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Model Architectures

q Visual features: Fast R-CNN (VGGNet/ResNet)

q Text features: Character-level CNN
Ø Replicating a phrase until reaching the

input length of the CNN (256 characters)
Ø Non-saturable activations: Leaky ReLU

Ø Can be replaced by other text embedding        
q The detection score of image region r is given by a linear classifier dynamically generated 

according to the text phrase t :

where the classifier weights and bias are 
.                                                                   

q An extra regularization term on the classifier parameter is important for the SGD stability:

Discriminative Bimodal Networks (DBNet) 

q Typical previous works
Ø Caption generation model

Ø Output in a huge language space
Ø Mostly use only positive training 

samples (matched text and regions)

q Our DBNet
Ø A fully discriminative model

Ø Learning in a binary space is easier
Ø Able to use all possible negative 

samples across the training set
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Abstract
Associating image regions with text queries has been

recently explored as a new way to bridge visual and lin-

guistic representations. A few pioneering approaches have

been proposed based on recurrent neural language models

trained generatively (e.g., generating captions), but achiev-

ing somewhat limited localization accuracy. To better ad-

dress natural-language-based visual entity localization, we

propose a discriminative approach. We formulate a dis-

criminative bimodal neural network (DBNet), which can be

trained by a classifier with extensive use of negative sam-

ples. Our training objective encourages better localiza-

tion on single images, incorporates text phrases in a broad

range, and properly pairs image regions with text phrases

into positive and negative examples. Experiments on the

Visual Genome dataset demonstrate the proposed DBNet

significantly outperforms previous state-of-the-art methods

both for localization on single images and for detection on

multiple images. We we also establish an evaluation proto-

col for natural-language visual detection. Code is avail-

able at: http://ytzhang.net/projects/dbnet .

1. Introduction

Object localization and detection in computer vision are
traditionally limited to a small number of predefined cat-
egories (e.g., car, dog, and person), and category-specific
image region classifiers [7, 11, 14] serve as object detectors.
However, in the real world, the visual entities of interest are
much more diverse, including groups of objects (involved
in certain relationships), object parts, and objects with par-
ticular attributes and/or in particular context. For scalable
annotation, these entities need to be labeled in a more flexi-
ble way, such as using text phrases.

Deep learning has been demonstrated as a unified learn-
ing framework for both text and image representations. Sig-
nificant progress has been made in many related tasks, such
as image captioning [55, 56, 25, 37, 5, 9, 23, 18, 38], vi-
sual question answering [3, 36, 57, 41, 2], text-based fine-
grained image classification [44], natural-language object
retrieval [21, 38], and text-to-image generation [45].

A few pioneering works [21, 38] use recurrent neural
language models [15, 39, 50] and deep image represen-
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Figure 1: Comparison between (a) image captioning model and

(b) our discriminative architecture for visual localization.

tations [31, 49] for localizing the object referred to by a
text phrase given a single image (i.e., “object referring"
task [26]). Global spatial context, such as “a man on the left
(of the image)”, has been commonly used to pick up the par-
ticular object. In contrast, Johnson et al. [23] takes descrip-
tions without global context1 as queries for localizing more
general visual entities on the Visual Genome dataset [30].

All above existing work performs localization by maxi-
mizing the likelihood to generate the query text given im-
age regions using an image captioning model (Figure 1a),
whose output probability density needs to be modeled on
the virtually infinite space of the natural language. Since it
is hard to train a classifier on such a huge structured out-
put space, current captioning models are constrained to be
trained in generative [21, 23] or partially discriminative [38]
ways. However, as discriminative tasks, localization and
detection usually favor models that are trained with a more
discriminative objective to better utilize negative samples.

In this paper, we propose a new deep architecture for
natural-language-based visual entity localization, which we
call a discriminative bimodal network (DBNet). Our ar-
chitecture uses a binary output space to allow extensive
discriminative training, where any negative training sam-
ple can be potentially utilized. The key idea is to take the
text query as a condition rather than an output and to let the

1Only a very small portion of text phrases on the Visual Genome refer
to the global context.

