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Introduction
IWe present an algorithm to address both unsupervised and semi-supervised

domain adaptation problems.
IOur goal is to learn a latent space ,H ⊂ Rp in which domain disparities are

minimized.
IWe show such a space can be learned by 1. matching the statistical properties

of the projected domains (e.g., covariance matrices), 2. adapting the
Mahalanobis metric of the latent space to the labeled data.

Figure: A diagram of our proposal. The marker shapes represents instance labels and color
represents their original domain.

OurModel
ITo learn W s ∈ R

s×p, Wt ∈ R
t×p and M ∈ Sp

++ we propose to minimize a loss
function in the form,

L = Ld + λLu; . (1)

•Ld : a discriminative loss defined on labeled similar and dissimilar pairs.
•Lu : a loss indicating statistical disparity between source and target domains.

IDiscriminative Loss (Ld)
•Defined on labeled pairs, (z1,k, z2,k) ; k = 1, 2, · · · ,Np with, z1,k, z2,k ∈ H and a label

yk ∈ {+1,−1}.
• Pulls similarly labeled pairs (i.e. yk = +1) closer and pushes dissimilarly labeled pairs (i.e.

yk = −1) apart.

IWe see improvements when,
•Using a differentiable approximation to the hinge-loss.
•Appending with softer margins.

IOur discriminative loss term takes the form,
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1
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Here, r(M) is the regularizer for the metric, M and εk ∈ R, k = 1, 2, ...Np are
slack-variables.

ILoss over Domain Statistics (Lu)
• First Order Statistics : Use centered data.
• Second Order Statistics : Match source and target covariances.

When Σs ∈ S
s
++ and Σt ∈ S

t
++ being the covariance matrices of the source and

target domains,
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1
p
δs(WT

sΣsW s,WT
t ΣtWt), (4)

with δs being the Stein divergence,

δs(P,Q) = log det
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2

)
−

1
2

log det
(
PQ

)
, (5)

for P,Q ∈ S++.

Optimization
We optimize the loss function in an alternating fashion w.r.t. each model
parameter (i.e. W s, Wt, M and the slack variables).
IConstraints on the Loss Function
•Orthogonality on projection matrices W s and Wt is motivated by the common practice in

dimensionality reduction.
•Must follow M ∈ S++ for the Metric.

IUsing Riemannian Optimization Techniques
•The Stiefel Manifold, St(p, n):The set of (n × p)-dimensional matrices, p ≤ n, with

orthonormal columns.
•The SPD Manifold, Sp

++:The set of (p × p) dimensional real, Symmetric Positive Definite
matrices.

IA Faster Solution with Product Topology

Figure: A demonstration on forming of a product topology.

We form the product topology,

Mprod. = St(p, s) × St(p, t) × Sp
++ × R

Np, (6)

to avoid alternating optimization on model parameters.

Figure: (Left) Comparison of optimization methods. (Right) Importance of the orthogonality
constraint.

Experimental Results
IExperiments on Office-Caltech10 Dataset.
•Average performances on all 12 transformation sets in Office-Caltech10 dataset.

SURF VGG-FC6 VGG-FC7
NN-t 29.0 75.6 76.2
SVM-t 48.9 84.8 83.8
HFA[1] 48.1 83.7 83.0
MMDT[2] 52.5 80.8 78.1
CDLS[3] 53.5 85.9 85.4
ILS(1-NN) 55.6 88.5 86.4
Table: Semi-super. DA on Office-Calt.10

SURF VGG-FC6 VGG-FC7
1-NN-s 23.5 65.2 66.7
SVM-s 38.9 70.2 70.6
GFK[4] 42.5 76.1 73.2
SA[5] 44.2 75.3 73.1
CORAL[6] 46.7 78.3 76.1
ILS(1-NN) 46.0 80.8 78.8

Table: Unsuper. DA on Office-Calt.10

IPerformance gain when PCA subspaces are replaced

Figure: Performance improvement in GFK[4] and SA[5] methods when their PCA subspaces
are replaced with our W s matrix.
IRecognizing Faces with Pose Variations.

Camera Pose C09 C05 C37 C25 C02
1-NN-s 92.5 55.7 28.5 14.8 11.0
SVM-s 87.8 65.0 35.8 15.7 16.7
GFK-PLS[4] 92.5 74.0 32.1 14.1 12.3
SA[5] 97.9 85.9 47.9 16.6 13.9
CORAL[6] 91.4 74.8 35.3 13.4 13.2
ILS(1-NN) 96.6 88.3 72.9 28.4 34.8

Table: (Left)Samples of domain images for Office-Caltech10 and PIE faces. (Right)
Performance on face recognition with pose differences on Multiview-PIE dataset.

Future Extensions

IOur solution could be extended to
multiple source domain adaptation.
IThe latent space is compatible with

Heterogeneous domain adaptation.
IStochastic optimization on Riemannian

manifolds for large scale experiments.
Figure: (Left) Multiple sources
extension. (Right) Link to our code.
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