

ing, they remain hard to design. Thus, they are usually re-

stricted to specific domains such as train ticket sales, tourist

information or call routing [30, 38, 45]. Besides, existing

dialogue datasets are either limited to fewer than 100k ex-

ample dialogues [11], unless they are generated with tem-

plate formats [11, 41, 42] or simulation [31, 34] in which

case they don’t reflect the free-form of natural conversa-

tions. Finally, recent work on end-to-end dialogue sys-

tems fail to handle dynamical contexts. For instance, [41]

intersects a dialogue with an external database to recom-

mend restaurants. Well-known game-based dialogue sys-

tems [1, 2] also rely on static databases. In contrast, Guess-

What?! dialogues are heavily grounded by the images. The

resulting dialogue is highly contextual and must be based

on the content of the current picture rather than an external

database. Thus, to the best of our knowledge, the Guess-

What?! dataset marks an important step for dialogue re-

search, as it is the first large scale dataset that is both goal-

oriented and multi-modal.

Human computation games GuessWhat?! is in line with

Von Ahn’s seminal work on human computation games [4,

5] who showed that games are an effective way to gather

labeled data. The first ESP game [4] was developed to col-

lect image tags, and was later extended to Peekaboom [5] to

gather object segmentations. These games were developed

more than a decade ago, when object recognition was in its

infancy and served a different purpose than GuessWhat?!.

ReferIt Probably closest to our work is the ReferIt

game [19, 28, 46]. In this game, one player observes an an-

notated object in a scene, for which they need to generate an

expression that refers to it (e.g. ẗhe man wearing the white

t-shirt¨). The other player then receives this expression

and subsequently clicks on the location of the object within

the image. The original dataset [19] uses the IMAGEClef

dataset [12], while three recent extensions [28, 46] were

built on top of MS COCO. All three databases select images

with only 2 − 4 objects of the same category. In contrast,

GuessWhat?! picks images with 3−20 objects without fur-

ther restrictions on the object class, and thus contains three

times more images than the ReferIt datasets. To further in-

vestigate the difference between ReferIt and GuessWhat?!,

we compare three samples for the same selected object in
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Fig 14 in Appendix B. While ReferIt directly locates the

object with a single expression, GuessWhat?! iteratively

narrows down the object by means of positive and negative

feedback on questions. We also observe that GuessWhat?!

dialogues favor more abstract concepts, such as ”Is it edi-

ble?” or ”Is it on oval plate?” than ReferIt.

4. GuessWhat?! Dataset

4.1. Data collection

Images We use a subset of the training and validation im-

ages and objects of the MS COCO dataset [24]. We first

discard objects that are too small (area < 500px2) to be de-

cently located by a human observer. Then, we only keep

images containing three to twenty objects, to avoid trivial

or overly complicated images. In total, we keep 77,973 im-

ages with 609,543 objects. We verified that this selection

does not significantly alter the original dataset distribution.

Amazon Mechanical Turk The data collection was

crowd-sourced on Amazon Mechanical Turk (AMT) [9].

We created two separate tasks – known as HITs on AMT –

for the questioner and oracle roles, and rewarded the ques-

tioner slightly more than the oracle. We ensured the quality

of the data collection by several means. First, the workers

had to go through a qualification round which consisted of

successfully completing 10 games while producing fewer

than 4 mistakes or disconnects. After qualification, HITs

continue to consist of a batch of 10 successful games. We

incentivize the worker to produce as many successful di-

alogues in a row by providing bonuses for making fewer

mistakes. Secondly, players could report on each other and

players were banned after a certain number of reports. Thus,

players were incentivized to cooperate. In the end, we only

kept dialogues from qualified people and successful dia-

logues from the qualification round. In contrast to tradi-

tional dataset collection, our game requires an interactive

session between two players. Fortunately, we found that the

GuessWhat?! game was highly engaging. A total of more

than 10K people participated in our HITs, and our top ten

participants played over 2, 000 games each. Since questions

were manually typed, they could contain spelling mistakes.

Thus, we retrieved all questions containing words that do

not occur in an English dictionary and manually corrected

the 1000 most common words. For the remaining 30k ques-

tions, we created two HITs that to correct the spelling mis-

takes. See Figure 10 in Appendix A for further details.

4.2. Data analysis

In the following, we explore properties of the data we

collected using the GuessWhat?! game. We provide global

statistics, examine the vocabulary used by the questioners

and highlight the relationship between properties of objects

to guess and the odds of having a successful dialogue.

