

Introduction

CityPersons

- Instance masks
- Video frames
- Stereo, GPS, et al.
- Aligned bounding boxes
- Occlusion level estimates
- Fine-grained categories

Statistics

	Train	Val.	Test	Sum	83%
# cities	18	3	6	27	
# images	2975	500	1575	5000	
# persons	19654	3938	11424	35016	
# ignore regions	6768	1631	4773	13172	

Baseline Detector

Proper adaptations to vanilla FasterRCNN are necessary to obtain competitive results for pedestrian detection.

	Detector aspect	MR^O
_	FasterRCNN-vanilla	20.98
-	+ quantized rpn scales	18.11
	+ input up-scaling	14.37
	+ Adam solver	12.70
	+ ignore region handling	11.37
_	+ finer feature stride	10.27
-	FasterRCNN-ours	10.27

References

- [1] Ren et al. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
- [2] Cordts et al. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. [3] Dollár et al. Pedestrian detection: An evaluation of the state of the art. PAMI, 2012.
- [4] Geiger et al. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.
- [5] Zhang et al. How far are we from solving pedestrian detection? In CVPR, 2016.
- [6] Benenson et al. Ten years of pedesrian detection, what have we learned? ECCVw, 2014.

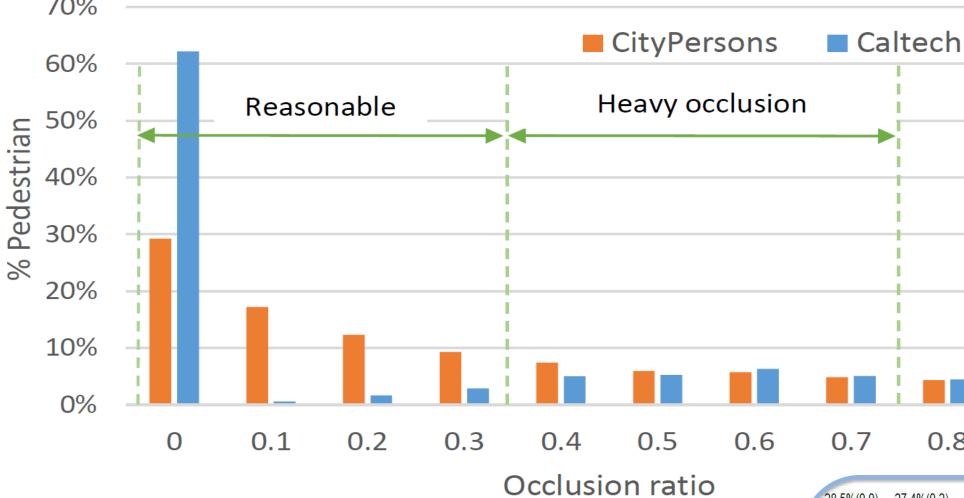
CityPersons: A Diverse Dataset for Pedestrian Detection

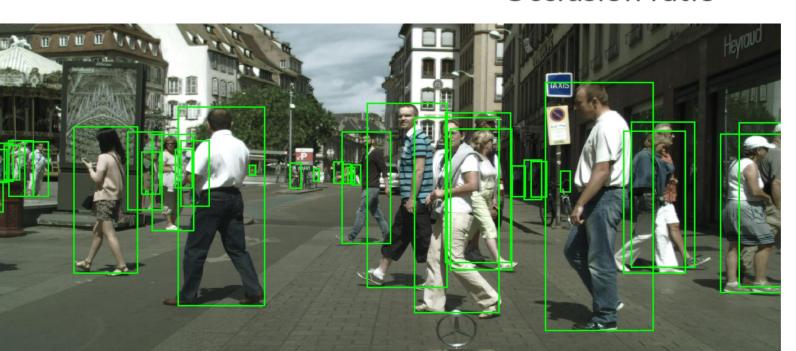
Shanshan Zhang^{1,2}, Rodrigo Benenson², Bernt Schiele² ¹Nanjing University of Science and Technology ²Max Planck Institute for Informatics shanshan.zhang@njust.edu.cn, rodrigo.benenson@gmail.com, bernt.schiele@mpi-inf.mpg.de

