

Observations

- initialization brought by face detection results.
- with different scales and center shifts.

Motivations

- accuracy of facial landmark detection.
- Good performance of STN [14] on learning instance-specific transformations of training samples.

Contributions

- An end-to-end deep regression with two-stage re-initialization architecture.
- Supervised spatial transformer learning.
- Good robustness to different initialization.
- State-of-the-art performances on 300-W and AFLW.

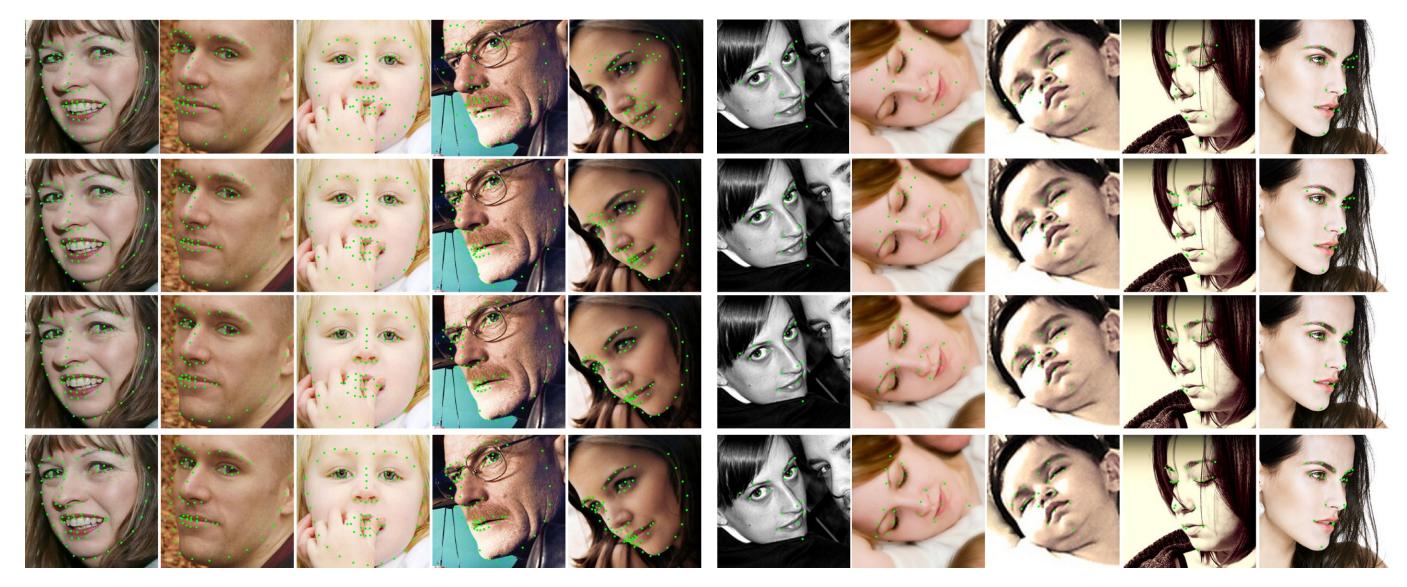
Our Approach

- substantially boost the landmark detection performance.
- Global Stage:
- Local Stage:

A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection

Jiangjing Lv^{1*}, Xiaohu Shao^{1*}, Junliang Xing², Cheng Cheng¹, Xi Zhou¹ ¹Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences ²National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

Experiments


datasets.

Detectors	Common Subset	Challenging Subset	Full Set				
VJ_{B_1} Dlib _{B_1}	8.90 6.88	14.39 12.40	9.98 7.96 6.12 5.71 6.96 6.05 5.69 5.55 5.55 5.27 5.05 5.16 5.09 4.99 4.96	Method	Common Subset	Challenging Subset	Full Set
$OD_{B_1} OD_{B_1} OD_{B_1}$	5.43 5.24	8.97 7.65		RCPR [2] SDM [30] ESR [5] CFAN [35] DeepReg [23] LBF [21] CFSS [38] TCDCN [36] DDN [34] MDM [25] Baseline ₁ Baseline ₂ Proposed ⁻ Proposed	$ \begin{array}{c} 6.18\\ 5.57\\ 5.28\\ 5.50\\ 4.51\\ 4.95\\ 4.73\\ 4.80\\ -\\ 4.83\\ 5.43\\ \end{array} $	17.26 15.40 17.00 16.78 13.80 11.98 9.98 8.60 - 10.14 8.97	8.35 7.52 7.58 7.69 6.31 6.32 5.76 5.54 5.59 5.88 6.12
$egin{array}{c} VJ_{B_2} \ Dlib_{B_2} \ OD_{B_2} \end{array}$	6.19 5.30 5.03	10.15 9.13 8.43					
GT_{B_2} VJ_{P^-}	5.04 4.95 4.87	7.64 8.36 8.30					
${ m Dlib}_{P^-} \ { m OD}_{P^-} \ { m GT}_{P^-}$	4.87 4.56 4.43	8.30 8.16 7.08					
VJ_P Dlib $_P$ OD $_P$ GT $_P$	4.50 4.42 4.36 4.36	7.89 7.80 7.56 7.42			5.03 4.56 4.36	8.43 8.16 7.56	5.69 5.27 4.99

Robustness to Various Initialization

Method	CDM [33]	RCPR	SDM	ERT [16]	LBF	CFSS	CCL [39]	$\dot{Baseline_1}$	$Baseline_2$	Proposed ⁻	Proposed
NME	5.43	3.73	4.05	4.35	4.25	3.92	2.72	2.99	2.68	2.33	2.17

Comparison with the State-of-the-arts on AFLW

Comparison with the Baselines on 300-W and AFLW

We first evaluate the robustness of our approach for various initialization, and then compare it with other state-of-the-art methods on the benchmark

ison with the State-of-the-arts on 300-v