Full Finished Success

# dialogues 160,745 152,000 135,400

# questions 821,889 780,391 672,940

# words 3,985,368 3,788,167 3,254,793

# voc. size 11,464 11,259 10,637

# voc. size (3+) 5,444 5,324 5,013

# images 66,537 66,161 63,642

# segmented objects 535,723 531,847 505,599

# selected objects 134,073 131,415 117,513

Table 1: GuessWhat?! statistics split by dataset types.

Dataset statistics The raw GuessWhat?! dataset is

composed of 160,745 dialogues containing 821,889 ques-

tion/answer pairs on 66,537 unique images with 1,385,197

objects and 134,073 unique selected objects. The answers

are respectively 52.2% no, 45.6% yes and 2.2% N/A. On

average, there are 5.2 questions per dialogue and 2.3 dia-

logues per image. The dialogues contain 3,985,368 word

tokens in total, making up 11,464 different words with at

least one occurrence and 5,444 words with at least 3 occur-

rences. Moreover, 84.2% of the dialogues are successful,

10.3% are unsuccessful and 5.5% are not completed (dis-

connection, timeout etc.). Thus, different subsets co-exist in

the GuessWhat?! dataset, we will refer to the dataset as full,

finished and successful when we include all the dialogues,

all finished dialogues (successful and unsuccessful) or only

successful dialogues, respectively. The previous statistics

are broken down into dataset types in Tab 1.

Question distributions To get a better understanding of

the GuessWhat?! games, we show the number of ques-

tions within a dialogue and the average number of questions

given the number of objects within a image in Fig 3. First,

the number of questions within a dialogue decreases expo-

nentially, as players tend to shorten their dialogues to speed

up the game (and therefore maximize their gains). More in-

terestingly, we observe that the average number of questions

given the number of objects within an image appears to fol-

low a function that grows at a rate between logarithmically

and linearly. A questioning strategy of simply listing ob-

jects (e.g. ”is it the chair”, etc.) would imply linear growth

in the number of questions, while the optimal binary search

strategy would imply logarithmic growth. Thus the human

questioners seem to imply a strategy that is somewhere in

between. We conjecture three reasons why humans do not

achieve the optimal search strategy. First, the questioner

does not have access to the ground truth list of objects in the

picture, and might, therefore, overestimate the number of

objects. Second, some humans tend to favor a linear search

strategy. Finally, the questioner may ask additional ques-

tions to confirm that he has located the right object. This

can be important in the presence of possible oracle errors.

Vocabulary To gain insight into the vocabulary used by

the questioner, we compute the frequency of words in the

GuessWhat?! corpus and display the most frequent words
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Figure 3: (a) Number of questions per dialogue (b) Number of questions per dialogue vs the number of objects within the

picture (c) Word cloud of GuessWhat?! vocabulary with each word proportional to its frequency. Words are colored based

on a hand-crafted clustering. Uninformative words such as ”it”, ”is” are manually removed.

as a word cloud in Fig 3c. Several key words clearly stand

out. As explained in Sec. 2, some of those key words refer

to abstract object properties such as person or object, spatial

locations such as right/left or side and visual features such

as red/black/white. Furthermore, prepositions are also heav-

ily used to express relationships between objects. To better

understand the sequential aspect of the questions, we study

the evolution of the vocabulary at each question round. We

observe that questioners use abstract object properties such

as human/object/furniture only at the beginning of the dia-

logues, and quickly switch to either spatial or visual terms

such as left/right, white/red or table,chair.

Elements of success To investigate whether certain ob-

ject properties favour success, we compute the success ratio

of dialogues relative to: the size of the unknown objects in

Fig 4b, the number of objects within the images in Fig 4a,

the object category, the location of objects within the im-

ages and the size of the dialogues in Fig 20, Fig 21a and

Fig 21b in Appendix C, respectively. As one may expect,

the more complex the scene is, the lower the success rate is.

When there are only 3 objects, the questioner has 95% suc-

cess rate, while this ratio drops to around 70% with 20 ob-

jects. Similarly, big objects are almost always found while

the smallest one are only found 60% of the time. Ques-

tioners easily find objects in the middle of the picture but

have more difficulties to find them on the border. Finally,

objects from categories that are often grouped together, e.g.

bananas or books, have a lower success rates.

Miscellaneous In Fig 4c we break down the ratio of yes-

no answers within the dialogues. While the first yes-no an-

swers are balanced for small dialogues, they often terminate

with a final yes. In contrast, long dialogues often start with

a higher proportion of negative answers which slowly de-

crease during the exchange.