Benchmarking Protocol
q Based on the Visual Genome dataset 
Ø Bounding boxes with text phrase descriptions

Ø Additional spell checking and auto-correction
q Localization: find a known-to-be-existing entity

q Detection: localize all matched entities if exists any
Ø Should have negative images (no matched entity)

Ø Impractical to test all queries on each image
q The first benchmark protocol for visual entity detection with language queries. 3 difficulty levels with 

increasing number of randomly chosen negative images per query.
Ø Level 0: no negative image

Ø Level 2: 5 times the number of positive images or 20 (whichever is larger) for each test phrase
q Detection metric: average precision (AP)

Ø mean AP (mAP): averaging APs over all phrases; each phrase has its own decision threshold.
Ø global AP (gAP): a single AP for any phrases; all phrases share the same decision threshold.

(requires scores to be calibrated over phrases; for zero-shot settings)

Localization and Detection with Natural Language Queries 
q Tradition object detection: person, cat, dog, car, motorbike, airplane, bed, television, …
q Natural language query: a group of bikers, a building with lots of windows, …
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Experiments
We release our implementation in both Caffe+MATLAB (original results) and TensorFlow.
q DBNet training is memory consuming. Our code perform subbatch partition for subnetworks 
to fit the GPU memory limit while keeping a large overall batch size for effective training.

q DBNet outperforms captioning models. � Dynamic bias term improves performance.
q DBNet shows higher per-phrase performance in term of mAP.
q DBNet’s scores are better “calibrated” over different phrases in terms of gAP.
q DBNet shows more robustness to negative images and rare text phrases.
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the classifiers for a small number of predefined categories
in traditional object detection, our model is dynamically
adaptable to different text phrases.
3.1. Model framework

Let x be an image, r be the coordinates of a region, and
t be a text phrase. The verification model f(x, t, r;⇥) 2 R
outputs the confidence of r’s being matched with t. Sup-
pose that l 2 {1, 0} is the binary label indicating if (t, r) is
a positive or negative region-text pair on x. Our verification
model learns to fit the probability for r and t being compat-
ible (a positive pair), i.e., p(l = 1|x, r, t). See Section B
in the supplementary materials for a formalized comparison
with conditional captioning models.

To this end, we develop a bimodal deep neural network
for our model. In particular, f(x, t, r;⇥) is composed of
two single-modality pathways followed by a discriminative
pathway. The image pathway �rgn(x, r;⇥rgn) extracts the
drgn-dim visual representation on the image region r on x.
The language pathway �txt(t;⇥txt) extracts the dtxt-dim tex-
tual representation for the phrase t. The discriminative path-
way with parameters ⇥dis dynamically generates a classifier
for visual representation according to the textual represen-
tation, and predicts if r and t are matched on x. The full
model is specified by ⇥ = (⇥txt,⇥rgn,⇥dis).
3.2. Visual and linguistic pathways
RoI-pooling image network. We suppose the regions of
interest are given by an existing region proposal method
(e.g., EdgeBox [62], RPN [46]). We calculate visual rep-
resentations for all image regions in one pass using the fast
R-CNN RoI-pooling pipeline. State-of-the-art image classi-
fication networks, including the 16-layer VGGNet [49] and
ResNet-101 [17], are used as backbone architectures.
Character-level textual network. For an English text
phrase t, we encode each of its characters into a 74-dim
one-hot vector, where the alphabet is composed of 74 print-
able characters including punctuations and the space. Thus,
the t is encoded as a 74-channel sequence by stacking all
character encodings. We use a character-level deep CNN
[60] to obtain the high-level textual representation of t. In
particular, our network has 6 convolutional layers interleav-
ing with 3 max-pooling layers and followed by 2 fully con-
nected layers (see Section A in the supplementary materials
for more details). It takes a sequence of a fixed length as the
input and produces textual representations of a fixed dimen-
sion. The input length is set to be long enough (here, 256
characters) to cover possible text phrases.2 To avoid empty
tailing characters in the input, we replicate the text phrase
until reaching the input length limit.

We empirically found that the very sparse input can eas-
ily lead to over-sparse intermediate activations, which can

2The Visual Genome dataset has more than 2.8M unique phrases,
whose median length in character is 29. Less than 500 phrases has more
than 100 characters.

create a large portion of “dead” ReLUs and finally result in
a degenerate solution. To avoid this problem, we adopt the
Leaky ReLU (LReLU) [35] to keep all hidden units active
in the character-level CNN.

