CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss

Overview

We propose a new CNN-based Patch matching approach for optical flow. Many of our contributions are not limited to optical flow but interesting for general feature matching.

Our main contributions are:

- A new loss function for feature and patch matching based on Siamese networks. It outperforms existing losses and allows faster training.
- robustness.
- We obtain state-of-the art results on on KITTI and MPI-Sintel.

Christian Bailer, Kiran Varanasi, Didier Stricker German Research Center for Artificial Intelligence

Feature learning

We train our network with a Siamese architecture. In contrast to related work we use a novel thresholded loss that does not unnecessarily minimize matching errors for correct matches. For training details see paper.

Loss Function:

	Common/Hinge Loss	Direct match loss	Our loss
Patches p_1 and p_2^+ match	$L_2(p_1, p_2^+) \rightarrow 0$	$I(n, n^+) < I(n, n^-)$	$L_2(p_1, p_2^+) \rightarrow < t$
p_1 and p_2^- do not match	$L_2(p_1, p_2^-) \rightarrow > m$	$L_2(p_1, p_2) < L_2(p_1, p_2)$	$L_2(p_1, p_2^-) \rightarrow $ > m-t
EPE > 3px. (experiment)	7.26%	5.89%	4.95%

 $L_2(x, y) = ||D(x) - D(y)||_2$. Table shows what losses aim for. If fulfilled loss is zero. Our loss is especially often zero (>80%). As we do not backpropagate zero losses this makes our loss also very fast in training.

Common losses push the matching error of matching patches to zero (blue arrow in illustration below). This comes at high cost (black arrows) without any advantage (the pushed point is already fine).

Direct matching and **our loss** focus on problematic patches, but ours has a much smaller variance (with similar average gap: $L_2(p_1, p_2^+) - L_2(p_1, p_2^-)$. Small gap + large variance = unreliable in test data.

Low-pass filtering feature maps:

Low-pass filtering increases invariance (but also ambiguity). To some extend it increases robustness as CNNs do not to learn this effect completely. We hope it can be applied on other applications (like R-CNN).

Evaluation measure:

Matching is not a classification problem but a binary decision problem \rightarrow do not use ROC or PR but the probability that the correct patch p_2^+ matches p_1 better than an arbitrary wrong one p_2^- :

hinge loss our loss Pixelwise matching robustness r for our loss and the common hinge loss. Red: r is small, Green: r is large, Blue: No ground truth.

VISION

We visualize the matching robustness r (see middle row in poster)for different distances (between correct p_2^+ and false match p_2^-) and different flow displacements. L_t = our loss, L_h = Hinge loss, L_g = Direct match loss, others = see paper For better visualization we plot not r but r/r0 while r0 is for L_t , t = 0.3

KITTI 2012:						
Method	EPE	EPE >3 px. noc.	Runtime all	Runtime CNN		
Ours (56x56)	3.0 рх	4.89%	23s	4.5s (2s *)		
Patchbatch(71x71)	3.3 px	4.92%	60s	27.5s		
Patchbatch(51x51)	3.3 px	5.29%	50	37.5s		
FlowFields	3.5 px	5.77%	23	-		
Patchbatch FAST	-	5.94%	25.5s	2.5s		

*Fast approach not tested on test set but comparable to slow approach on training set.

Method	EPE >3 px. noc. background	EPE >3 px. noc. foreground	EPE >3 px.	Runtime
Ours	8.91%	20.78%	19.44%	23 s
Patchbatch	10.06%	26.21%	21.69%	50s
DeepDiscreteFlow	10.44%	25.86%	21.92%	60s

Method	EPE	EPE noc.		
Ours	5.363	2.303		
DeepDiscreteFlow	5.728	2.623		
FlowFields	5.810	2.621		
CPM-Flow	5.960	2.990		
PatchBatch	6.783	3.507		

For fast feature calculation on whole images we use the approach detailed and generalized in our follow-up paper [2] (A brief version is also in our supplementary material).

[1] Bailer Christian, Bertram Taetz, and Didier Stricker. "Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. [2] Bailer Christian, Tewodros Habtegebrial, Kiran Varanasi and Didier Stricker. Fast Dense Feature Extraction with Convolutional Neural Networks that have Pooling or Striding Layers. BMVC 2017

Public Results

KITTI 2015:

MPI-Sintel (Final):

References