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Unsupervised Semantic Scene Labeling for Streaming Data A ‘—L

Motivation & Objectives

*Visual perception and semantic segmentation provide intelligent systems
with information necessary to accomplish higher level tasks
*Shortcomings of state-of-the-art deep learning semantic labeling [1,2,3]

e Large training sets requires significant human effort

e Unable to discover novel concepts in streaming data

e Often a domain mismatch between test environment and training data
Develop an unsupervised semantic scene labeling (USSL) approach
that can learn from small sets of data on-line without human oversight
to continuously model and discover novel concepts in a data stream

Unsupervised Learning Challenges

o Parameter selection is difficult If number/types of concepts are unknown

e Changing visual properties in long data streams, e.g., illumination, weather

o EXisting unsupervised video segmentation [4,5] side step these Issues
with hierarchical output and coherent region modeling, not semantics
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Results

 Under segmentation entropy (USE) vs over-segmentation entropy (OSE)

1.6

1.4 , , 1.4

container |2 &

—@— Stream GBH

- GBH —&— GBH

bus == sreamcen garden

—8— Stream GBH |

1.4} 1 1 12}
12 @ USSL

¢ USSL

& USSL

Overlapping Local Label Models

Approach

Ensemble of Local Learners
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 Graph-based encoding of label overlap
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Comparison of over-segmentation and under-segmentation entropy achieved by
our USSL approach, which produces a single segmentation output, and
hierarchical graph-based approaches, which produce many levels of output
(seen by the curve) using changing parameters.
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Above: Example segmentation output from our approach | .. | |
lllustration of the USSL graph-based encoding of overlapping local models

(USSL) and GBH [5]. USSL has semantic consistency in

Applications
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 [teratively cluster over-segmented superpixels from data stream frames
 Given superpixels, assume 3 s;, s; € I; - label(s;) = label(s;)
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Comparison of average per-class accuracy and overall pixel-wise accuracy
achieved by USSL and graph-based video segmentation variants.
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