Other text embedding methods [29, 24, 27] also can be
used in the DBNet framework. We use the character-level
CNN because of its simplicity and flexibility. Compared to
word-based models, it uses lower-dimensional input vectors
and has no constraint on the word vocabulary size. Com-
pared to RNNs, it easily allows deeper architectures.
3.3. Discriminative pathway

The discriminative pathway first forms a linear classifier
using the textual representation of the phrase t. Its linear
combination weights and bias are

w(t) = A>
w�txt(t;⇥txt), (1)

b(t) = a>b �txt(t;⇥txt), (2)
where Aw 2 Rdtxt⇥drgn , ab 2 Rdtxt , and ⇥dis = (Aw,ab).
This classifier is applied to the visual representation of the
image region r on x, obtaining the verification confidence
predicted by our model:

f(x, r, t;⇥) = w(t)

>�rgn(x, r;⇥rgn) + b(t). (3)
Compared to the basic form of the bilinear function
�>

txt(t;⇥txt)Aw�rgn(x, r;⇥rgn), our discriminative pathway
includes an additional linear term as the text-dependent bias
for the visual representation classifier.

As a natural way for modeling the cross-modality corre-
lation, multiplication is also a source of instability for train-
ing. To improve the training stability, we introduce a regu-
larization term �dynamic = kw(t)k22+|b(t)|2 for the dynamic
classifier, besides the network weight decay �decay for ⇥.

4. Model learning
In DBNet, we drive the training of the proposed two-

pathway bimodal CNN with a binary classification objec-
tive. We pair image regions and text phrases as train-
ing samples. We define the ground truth binary label for
each training region-text pair (Section 4.1), and propose a
weighted training loss function (Section 4.2).
Training samples. Given M training images x1, x2, . . . ,

xM , let Gi = {(rij , tij)}Ni
j=1 be the set of ground truth an-

notations for xi, where Ni is the number of annotations, rij
is the coordinate of the j

th region, and tij is the text phrase
corresponding to rij . When one region is paired with mul-
tiple phrases, we take each pair as a separate entry in Gi.

We denote the set of all regions considered on xi by Ri,
which includes both annotated regions

SNi

j=1{rij} and re-
gions given by proposal methods [54, 62, 46]. We write
Ti =

S
{tij}Ni

j=1 for the set of annotated text phrases on xi,
and T =

SM
i=1 Ti for all training text phrases.

4.1. Ground truth labels
Labeling criterion. We assign each possible training
region-text pair with a ground truth label for binary clas-

the classifiers for a small number of predefined categories
in traditional object detection, our model is dynamically
adaptable to different text phrases.
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one-hot vector, where the alphabet is composed of 74 print-
able characters including punctuations and the space. Thus,
the t is encoded as a 74-channel sequence by stacking all
character encodings. We use a character-level deep CNN
[60] to obtain the high-level textual representation of t. In
particular, our network has 6 convolutional layers interleav-
ing with 3 max-pooling layers and followed by 2 fully con-
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for more details). It takes a sequence of a fixed length as the
input and produces textual representations of a fixed dimen-
sion. The input length is set to be long enough (here, 256
characters) to cover possible text phrases.2 To avoid empty
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until reaching the input length limit.
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ily lead to over-sparse intermediate activations, which can
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tation, and predicts if r and t are matched on x. The full
model is specified by ⇥ = (⇥txt,⇥rgn,⇥dis).
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RoI-pooling image network. We suppose the regions of
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resentations for all image regions in one pass using the fast
R-CNN RoI-pooling pipeline. State-of-the-art image classi-
fication networks, including the 16-layer VGGNet [49] and
ResNet-101 [17], are used as backbone architectures.
Character-level textual network. For an English text
phrase t, we encode each of its characters into a 74-dim
one-hot vector, where the alphabet is composed of 74 print-
able characters including punctuations and the space. Thus,
the t is encoded as a 74-channel sequence by stacking all
character encodings. We use a character-level deep CNN
[60] to obtain the high-level textual representation of t. In
particular, our network has 6 convolutional layers interleav-
ing with 3 max-pooling layers and followed by 2 fully con-
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for more details). It takes a sequence of a fixed length as the
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sion. The input length is set to be long enough (here, 256
characters) to cover possible text phrases.2 To avoid empty
tailing characters in the input, we replicate the text phrase
until reaching the input length limit.

We empirically found that the very sparse input can eas-
ily lead to over-sparse intermediate activations, which can
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classifier, besides the network weight decay �decay for ⇥.