4.3. Dataset release

We split the GuessWhat?! dataset by randomly assigning

70%, 15% and 15% of the images and its corresponding

dialogues to the training, validation and test set. This way of

dividing the data ensures that we evaluate performance on

images not seen during training. The GuessWhat?! dataset

is available at https://guesswhat.ai/download.

5. Baselines

We now empirically investigate the difficulty of the or-

acle and questioner tasks. To do so, we trained reasonable

baselines for each task and measured their performance.

Formally, a GuessWhat?! game revolves around an im-

age I ∈ R
M×N containing a set of K segmented objects

{O1, . . . , OK}. Each object Ok is assigned an object cate-

gory ck ∈ {1, . . . , C} and has a pixel-wise segmentation

mask Sk ∈ {0, 1}M×N to specify its location and size.

The game further consists of a sequence of questions and

answers D = {q1, a1, . . . , qJ , aJ}, produced by the ques-

tioner and oracle. We will use q<j and a<j to refer to

the first j − 1 questions and answers, respectively. Each

question qj contains a sequence of Nj tokens, i.e. qj =
{wj1, . . . , wjNj

}, where wji is taken from a vocabulary V

and represents the token at position i in question j. Each

answer is either Yes, No or N/A, i.e. aj ∈ {Yes, No, N/A}.

Finally, the oracle has access to the identity of the correct

object Ocorrect, and the prediction of the questioner will be

denoted as Opredict.

5.1. Oracle baselines

The oracle task requires to produce a yes-no answer for

any object within a picture given a natural language ques-

tion. We first introduce our model and then outline its

results to get a better understanding of the GuessWhat?!

dataset.

Model We propose a simple neural network based ap-

proach to this model, illustrated in Fig 5. Specifically, we

use an appropriate neural network architecture to embed

each of the following information: the image I , the cropped

object from S, its spatial information, its category c and

the current question q. These embeddings are then concate-
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Figure 4: (a-b) Histogram of absolute/relative successful dialogues with respect to the number of objects and the size of the

objects, respectively. (c) Evolution of answer distribution clustered by the dialogue length

Is

VGG16 VGG16

MLP

Yes/No/Not applicable

LSTM LSTM LSTM LSTM LSTM

CONTEXT CROP SPATIAL

INFORMATION

OBJECT

CATEGORY

it a vase ?

Figure 5: An schematic overview of the ”Image + Question

+ Crop + Spatial + Category” oracle model.

nated as a single vector and fed as input to a single hidden

layer MLP that outputs the final answer distribution using

a softmax layer. Finally, we minimize the cross-entropy er-

ror during the training and report the classification error at

evaluation time.

The details on how we compute the embeddings are

as follows. To embed the full image, it is rescaled to a

224 by 224 image and is passed through a pre-trained

VGG network to obtain its FC8 features. As for the

selected object, it is first cropped by finding the smallest

rectangle that encapsulates it, based on its segmentation

mask. We then rescale the crop to a 224 by 224 square,

before obtaining its FC8 features from the pre-trained

VGG network. Although we could use the mask to drop

out pixels around the selected object, we keep the crop as

is since pre-trained VGG networks are exposed to such

background noise during their training. We also embed the

spatial information of the crop, to help locate the cropped

object within the whole image. To do so, we follow

the approach of [16, 46] and extract an 8-dimensional

vector of the location of the bounding box: xspatial =

[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox],
where wbox and hbox denote the width and height of the

bounding box, respectively. We normalize the image height

and width such that coordinates range from −1 to 1, and

place the origin at the center of the image. As for the object

category, we convert its one-hot class vector into a dense

category embedding using a learned look-up table. Finally,

the embedding of the current natural language question q

is computed using an Long Short-Term Memory (LSTM)

network [15] where questions are first tokenized by using

the word punct tokenizer from the python nltk toolkit [7].

For simplicity, we decided to ignore the question-answer

pairs history q<t in our oracle baseline.

Training setting We train all oracle models on the full

dataset. During training, we keep the parameters of the

VGG network fixed, and optimize the LSTM, object cate-

gory/word look-up tables and MLP parameters by minimiz-

ing the negative log-likelihood of the correct answer. We

use ADAM [20] for optimization and train for at most 15
epochs. We use early stopping on the validation set, and

report the train, valid and test error.

