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» LLoss over Domain Statistics (£,)

o First Order Statistics : Use centered data.
e Second Order Statistics : Match source and target covariances.

When X, € 8¢, and X, € &, being the covariance matrices of the source and

INTRODUCTION EXPERIMENTAL RESULTS

» Experiments on Office-Caltech1( Dataset.

o Average performances on all 12 transformation sets in Office-Caltech10 dataset.

» We present an algorithm to address both unsupervised and semi-supervised
domain adaptation problems.

» Our goal is to learn a latent space , H C R” in which domain disparities are

target domains,
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minimized. L, = l(SS(WST):.SWS, W;TZtWt), (4) NN-t 29.0 75.6 76.2 1-NN-s 23.5 65.2 66.7
» We show such a space can be learned by 1. matching the statistical properties . . P SVM-t 48.9 843 83.8 SVM-s 389 70.2 70.6
. . . . . with ¢, being the Stein divergence, HFA[1] 481 837 83.0 GFK[4] 425  76.1 73.2

of the prOJe.cted dqmalns (e.g., covariance matrices), 2. adapting the Pro. 1 MMDT[2] 525 808 78 1 SA[S] 147 753 31
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Figure: A diagram of our proposal. The marker shapes represents instance labels and color
represents their original domain.

Our MODEL

» To learn W, € R**P, W, € R™? and M € S’ , we propose to minimize a loss
function 1n the form,

L=Ly+AL,;. (1)

o L, : adiscriminative loss defined on labeled similar and dissimilar pairs.
o L, : aloss indicating statistical disparity between source and target domains.

» Discriminative Loss (L)
o Defined on labeled pairs, (214, z24) 5k =1,2,--- , N, with, 2,4, Zox € H and a label
vk € {+1,—1}.
o Pulls similarly labeled pairs (i.e. y, = +1) closer and pushes dissimilarly labeled pairs (i.e.
yr = —1) apart.
» We see improvements when,

» Using a differentiable approximation to the hinge-loss.
o Appending with softer margins.

» Our discriminative loss term takes the form,

N
1 1

L= v Z (M, yi, 21k — 2ok 1 + yi€r) + r(M) + v \/Z e, (2
P =1 P

with, ,
ts(M,y, x, 1) = 5 log (1 + exp (By(x” Mx — u))). (3)

Here, r(M) 1s the regularizer for the metric, M and ¢, € R, k= 1,2,...N, are
slack-variables.

for P,,Q € S,,.
OPTIMIZATION

We optimize the loss function in an alternating fashion w.r.t. each model
parameter (i.e. W, W,, M and the slack variables).

» Constraints on the Loss Function

o Orthogonality on projection matrices W and W, 1s motivated by the common practice in
dimensionality reduction.

e Must follow M € S, . for the Metric.
» Using Riemannian Optimization Techniques

» The Stiefel Manifold, St(p, n):The set of (n X p)-dimensional matrices, p < n, with
orthonormal columns.

» The SPD Manifold, S’ :The set of (p X p) dimensional real, Symmetric Positive Definite
matrices.

» A Faster Solution with Product Topology
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Figure: A demonstration on forming of a product topology.
We form the product topology,
Mpmd. — St(l?, §) X St(l?, 1) X S{I?—+ X RNP» (6)

to avoid alternating optimization on model parameters.
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Figure: (Left) Comparison of optimization methods. (Right) Importance of the orthogonality
constraint.

Table: Semi-super. DA on Oflice-Calt.10 Table: Unsuper. DA on Office-Calt.10

» Performance gain when PCA subspaces are replaced

GFK-Method
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Figure: Performance improvement in GFK[4] and SA[5] methods when their PCA subspaces
are replaced with our W matrix.

» Recognizing Faces with Pose Variations.

Camera Pose C09 C05 C37 C25 C02

I-NN-s  92.5 557 28.5 14.8 11.0
SVM-s 87.8 65.0 35.8 15.7 16.7

GFK-PLS[4] 92.5 74.0 32.1 14.1 12.3

SA[5] 97.9 85.9 47.9 16.6 13.9

CORAL[6] 91.4 74.8 35.3 13.4 13.2

e ILS(1-NN)  96.6 88.3 72.9 28.4 34.8

Table: (Left)Samples of domain 1images for Oflice-Caltech10 and PIE faces. (Right)
Performance on face recognition with pose differences on Multiview-PIE dataset.

FuTuRE EXTENSIONS

Source 1

}

Source 2

» Our solution could be extended to
multiple source domain adaptation.

» The latent space 1s compatible with
Heterogeneous domain adaptation.

» Stochastic optimization on Riemannian
manifolds for large scale experiments.

Link to our code
Figure: (Left) Multiple sources

extension. (Right) Link to our code.
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