4. Model learning
In DBNet, we drive the training of the proposed two-

pathway bimodal CNN with a binary classification objec-
tive. We pair image regions and text phrases as train-
ing samples. We define the ground truth binary label for
each training region-text pair (Section 4.1), and propose a
weighted training loss function (Section 4.2).
Training samples. Given M training images x1, x2, . . . ,

xM , let Gi = {(rij , tij)}Ni
j=1 be the set of ground truth an-

notations for xi, where Ni is the number of annotations, rij
is the coordinate of the j

th region, and tij is the text phrase
corresponding to rij . When one region is paired with mul-
tiple phrases, we take each pair as a separate entry in Gi.

We denote the set of all regions considered on xi by Ri,
which includes both annotated regions

SNi

j=1{rij} and re-
gions given by proposal methods [54, 62, 46]. We write
Ti =

S
{tij}Ni

j=1 for the set of annotated text phrases on xi,
and T =

SM
i=1 Ti for all training text phrases.

4.1. Ground truth labels
Labeling criterion. We assign each possible training
region-text pair with a ground truth label for binary clas-

Green: Ground truth; Red: DenseCap; Yellow: DBNet

Method Accuracy/% for IoU@ Median 
IoU0.3 0.5 0.7

DenseCap 25.7 10.1 2.4 0.092
SCRC 27.8 11.0 2.5 0.115
DBNet w/o bias 36.3 22.4 9.4 0.124
DBNet 38.3 23.7 9.9 0.152
DBNet (ResNet) 42.3 26.4 11.2 0.205

a. Localization performance

c. Quantitative comparison

Data, Code & Model:

DBNet.link

Model Training: Labels, Objectives, and Optimization

q Any region-text pair (r,t) can be possibly used in training.
q r can be GT or proposed (EdgeBox), t can be an annotation on 

the same image as r or from the rest of the training set.
q Spatial overlapping based training labels:

Ø 1: r has large overlap with a ground truth region of t
Ø Uncertain: (r,t) is not positive, and r has moderate overlap 

with a ground truth region of t. (excluded from training)
Text similarity based uncertainty augmentation:

If t' is similar to t, t' should also have uncertain label with r
Ø 0: otherwise (including all other text phrases).

q Given a region, the non-uncertain phrases are categorized into: positive phrases (pos), negative 
phrases from the annotations on the same image (neg), and negative phrases from the rest images (rest).

q Training loss is normalized separately for the three categories:

where we set , the sampling strategy in SGD determines        (larger) and        (smaller).

q Optimization: (initialization) Initializing visual pathway with pretrained faster R-CNN; 
(phase 1) training the text pathway from scratch and fix the visual pathway parameters; 
(phase 2) jointly finetuning the two pathway; (phase 3) decrease the learning rate. 
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ηneg <	IoU < ηpos : GT regions 
of ambiguous text phrases 

IoU ≤ ηneg : GT regions of 
negative text phrases 

The potential negative phrase

is marked as ambiguous,
because it has already been in

the ambiguous phrase set.

Figure 2: Ground truth labels for region-text pairs (given an ar-

bitrary image region). Phrases are categorized into positive, am-

biguous, and negative sets based on the given region’s overlap with

ground truth boxes (measured by IoU and displayed as the num-

bers in front of the text phrases). Ambiguous phrases augmented

by text similarity is not shown here (see the video in the supple-

mentary materials for an illustration). For visual clarity, ηneg = 0.3

and ηpos = 0.7, which are different from the rest of the paper.

sification. For a region r on the image xi and a text phrase
t ∈ Ti, we take the largest overlap between r and t’s ground
truth regions as evidence to determine (r, t)’s label. Let
IoU(·, ·) denote the intersection over union. The largest

overlap is defined as

νi(r, t) = max
r′∈Ri

{IoU(r′, r) : (r′, t) ∈ Gi}. (4)

In object detection on a limited number of categories (i.e.,
Ti consists of category labels), νi(r, t) is usually reliable
enough for assigning binary training labels, given the (al-
most) complete ground truth annotations for all categories.

In contrast, text phrase annotations are inevitably incom-
plete in the training set. One image region can have an
intractable number of valid textual descriptions, including
different points of focus and paraphrases of the same de-
scription, so annotating all of them is infeasible. Conse-
quently, νi(r, t) cannot always reflect the consistency be-
tween an image region and a text phrase. To obtain reliable
training labels, we define positive labels in a conservative
manner; and then, we combine text similarity together with
spatial IoU to establish the ambiguous text phrase set that
reflects potential “false negative” labels. We provide de-
tailed definitions below.