Results We report results for several oracle models us-

ing a different set of inputs in Table 2. We name the

model after the input we feed to it. For instance, (Ques-

tion+Category+Spatial+Image) refers to the network fed

with the question q, the object category c, the spatial fea-

tures xspatial and the full image I . The results of all subsets

are reported in Table 6 in Appendix C.

Because the GuessWhat?! dataset is fairly balanced,

simply outputting the most common answer in the training

set – No – results in a high 50.8% error rate. Solely pro-

viding the image or crop features barely improves upon this

result. Only using the question slightly improves the error

rate to 41.2%. We speculate that this small bias comes from

questioners that refer to objects that are never segmented or

overrepresented categories. As hoped, we observe that the

error rate significantly drops (< 31%) when we finally feed

information on the object to guess (crop, spatial or category)

to the model. We find that crop and category information are

redundant: the (Question+Category) and (Question+Crop)
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Model Train err Val err Test err

Dominant class (no) 47.4% 46.2% 50.9%

Question 40.2% 41.7% 41.2%

Image 45.7% 46.7% 46.7%

Crop 40.9% 42.7% 43.0%

Question + Crop 22.3% 29.1% 29.2%

Question + Image 37.9% 40.2% 39.8%

Question + Category 23.1% 25.8% 25.7%

Question + Spatial 28.0% 31.2% 31.3%

Question + Category + Spatial 17.2% 21.1% 21.5%

Question + Category + Crop 20.4% 24.4% 24.7%

Question + Spatial + Crop 19.4% 26.0% 26.2%

Question + Category + Spatial + Crop 16.1% 21.7% 22.1%

Question + Spatial + Crop + Image 20.7% 27.7% 27.9%

Question + Category + Spatial + Image 19.2% 23.2% 23.5%

Table 2: Classification errors for the oracle baselines on

train, valid and test set. The best performing model is

”Question + Category + Spatial” and refers to the MLP that

takes the question, the selected object class and its spatial

features as input.

Model Train err Val err Test err

Human 10.8% 11.1% 11.1%

Random 82.9% 82.9% 82.9%

LSTM 27.9% 37.9% 38.7%

HRED 32.6% 38.2% 39.0%

LSTM+VGG 26.1% 38.5% 39.5%

HRED+VGG 27.4% 38.4% 39.6%

Table 3: Classification errors for the guesser baselines on

train, valid and test finished set.

model achieve respectively 29.2% and 25.7% error, while

the combined model (Question+Category+Crop) achieves

24.7%. In general, we expect the object crop to contain ad-

ditional information, such as color information, beside the

object class. However, we find that the object category out-

performs the object crop embedding. This might be partly

due to the imperfect feature extraction from the crops. Fi-

nally, our best performing model combines object category

and its spatial features along with the question.

5.2. Questioner baselines

Given an image, the questioner must ask a series of ques-

tions and guess the correct object. We separate the ques-

tioner task into two different sub-tasks that are trained in-

dependently: The Guesser must predict the correct object

Ocorrect from the set of all objects O given an image I and

a sequence of questions and answers DJ ,. The Question

Generator must produce a new question qT+1 Given an

image I and a sequence of T questions and answers D≤T .

In general, one also needs a module to determine when to

start guessing the object (and stop asking questions). In our

baseline, we bypass this issue by fixing the number of ques-

tions to 5 for the question generator model.

Guesser The role of the guesser model is to predict the

correct object. To do so, the guesser has access to the

LSTM / HRED

encoder

Is it a vase? Yes 

Is it partially visible? No

Is it in the left corner? No

Is it the turquoise and purple one? Yes

MLP MLP MLP

obj1

Softmax

Opredict

obj2 obj3 obj4

MLP

Figure 6: Overview of the guesser model for an image with

4 segmented objects. The weights are shared among the

MLPs, this allows for an arbitrary number of objects.

image, the dialogue and the list of objects in the image.

We encode the image by extracting its FC8 features from

VGG16 network. A dialogue of a GuessWhat?! game is a

sequence on two different levels: there is a variable number

of question-answer pairs where each question in turn con-

sists of a variable-length sequence of tokens. This can be

encoded into a fixed size vector by using either an LSTM

encoder [15] or an HRED encoder [36]. While the LSTM

encoder considers the dialogue as one flat sequence, HRED

explicitly models the hierarchy by two different Recurrent

Neural Networks (RNN). First, an encoder RNN creates a

fixed-size representation of a question or answer by reading

in its tokens and taking the last hidden state of the RNN.