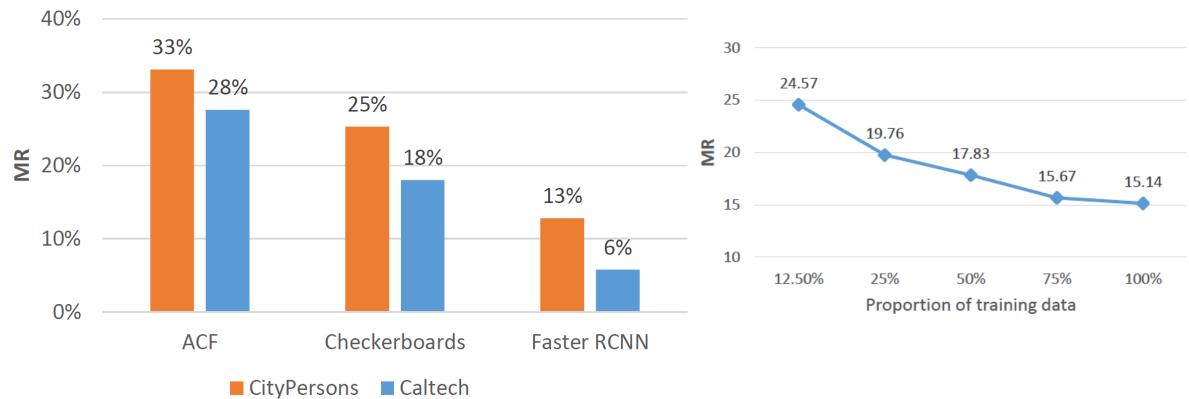
Comparison to Previous Datasets

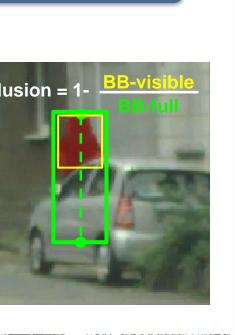
More diverse

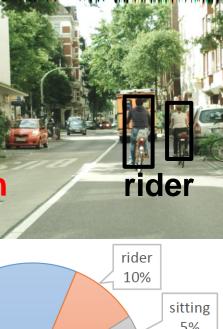
	Caltech	KITTI	CityPersons
# country	1	1	3
# city	1	1	18
# season	1	1	3
<pre># person/image</pre>	1.4	0.8	7.0
# unique person	1273	6336	19654

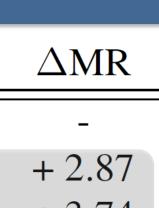




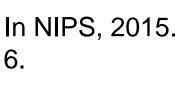


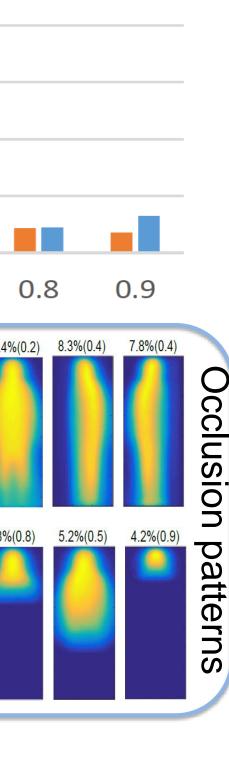






+3.74
+ 1.67
+ 1.33
+ 1.10
+ 10.71





• Diversity enhances generalization ability across datasets

Train Test	Caltech	KITTI	CityPersons
Caltech	10.27	46.86	21.18
KITTI	10.50	8.37	8.67
CityPersons	46.91	51.21	12.81
INRIA	11.47	27.53	10.44
ETH	57.85	49.00	35.64
Tud-Brussels	42.89	45.28	36.98
mean MR	29.98	38.04	20.95

Better pre-training improves

• Detection accuracy (esp. small scale, heavy occlusion) • Alignment quality

	/			,		
O/N	Setup	Scale	IoU	Cal-	CityPersons	Δ MR
/ 1 •	Setup	range	100	tech	\rightarrow Caltech	
MR^O	Reasonable	$[50, \infty]$	0.5	10.3	9.2	+ 1.1
MR^O	Smaller	[30, 80]	0.5	52.0	48.5	+ 3.5
MR^O	Heavy occl.	$[50, \infty]$	0.5	68.3	57.7	+ 8.6
MR^N	Reasonable	$[50, \infty]$	0.5	5.8	5.1	+ 0.7
MR^N	Reasonable	$[50, \infty]$	0.75	30.6	25.8	+ 4.8
Setup)	ale Io nge	UK	ITTI	CityPersons →KITTI	ΔMR
	11	1 0	_	0 1		2 7

Reasonable	$[50, \infty]$	0.75	43.3	39.2	+ 4.1 + 10.7
Smaller	[30, 80]	0.5	37.8	27.1	+ 10.7

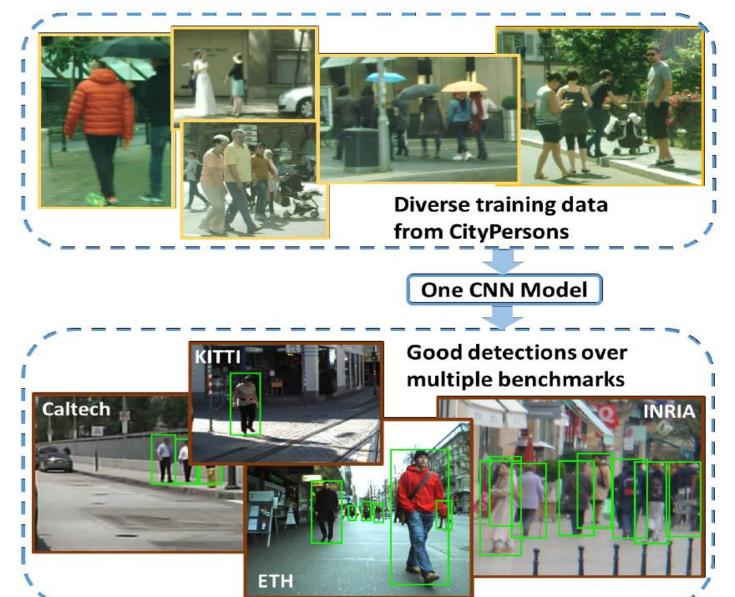
CityPersons: a new dataset for pedestrian detection **Rich & diverse**

Improves quality of existing models New challenges motivate future research

Data & Benchmark Available Online!

https://bitbucket.org/shanshanzhang/ citypersons/

Benefits from CityPersons



Semantic segmentation helps to detect small persons

Scale range	Baseline	+ Semantic	ΔMR
$[50, \infty]$	15.4	14.8	+ 0.6
$[100, \infty]$	7.9	8.0	+ 0.1
[75, 100]	7.2	6.7	+ 0.5
[50, 75]	25.6	22.6	+ 3.0

More data

to explore!