Positive phrases. For a region r on xi, its positive text
phrases (i.e., phrases assigned with positive labels) consti-
tute the set

Pi(r) = {t ∈ Ti : νi(r, t) ≥ ηpos}, (5)

where ηpos is a high enough IoU threshold (= 0.9) to deter-
mine positive labels. Some positive phrases may be missing
due to incomplete annotations. However, we do not try to
recover them (e.g., using text similarity), as “false positive”
training labels may be introduced by doing so.

Ambiguous phrases. Still for the region r, we collect the
text phrases whose ground truth regions have moderate (nei-
ther too large nor too small) overlap with r into a set

Ui(r) = {t ∈ Ti : ηneg < νi(r, t) < ηpos}, (6)

where ηneg is the IoU lower bound (= 0.1). When r’s largest
IoU with the ground truths of a phrase t lies in (ηneg, ηpos),
it is uncertain whether t is positive or negative. In other
words, t is ambiguous with respect to the region r.

Note that Ui(r) only contains phrases from Ti. To cover
all possible ambiguous phrases from the full set T , we use
a text similarity measurement sim(·, ·) to augment Ui(r) to
the finalized ambiguous phrase set

Ai(r) = {t ∈ T : ∃t′ ∈ Ui(r), sim(t, t′) > τ}\Pi(r),
(7)

where we use the METEOR [4] similarity for sim(·, ·) and
set the text similarity threshold τ = 0.3.3

Labels for region-text pairs. For any image region r on
xi and any phrase t ∈ T , the ground truth label of (r, t) is

yi(r, t) =

⎧

⎪

⎨

⎪

⎩

1, t ∈ Pi(r),

⟨uncertain⟩, t ∈ Ai(r),

0, otherwise,

(8)

where the pairs of a region and its ambiguous text phrases
are assigned with the “uncertain” label to avoid false nega-
tive labels. Figure 2 illustrates the region-text label for an
arbitrary training image region.

4.2. Weighted training loss

Effective training sets. On the image xi, the effective set
of training region-text pairs is

Si = {(r, t) ∈ Ri × T : yi(r, t) ̸= ⟨uncertain⟩}, (9)

where, as previously defined, Ri consists of annotated and
proposed regions, and T consists of all phrases from the
training set. We exclude samples of uncertain labels.

We partition Si into three subsets according to the value
of yi(r, t) and the origin of the phrase t: Spos

i for yi(r, t) =
1, Sneg

i for yi(r, t) = 0 ∧ t ∈ Ti, and S rest
i for all nega-

tive region-text pairs containing phrases from the rest of the
training set (i.e., not from xi).

Per-image training loss Let fi(r, t) = f(xi, r, t;Θ) ∈ R

for notation convenience; and, let ℓ(·, ·) be a binary classi-
fication loss, in particular, the cross-entropy loss of logistic
regression. We define the training loss on xi as the summa-
tion of three parts:

Li = λposL
pos
i + λnegL

neg
i + λrestL

rest
i , (10)

L
pos
i =

1

|Spos
i |

∑

(r,t)∈S
pos
i

ℓ (fi(r, t), 1) , (11)

L
neg
i =

1

|Sneg
i |

∑

(r,t)∈S
neg
i

ℓ (fi(r, t), 0) , (12)

Lrest
i =

∑

(r,t)∈S rest
i

freq(t) · ℓ (fi(r, t), 0)
∑

(r,t)∈S rest
i

freq(t)
, (13)

3If the METEOR similarity of two phrases is greater than 0.3, they
are usually very similar. In Visual Genome, ∼0.25% of all possible pairs
formed by the text phrases that occur ≥20 times can pass this threshold.
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of ambiguous text phrases 
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is marked as ambiguous,
because it has already been in
the ambiguous phrase set.