This representation is then processed by the context RNN

to obtain a representation of the current dialogue state. For

both models, we concatenate the image and dialogue fea-

tures and do a dot-product with the embedding for all the

objects in the image, followed by a softmax to obtain a pre-

diction distribution over the objects. Given the best perfor-

mance of the ”Question+Category+Spat” oracle model, we

represent objects by their category and their spatial features.

More precisely, we concatenate the 8-dimensional spatial

representation [16, 46] and the object category look-up and

pass it through an MLP layer to get an embedding for the

object. Note that the MLP parameters are shared to handle

the variable number of objects in the image. See Fig 6 for

an overview of the guesser with HRED and LSTM.

Table 3 reports the results for the guesser baselines using

human-generated dialogues. As a first baseline, we report

the performance of a random guesser which does not use

the dialogue information. We split the guesser results based

on whether they use the VGG features or not. In general,

we find that including VGG features does not improve the

performance of the LSTM and HRED models. We hypoth-

esize that the VGG features are a too coarse representation

of the image scene, and that most of the visual information

is already encoded in the question and the object features.

Surprisingly, we find LSTMs to perform slightly better than

the sophisticated HRED models.
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Decoder

Encoder Encoder Encoder

Is it partially visible?

q2q1

Is it in the left corner?

w11  

w11 

D
e
c
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d
e
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Is it partially visible?

w14w12

w13

Yes No

VGG

Figure 7: HRED model conditioned on the VGG features

of the image. To avoid clutter, we here only show the part

of the model that defines a distribution over the third ques-

tion given the first two questions, its answers and the image

P (q2|q<2, a<2, I). The complete HRED model models the

distribution over all questions.

Question Generator The question generation task is hard

for several reasons. First, it requires high-level visual un-

derstanding to ask meaningful questions. Second, the gen-

erator should be able to handle long-term context to ask a

sequence of relevant questions, which is one of the most

challenging problems in dialogue systems. Additionally, we

evaluate the question generator using the imperfect oracle

and imperfect guesser, which introduces compounding er-

rors. Hierarchical recurrent encoder decoder (HRED) [36]

is the current state of the art method for natural language

generation tasks. We extend this model by conditioning on

the VGG features of the image as illustrated in Fig 7. Fi-

nally, we train our proposed model by maximizing the con-

ditional log-likelihood:

logP (Q|A, I) = log
J�

j=1

P (qj |q<j , a<j , I) (1)

= log
J�

j=1

Nj�

i=1

P (wji|wj<i, a≤j , I) (2)

with respect to the described parameters. At test time, we

use a beam-search to approximately find the most probable

question qj . Evaluating the questioner model requires a pre-

trained oracle and a pre-trained guesser model. We use our

questioner model to first generate a question which is then

answered by the oracle model. We repeat this procedure 5

times to obtain a dialogue. We then use the best performing

guesser model to predict the object and report its error as

the metric for the QGEN model. Since we use ground truth

answers during the QGEN training while we use oracle an-

Model Error

Human generated dialogue 38.7%

QGen+GT 53.2%

QGen+ORACLE 66.0%

Random 82.9%

Table 4: Test error for the question generator models

(QGEN) based on VGG+HRED(FT) guesser model. We

here report the accuracy error of the guesser model fed with

the questions from the QGEN model.

swers at test time, there is a mismatch between the training

and testing procedure. This can be avoided by using the ora-

cle answers also during training time. We call these models

QGEN+GT and QGEN+ORACLE respectively.

Table 4 shows the results. A guesser based on human

generated dialogues achieves 38.7% error. The Question

Generator models achieve reasonable performance which

lies in between the random performance and the perfor-

mance of the guesser on human dialogues. We observe that

using the Oracle’s answers while training the Question Gen-

erator introduces additional errors which significantly dete-

riorates performance. Some example dialogues generated

by the QGen+GT model are shown in Fig. 22 and 23.

6. Discussion

We introduced the GuessWhat?! game, a novel frame-

work for multi-modal dialogue. To the best of our knowl-

edge, we present the first large-scale dataset involving im-

ages and dialogue. A wide range of challenges may arise

from this union as they rely on different fields of machine

learning such as natural language understanding, generative

models or computer vision. GuessWhat?! turns out to be

an engaging game that greatly decreases the cost for collec-

tion of a big dataset required for modern algorithms. As a

second contribution, we introduced three tasks based on the

questioner and oracle role. In each case, we prototyped a

neural architecture as a first baseline. We analyzed these re-

sults and presented a quantitative description of the Guess-

What?! dataset.
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