Figure 2: Ground truth labels for region-text pairs (given an ar-
bitrary image region). Phrases are categorized into positive, am-
biguous, and negative sets based on the given region’s overlap with
ground truth boxes (measured by IoU and displayed as the num-
bers in front of the text phrases). Ambiguous phrases augmented
by text similarity is not shown here (see the video in the supple-
mentary materials for an illustration). For visual clarity, ⌘neg = 0.3
and ⌘pos = 0.7, which are different from the rest of the paper.

sification. For a region r on the image xi and a text phrase
t 2 Ti, we take the largest overlap between r and t’s ground
truth regions as evidence to determine (r, t)’s label. Let
IoU(·, ·) denote the intersection over union. The largest
overlap is defined as

⌫i(r, t) = max

r02Ri

{IoU(r0, r) : (r0, t) 2 Gi}. (4)

In object detection on a limited number of categories (i.e.,
Ti consists of category labels), ⌫i(r, t) is usually reliable
enough for assigning binary training labels, given the (al-
most) complete ground truth annotations for all categories.

In contrast, text phrase annotations are inevitably incom-
plete in the training set. One image region can have an
intractable number of valid textual descriptions, including
different points of focus and paraphrases of the same de-
scription, so annotating all of them is infeasible. Conse-
quently, ⌫i(r, t) cannot always reflect the consistency be-
tween an image region and a text phrase. To obtain reliable
training labels, we define positive labels in a conservative
manner; and then, we combine text similarity together with
spatial IoU to establish the ambiguous text phrase set that
reflects potential “false negative” labels. We provide de-
tailed definitions below.
Positive phrases. For a region r on xi, its positive text
phrases (i.e., phrases assigned with positive labels) consti-
tute the set

Pi(r) = {t 2 Ti : ⌫i(r, t) � ⌘pos}, (5)
where ⌘pos is a high enough IoU threshold (= 0.9) to deter-
mine positive labels. Some positive phrases may be missing
due to incomplete annotations. However, we do not try to
recover them (e.g., using text similarity), as “false positive”
training labels may be introduced by doing so.
Ambiguous phrases. Still for the region r, we collect the
text phrases whose ground truth regions have moderate (nei-
ther too large nor too small) overlap with r into a set

Ui(r) = {t 2 Ti : ⌘neg < ⌫i(r, t) < ⌘pos}, (6)

where ⌘neg is the IoU lower bound (= 0.1). When r’s largest
IoU with the ground truths of a phrase t lies in (⌘neg, ⌘pos),
it is uncertain whether t is positive or negative. In other
words, t is ambiguous with respect to the region r.

Note that Ui(r) only contains phrases from Ti. To cover
all possible ambiguous phrases from the full set T , we use
a text similarity measurement sim(·, ·) to augment Ui(r) to
the finalized ambiguous phrase set

Ai(r) = {t 2 T : 9t0 2 Ui(r), sim(t, t

0
) > ⌧}\Pi(r),

(7)
where we use the METEOR [4] similarity for sim(·, ·) and
set the text similarity threshold ⌧ = 0.3.3

Labels for region-text pairs. For any image region r on
xi and any phrase t 2 T , the ground truth label of (r, t) is

yi(r, t) =

8
><

>:

1, t 2 Pi(r),

huncertaini, t 2 Ai(r),

0, otherwise,
(8)

where the pairs of a region and its ambiguous text phrases
are assigned with the “uncertain” label to avoid false nega-
tive labels. Figure 2 illustrates the region-text label for an
arbitrary training image region.

4.2. Weighted training loss
Effective training sets. On the image xi, the effective set
of training region-text pairs is

Si = {(r, t) 2 Ri ⇥ T : yi(r, t) 6= huncertaini}, (9)
where, as previously defined, Ri consists of annotated and
proposed regions, and T consists of all phrases from the
training set. We exclude samples of uncertain labels.

We partition Si into three subsets according to the value
of yi(r, t) and the origin of the phrase t: Spos

i for yi(r, t) =
1, Sneg

i for yi(r, t) = 0 ^ t 2 Ti, and S rest
i for all nega-

tive region-text pairs containing phrases from the rest of the
training set (i.e., not from xi).
Per-image training loss Let fi(r, t) = f(xi, r, t;⇥) 2 R
for notation convenience; and, let `(·, ·) be a binary classi-
fication loss, in particular, the cross-entropy loss of logistic
regression. We define the training loss on xi as the summa-
tion of three parts:

Li = �posL
pos
i + �negL

neg
i + �restL

rest
i , (10)

L

pos
i =

1

|Spos
i |

X

(r,t)2Spos
i

` (fi(r, t), 1) , (11)

L

neg
i =

1

|Sneg
i |

X

(r,t)2Sneg
i

` (fi(r, t), 0) , (12)

L

rest
i =

P
(r,t)2S rest

i
freq(t) · ` (fi(r, t), 0)

P
(r,t)2S rest

i
freq(t)

, (13)

3If the METEOR similarity of two phrases is greater than 0.3, they
are usually very similar. In Visual Genome, ⇠0.25% of all possible pairs
formed by the text phrases that occur �20 times can pass this threshold.
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Figure 5: Qualitative detection results of DBNet with ResNet-101. We show detection results of six different text phrases on each image.
For each image, the colors of bounding boxes correspond to the colors of text tags on the right. The semi-transparent boxes with dashed
boundaries are ground truth regions, and the boxes with solid boundaries are detection results.
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e. Ablation study of DBNet’s major components

G.2. Random detection results with phrase-dependent thresholds
In Figure 11, we used phrase-dependent decision thresholds to determine how many regions were detected on an image. We set the threshold to make the

detection precision for the IoU threshold at 0.5 equal to 0.5 when applicable. DBNet outperformed DenseCap and SCRC significantly. DenseCap and SCRC
resulted in many cases of false alarms or miss detection. Note that DBNet could usually achieve the 0.5 precision with a reasonable recall level, but DenseCap
and SCRC might either fail achieving the 0.5 precision at all or give a low recall.

Text phrases DBNet DenseCap SCRC

a man jumping a skateboard

a man wearing a red shirt

a red white
and blue baseball cap

three people hanging
out in the background

black shirt of tennis player

black shorts
of tennis player

man in blue
shirt and white shorts

the man has brown hair

a black circular
electric oven burner

a little girl
in a colorful top

a white and black
stove with range cook top

apple on the counter

Figure 11: Qualitative detection results of DBNet, DenseCap, and SCRC using phrase-dependent detection threshold. Detection results of four different text phrases are shown
for each image. The colors of the bounding boxes correspond to the colors of text phrases on the left. The semi-transparent boxes with dashed boundaries are ground truth regions,
and the boxes with solid boundaries are detection results of three models.

Text phrases DBNet DenseCap SCRC
a man jumping a skateboard

a man wearing a red shirt

a red white and blue baseball cap

three people hanging out 
in the background

GT: semitransparent & dashed
Detected: boxes of solid edges

F.1. More qualitative comparison with DenseCap
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Figure 6: Qualitative comparison between DBNet and DenseCap on localization task. Examples are randomly sampled. Green boxes:
ground truth; Red boxes: DenseCap; Yellow boxes: DBNet. The numbers are IoU with ground truth boxes.
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Green: Ground truth; Red: SCRC; Yellow: DBNet

F.2. More qualitative comparison with SCRC
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0.30 0.66

a window
on the train

0.24

0.54

a bird’s
tiny leg

0.20

0.60

arrow
pointing right

0.29

0.73

the shower
nozzle

0.23

0.55

blue jeans
on young woman

0.30
0.65

the uniform
is grey

0.30

0.53

man in yellow
snowboarding

0.28
0.51

a white
computer keyboard

0.47

0.59

a remote control
on coffee table

0.26 0.38

a tree near
a house

0.38 0.78

gray stapler

0.50
0.53

this is a
dining table

0.47
0.73

the arch of
a building

0.61

0.83

the door on
the stone cottage

0.31

0.27

the silver
long train

0.32

0.37

boat in the
middle of water

0.49

0.70

man wearing
wet suit

0.41

0.46

yellow directional sign
on street

0.64 0.79

the jet is
made of steel

0.49 0.78

bearded man with
a white hat

0.66 0.90

partially loaded
moving van

0.68 0.67

young boy
pointing at camera

0.47

0.62

black traffic
light

0.49 0.52

blue and white
stripe outfit

0.64
0.90

yellow taxi cab
on the street

0.67
0.41

granola in
yogurt cup

0.50

0.69

keyboard of
street meter

0.60

0.82

young man carrying
backpack

0.41

0.68

two candle
holders

0.36 0.59

trunck of
elephant

0.33

0.44

directional street sign
1600 block

0.40 0.46

paper note shaped
like autumn leaf

Figure 7: Qualitative comparison between DBNet and SCRC on localization task. Examples are randomly sampled. Green boxes: ground
truth; Red boxes: SCRC; Yellow boxes: DBNet. The numbers are IoU with ground truth boxes.
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